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Moulon, 91192, France (e-mail: juan.machado@l2s.centralesupelec.fr,

romeo.ortega@lss.supelec.fr).
∗∗ Institute of Industrial and Control Engineering (IOC), Universitat
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Abstract: This paper proposes a nonlinear, adaptive controller to increase the stability margin
of a direct-current (DC) small-scale electrical network containing a constant power load, whose
value is unknown. Due to their negative incremental impedance, constant power loads are
known to reduce the effective damping of a network, leading to voltage oscillations and even to
network collapse. To tackle this problem, we consider the incorporation of a controlled DC-DC
power converter between the feeder and the constant power load. The design of the control
law for the converter is based on the use of standard Passivity-Based Control and Immersion
and Invariance theories. The good performance of the controller is evaluated with numerical
simulations.

Keywords: Constant power loads, active damping, adaptive control, Lyapunov methods,
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1. INTRODUCTION

This note is concerned with the stability analysis of
electrical networks with Constant Power Loads (CPLs).
It is well-known that, due to their negative impedance
characteristic, CPLs induce voltage oscillations or even
network collapse, see (Emadi et al., 2006). The analysis
of networks with these type of loads started with the
work of (Middlebrook, 1976) and has been an active re-
search problem since then, e.g., (Belkhayat et al., 1995b),
(Belkhayat et al., 1995a) and (Emadi et al., 2006). We
refer the reader to (Singh et al., 2017) and the references
therein for a recent review on this topic.

The stability analysis of networks with CPLs has been
carried out using different approaches. Linearization
methods were used in (Anand and Fernandes, 2013),
(Barabanov et al., 2016), and (Marx et al., 2012), see also
(Arocas-Pérez and Griño, 2017) . Nonlinear techniques

⋆ The work of Juan E. Machado was financially supported by
the National Council of Science and Technology (CONACyT for
its acronym in Spanish) from Mexico. The work of José Arocas-
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such as the Brayton-Moser mixed potential theory, in-
troduced in (Brayton and Moser, 1964), has been used
in (Belkhayat et al., 1995b) and (Cavanagh et al., 2018)
to derive sufficient conditions for stability. The use of this
technique, to estimate regions of attraction, is reviewed in
(Marx et al., 2012). More recently, in (Monshizadeh et al.,
2018), using the framework of port-Hamiltonian (pH)
systems, see (van der Schaft, 2017), sufficient conditions
for stability are presented. It is shown that by imposing
upper bounds on the CPLs maximum power, the stability
analysis can be concluded using the shifted Hamiltonian
as a candidate Lyapunov function. This approach was
firstly explored in (Jayawardhana et al., 2007) for general
nonlinear systems.

Various controller design techniques have been proposed
to enlarge the domain of attraction of this kind of net-
works with CPLs—a review may be found in (Singh
et al., 2017). These stabilization techniques can be divided
into passive and active damping methods. The former
is based on open-loop hardware modifications, whereas
the latter implies the modification of existing or added
control loops, which may imply the interconnection of
additional hardware. In this note we follow the ideas
presented in (Carmeli et al., 2012) and (Zhang et al.,
2013). In these works, a connection of a controlled power
converter, in parallel with the CPL (shunt damper), is
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proposed to increase the stability margins of a small-
scale DC network. In (Carmeli et al., 2012), assuming
a simplified model for the converter, idealized as a con-
trolled current source, a linear control law is designed. In
(Zhang et al., 2013), a full model for the power converter
is used. Nonetheless, their stabilization result is based on
linearization. A large signal stability analysis, but using
approximate techniques, such as the Takagi-Sugeno fuzzy
model, is carried out in (Kim et al., 2016).

The main contribution of the present note is to propose
a physically realizable nonlinear control law that renders
a small-scale DC network, containing a CPL, stable for
a wide range of power consumption values from this
load. The construction of the controller relies on the
use of standard Pasivity-Based Control (s-PBC) theory
(Ortega et al., 2013). Additionally, using Immersion and
Invariance (I&I) theory (Astolfi et al., 2007) the controller
is made adaptive by including an estimator of the power
consumed by the CPL, which is generally unknown in a
practical context. The good performance of the proposed
adaptive controller is evaluated with realistic numerical
simulations.

The rest of the paper is structured as follows. In Section
2 we give the model of a small-scale network containing
a CPL, analyze its equilibria and describe the stability
problem addressed in the paper. The proposed controller
configuration, adopted from (Carmeli et al., 2012) and
(Zhang et al., 2013), is presented in Section 3. Our
main stabilization results are included in Section 4. In
Section 5 we present the numerical implementation of
our theoretical developments. The note is finalized in
Section 6 with a number of concluding remarks and open
problems that can be addressed to extend our results.

2. PROBLEM FORMULATION

2.1 Description of the open-loop system

We study a simplified model of a DC power system as
shown in Fig. 1. This simple model has been used in the
literature, e.g., in (Zhang et al., 2013), (Mosskull, 2015)
and (Wu and Lu, 2015), to study the stability problems
associated with CPLs. It consists of a DC voltage source
supplying electric energy to an instantaneous CPL. The
transmission line is simply represented by a lossy inductor
and the CPL is connected through a bus capacitor. The
dynamic model for this network is given by

L1i̇1 = −r1i1 − v1 + E,

C1v̇1 = i1 −
P

v1
,

(1)

where i1 and v1 denote the current of the inductor L1 > 0
and the voltage of the capacitor C1 > 0, respectively. The
constant parameter P corresponds to the power extracted
or injected into the network by the CPL, being positive in
the former case and negative in the latter. In the sequel,
we focus our attention in the critical case P ≥ 0.

The state space for this system is defined as follows

X1 := {(i1, v1) ∈ R
2 : v1 > 0}.

−

+E

r1 L1i1

C1

+

−

v1 CPL

icpl

Fig. 1. A DC source supplying power to an instantaneous
CPL.

2.2 Equilibrium analysis of the open-loop system

The following proposition pertains to the existence of
steady states for the system (1).

Proposition 1. The system (1) admits two equilibrium
points, which are given by

ī1 =
E ∓

√
∆

2r1
, v̄1 =

E ±
√
∆

2
, (2)

Furthermore, these equilibrium points are real if and only
if

∆ := E2 − 4Pr1 ≥ 0 ⇔ P ≤ E2

4r1
. (3)

Remark 2. The system has two equilibria. However, we
are mainly interested in operating the system in the
equilibrium with the highest value for the voltage v̄1
and the lowest value for the current ī1. In the sequel,
whenever we write (̄i1, v̄1), we are making reference to
this particular equilibrium point. In the next section,
a controller is added to the system and the control
objectives are defined, we will propose a desired value
for v̄1 to be stabilized.

In the next proposition we give necessary and sufficient
conditions for the equilibrium point (̄i1, v̄1) to be stable.
This result follows directly from studying the eigenvalues
of the system (1) at (̄i1, v̄1).

Proposition 3. For the system (1), assume that C1 < L1

r2
1

,

then, a necessary condition for (̄i1, v̄1) to be stable is given
by

P ≤ E2C1L1r1

(L1 + C1r
2
1)

2
. (4)

Furthermore, if this inequality holds strictly, then, (̄i1, v̄1)
is also asymptotically stable. Lastly, in the case that
C1 ≥ L1

r2
1

, the condition

P ≤ E2

4r1
,

is necessary and sufficient for (̄i1, v̄1) to be stable.

2.3 Control objectives

To streamline the presentation of our control objectives
we make the following observations.

(i) As seen in (2) and (3), the equilibrium points depend
on the value of the parameter P . In particular, the
value of v̄1 decreases when P increases.

(ii) Proposition 3 shows that, when the capacitance C1 is
not big enough, then, to maintain stability, the power
extraction from the CPL must be strictly smaller
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than the upper bound for existence of equilibria
given in (3).

In the light of these remarks our control objectives are
specified as follows.

CO1 Stabilize the voltage v1 around a desired value.
CO2 Relax the upper bound for P established in (4).
CO3 Achieve these objectives without the knowledge of

P .

Condition (b) of Proposition 3 suggests a passive method
to achieve these objectives, which consists in increasing
the effective capacitance C1. This can be done with the
connection in parallel of a suitable capacitor and the
CPL. Some disadvantages of this approach are mentioned
in (Carmeli et al., 2012, Section III.A). Instead of this
passive approach, we propose to add a switched capaci-
tor. More precisely, following (Carmeli et al., 2012) and
(Zhang et al., 2013), we add a shunt damper, that is a
power converter in parallel with the CPL. The derivation
of the control law for this converter, that ensures the
control objectives above, is the main contribution of the
paper.

3. AUGMENTED CIRCUIT MODEL

As proposed in (Carmeli et al., 2012) and (Zhang et al.,
2013), we consider the addition of a controlled shunt
damper between the feeder and the load, as shown in
Fig. 2. The damper consists of a DC-DC power converter,
composed of two complementary switches u and (1 −
u), a lossy inductor L2 and a capacitor C2. The losses
associated with the switching devices are modeled with
the resistor r3.

−

+ E

r1 L1 i1

C1

+

−

v1

icpl

r2 L2 i2

1− u

u

r3 C2

+

−

v2

Fig. 2. A shunt damper connected between the feeder and
the load for the network of Fig. 1. For the switches,
“1” means closed and “0” means open.

The averaged dynamic model of the interconnected sys-
tem shown in Fig. 2 is given by

L1i̇1 = −r1i1 − v1 + E,

C1v̇1 = i1 −
P

v1
− i2,

L2i̇2 = −r2i2 − uv2 + v1,

C2v̇2 = −
(

1
r3

)

v2 + ui2,

(5)

where i2 is the current of the inductor L2 > 0, v2 is the
voltage of the capacitor C2 > 0, and the variable u ∈ [0, 1]

represents the duty cycle, which is the control variable for
the system.

Before closing this section, and for ease of reference in the
sequel, we notice that the system (5) may be written in
the classical form ẋ = f(x) + g(x)u where

x := col(i1, v1, i2, v2),

is the state vector and

f(x) := D−1









−r1x1 − x1 + E

x1 − P

x2

− x3

−r2x3 + x2

− 1
r3
x4









, g(x) := D−1







0
0

−x4

x3






,

with D := diag{L1, C1, L2, C2} and state space

X := {x ∈ R
4 : x2 > 0, x4 > 0}.

4. MAIN RESULTS

In this section we propose a nonlinear adaptive controller
that ensures that the network under study satisfies the
control objectives of Subsection 2.3. Towards this end, we
first analyze the set of assignable equilibria and establish
constraints on the system parameters for the existence
of physically realizable steady states. Second, following s-
PBC theory, we design a control law that asymptotically
stabilizes a desired equilibrium state assuming the CPL
power P is known. Finally, using I&I theory, we present
an estimator for P that makes adaptive the proposed
controller, preserving the stability property.

4.1 Assignable equilibria

We say that a pair 1 (x̄, ū) ∈ X × R is an equilibrium of
(5) if and only if

f(x̄) + g(x̄)ū = 0. (6)

We define the set of assignable equilibria E , as the set of
points x̄ ∈ X for which there exists ū ∈ R such that (6)
holds. This set can be computed as follows (see (Ortega
et al., 2008, Lemma 2)). Let g⊥ : X → R

3×4 be a full-rank
left-annihilator of g, i.e., it satisfies g⊥(x)g(x) = 0 for all
x ∈ X in its rank. Then, E is given by

E = {x ∈ X : g⊥(x)f(x) = 0}. (7)

Furthermore, the associated unique equilibrium input ū
is given by

ū = −
(

g⊤(x̄)g(x̄)
)−1

g⊤(x̄)f(x̄). (8)

In the following proposition we derive the explicit values
of x̄ ∈ E and its associated ū, which are compatible with
the control objectives.

Proposition 4. Fix x̄2 > 0 as a desired operation value for
the systems voltage. Then, x̄ ∈ E if and only if

PM (x̄2)−
x̄2
2

r2
< P < PM (x̄2), (9)

where

PM (x̄2) :=
x̄2

r1
(E − x̄2).

1 Following a standard procedure, we let u live in R even though,
being a duty cycle, it is restricted to the set [0, 1]. This issue is
partially addressed in Corollary 5.
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In that case, we can parametrize the remaining equilib-
rium components as

x̄1 =
E − x̄2

r1
,

x̄3 = −Pr1 − Ex̄2 + x̄2
2

r1x̄2
,

x̄4 =
1

r1x̄2

√

r3κ1(x̄2, P )κ2(x̄2, P ),

(10)

where

κ1(x̄2, P ) := −x̄2
2 + Ex̄2 − r1P,

κ2(x̄2, P ) := (r1 + r2)x̄
2
2 − r2Ex̄2 + r1r2P.

Furthermore, the associated equilibrium value for the
input variable is given by

ū =

√

κ2(x̄2, P )

r3κ1(x̄2, P )
.

4.2 Equilibrium for maximum power extraction and control
realizability

Observe from (9) that the amount of power that can be
extracted by the CPL is limited by the choice of x̄2. Also,
the equilibrium value for u, given in (8), depends both on
x̄2 and on P . In the following corollary we choose a desired
value of x̄2 which permits a maximum extraction of power
from the CPL. Additionally, we establish conditions on P
which guarantee that ū is strictly smaller than one, i.e.,
physically realizable with the power converter.

Corollary 5. The largest admissible extracted power
PM (x̄2) is maximized with the choice

x̄2 =
E

2
. (11)

Given this value, x̄ ∈ E if and only if the extracted power
satisfies

E2(r2 − r1)

4r1r2
< P <

E2

4r1
.

Furthermore, the associated equilibrium value for u, given
by

ū =

√

E2(r1 − r2) + 4Pr1r2

r3 (E2 − 4Pr1)
,

is strictly smaller than one if and only if the upper-bound
on P is restricted even further to

P <
E2(r2 + r3 − r1)

4r1(r2 + r3)
. (12)

4.3 Design of a stabilizing control law

In this subsection we present a control law that renders
the desired equilibrium point (10), with x̄2 given in (11),
asymptotically stable. The controller design is carried out
following the s-PBC methodology.

For a better readability and following the ideas presented
in (Cisneros et al., 2013, Section IV), we show, under
the assumption that x2(t), x4(t) > 0 for all t, that there
exists a suitable change of variables for u, which allows
us to write the system (5) in the cascade form shown in
Fig 3.

Σ
13

Σ
4

w w x3

Fig. 3. Block diagram for the cascaded interconnection
between the subsystems (13) and (14).

Proposition 6. Define the auxiliary control variable

w = x4u.

Then, the system (5) admits cascade decomposition into
the subsystems

Σ13 :







L1ẋ1 = −r1x1 − x2 + E,

C1ẋ2 = x1 − P

x2

− x3,

L2ẋ3 = −r2x3 + x2 − w,

(13)

and
Σ4 : C2ẋ4 = −( 1

r3
)x4 +

w

x4

x3. (14)

Now, we make the important observation that the system
Σ13 admits an Euler-Lagrange representation. For more
details on the representation of electrical circuits in this
formalism, we refer the interested reader to (Ortega et al.,
2013).

Proposition 7. Define the vector

x13 := col(x1, x2, x3),

the matrices

D := diag {L1, C1, L2} > 0,

C :=

[

0 1 0
−1 0 1
0 −1 0

]

, R(x13) :=





r1 0 0
0 P

x2

2

0

0 0 r2



 ,

and the constant vectors

K := col(E, 0, 0),G = col(0, 0,−1).

Then, the system Σ13 admits an Euler-Lagrange formu-
lation given by

Dẋ13 + (C +R(x13))x13 = K + Gw.

The importance of this representation is that it allows a
direct application of the s-PBC methodology to define a
control law for w which renders the equilibrium point x̄13

of Σ13 exponentially stable. Consider the following

Proposition 8. For the system Σ13, assign the static state-
feedback control

w = φ2(x
13),

where

φ1(x2) := x̄1 − P

x2

2

x̄2 + k1(x2 − x̄2),

φa
2 := −r2φ1(x2)− L2

(

k1 + 2Px̄2

x3

2

)

f2(x1, x2, x3),

φb
2 := x̄2 + k2 (x3 − φ1(x2)) ,

φ2(x
13) := φa

2 + φb
2 ,

and k1, k2 ≥ 0 are arbitrary constants. Then, the
equilibrium x̄13 is exponentially stable.

The next step in our stabilization result, is to show that,
when w = φ2(x

13) , then x4, solutions of the subsystem
Σ4, converge exponentially to x̄4.

Proposition 9. Let x13(t) be any solution of the subsys-
tem Σ13 in closed-loop with state-feedback w = φ2(x

13).
Then, every solution x4(t) of Σ

4, converges exponentially
to x̄4.
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As a direct application of Props. 8 and 9, we obtain our
main result.

Proposition 10. Consider the system (5) in closed-loop
with the static state-feedback control

u = γ(x), (15)

where

γ(x) = 1
x4

φ2(x1, x2, x3). (16)

Then, x̄ ∈ E is a locally, exponentially stable equilibrium
point of the closed-loop system.

4.4 Stabilization assuming an unknown CPL power

In this section we propose an adaptive version of the
previously designed controller. Now, we assume that the
CPL power P is constant but unknown. First, following an
I&I technique, a dynamic estimate for P , which we denote
by P̂ (t), is presented. We show that the error between
the estimate and the actual value of P converges to zero
exponentially fast for any initial condition.

Proposition 11. For the system (5), assume that P is
unknown. Define an on-line estimate for P as follows

P̂ (t) = −1

2
· k3C1v

2
1 + PI(t), (17)

ṖI(t) = k3v1 (i1 − i2) +
1

2
k23C1v

2
1 − k3PI, (18)

where k3 > 0 is a free parameter. Then, for any initial
condition (P̂ (t0), PI(t0)), we have that lim P̂ (t) → P at
exponential rate.

Remark 12. The static controller defined in (15) depends
on the components x̄1, x̄2, and x̄3 of the desired steady
state value x̄ ∈ E (see Proposition 4). In particular, x̄2

is assumed to be specified exactly. However, x̄3 depends
linearly on the now assumed unknown CPL power P . In
the next proposition we show that the controller is able
to achieve the stabilization of x̄ even when the designed
on-line estimate for P is being used.

Proposition 13. Let k3 > 0 be chosen arbitrarily. For the
controller (15), define its adaptive version as

u = γ̂(x) = γ(x)|
P=P̂ (t), (19)

where γ is given in equation (16) and P̂ (t) is the online

estimate of P , computed from (17). Then, (x, P̂ ) = (x̄, P ),
with x̄ ∈ E , is an asymptotically stable equilibrium point
of the extended dynamics conformed by (5), (17) and (19).

5. NUMERICAL VALIDATION

In this section, we numerically evaluate the performance
of the proposed adaptive controller. The system physical
parameters are taken according to Table 1, and the pa-
rameters for the adaptive controller, presented in equation
(19), are taken as

k1 = 30, k2 = 0.78, k3 = 1000.

Simulations for the closed-loop system (5) and (19) were
done taking the initial condition

x(0) = col (40, 12, 31.6667, 612.3611) ,

which corresponds to the equilibrium point x̄|P=100, with
the particular value of x̄2 proposed in equation (11), given
by

x̄2 =
1

2
E = 12 V,

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10

11

12

13

time [s]

x
2
[V

]

Fig. 4. Plot of x2(t) for the system (5) using the adaptive
controller of equation (19). At t = 1 µs a step change
from P = 100 W to P = 479 W is introduced.

see Prop. 4. Then, at t = 1 µs, a step change in the CPL
power, from P = 100 W to P = 479 W is introduced. The
control objective is to stabilize the new equilibrium point

x̄|P=479 = col (40, 12, 0.0833, 31.6222) ∈ E .
We point out that the controller is able to keep the same
desired value for x̄2 regardless of the change in the value
of P . Nonetheless, the rest of the coordinates of x̄ change,
see equation (10). For clarity we use a logarithmic scale
for the time to better appreciate the transient response
of the system.

Fig. 4 shows the plot of x2(t). Clearly, the controller is
able to maintain the value of x2 around the desired value
of x̄2 = 1

2E, in spite of the change in the power consumed
by the CPL.

Fig. 5 shows the plot of u(t). Observe that its value is
always bounded within zero and one. Hence, the controller
is physically realizable with the proposed DC-DC power
converter.

We underscore that the new CPL power satisfies the
upper bound for stability established in (12), which with
our numerical parameters reads as

P < 479.85 W.

This condition clearly relaxes the necessary condition for
stability presented in Proposition 3, which says that if the
CPL power satisfies

P >
E2C1L1r1

(L1 + C1r
2
1)

2
= 276.9 W,

then, the network without the shunt damper is unstable.
Finally, observe that the new CPL power value is very
close to the maximum admissible value for existence of
equilibria written in (3), which in our case corresponds to
P ≤ 480 W. Hence, the addition of the shunt damper,
operating under our adaptive controller, achieves the
stabilization of a desired equilibrium point x̄ ∈ E for a
wide range of values for the CPL.

Table 1. Parameters for the circuit in Fig. 2

r1 = 0.3 Ω L1 = 85.0 µH C1 = 200 µF E = 24.0 V

r2 = 5 mΩ L2 = 100 µH C2 = 1.0 mF r3 = 1 kΩ

Remark 14. In the simulations, we have focused on the
stabilization of x̄ with a fixed x̄2 as proposed in Corollary
5. However, other values for x̄2 can be chosen as long
as inequalities (9) are satisfied. Diverse numerical exper-
iments showed a dependency between the chosen value
of x̄2 and the energetic efficiency of the power converter.
Further analysis of this phenomenon is left as a future
research.
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10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

0

0.2

0.4

0.6

0.8

1

time [s]

u

Fig. 5. Plot of u(t) for the system (5) using the adaptive
controller of equation (19). At t = 1 µs a step change
from P = 100 W to P = 479 W is introduced.

6. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed a nonlinear stabilization
method for a DC small-scale power system supplying
electric energy to a CPL. This is done by incorporating
an active shunt damper, consisting of a controlled DC-
DC power converter connected at the point of common
coupling, exactly between the feeder and the load. Using
s-PBC and I&I theories, a nonlinear adaptive control law
for the shunt damper is designed. It permits the stable
operation of the network for a wide range of values of the
CPL and is able to relax some necessary stability bounds
that are imposed when the system operates without the
shunt damper. Through realistic numerical simulations,
we have illustrated the satisfactory behavior of the de-
signed controller.

The results of this paper can be extended in the following
directions:

- Explicitly compute estimates for the Region of Attrac-
tion of the system in closed-loop. Particularly, for the case
when the power estimate, designed in Section 4.4, is used.

- Theoretically evaluate the robustness, against parameter
uncertainty, of the proposed adaptive control.

- Design an observer for the variable x1, which is, in some
practical scenarios, difficult to measure. We underscore
that both, our controller and our power estimator, ex-
plicitly depend on this value.

-Further investigate the dependency between the chosen
value x̄2 and the energetic efficiency of the power con-
verter, see Remark 14.

- Analyze the viability of applying the present stabiliza-
tion result to the case of multi-port networks with a
distributed array of CPLs.
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