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Abstract: Most robust control schemes for rigid robots assume velocities measurements to be
available. A solution to this problem is by using tachometers, however, this can increase the
cost and the velocities signals obtained can be contaminated with noise. These facts motivates
us to design a control and observer scheme to solve the tracking position problem without
measurement of velocities joints of a manipulator robot.
This work presents a robust control scheme designed in conjunction with an observer for rigid
robots. Additionally, the control scheme does not need to know the dynamic model of the
manipulator. Particular emphasis is placed on the experimental results, which validate the
proposed control algorithm.
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1. INTRODUCTION

It is well know that robot manipulators are generally
used in repetitive tasks with high precision and accu-
racy. Among the main problems which have to solved,
two of the most important are the lack of the velocity
measurements and of an exact robot model. In (Nicosia
and Tomei, 1990) is presented one of the earliest schemes
designed to work only with joint measurements. In that
paper, a nonlinear observer is presented which can be
used to achieve tracking control. A disadvantage of their
approach is that an exact knowledge of the robot model
is required. On the other hand, to handle an inaccurate
model some adaptive and robust schemes have been pro-
posed (Slotine and Li, 1987), (Spong, 1992).

Thus, some robust control schemes have been proposed,
which need only position measurements for control and
do not require an accurate robot model. In (Canudas de
Wit and Fixot, 1991), a sliding observer is developed, in
(Berghuis and Nijmeijer, 1994) a quite simple control-
observer scheme is proposed which notably does not
need any knowledge of the robot model parameters, nor
structure, ti achieve uniform ultimate boundedness of the
tracking and observations errors. In the last decades, sev-
eral researches have been developed adaptive and robust
control schemes for trajectory tracking of robot manip-
ulators that achieve asymptotic convergence or ultimate
boundedness of the tracking errors (Zhang et al., 2000;
Arteaga-Pérez, 2003; Galicki, 2008).

An adaptive algorithm may be much more complex and
is aimed at estimating on line the unknown parame-
ters to get exact tracking. An alternative to use of ob-
servers consists in employing linear filters to overcome
the lack of joint velocities. More recently, (Parra-Vega
et al., 2003) proposed a sliding PID control, which is
able to achieve an exact tracking without any knowledge
of the model for implementation. Sliding mode control
approaches guarantee fast convergence of the tracking
errors in the presence of model uncertainties and external
disturbances. Such robustness properties makes the slid-
ing mode control suitable in several robotic tasks. First-
order sliding schemes are discontinuous controllers which
generates high-frequency oscillations (chattering) Frid-
man (2011). Such oscillations are undesirable because
they can damage the actuators or produce dangerous
system vibrations. In order to reduce chattering several
methods have been proposed in the last decades. Among
them, the most popular are the second and higher-order
sliding mode controls (Bartolini et al., 2003; Levant, 2005;
Moreno and Osorio, 2008, 2012).

In this paper, a robust tracking control scheme, together
with a nonlinear observer, is proposed that guarantee
uniform ultimate boundedness of the tracking and ob-
servation errors. The rest of the paper is organized as
follows. The robot, as well as some properties are given in
Section 2. The tracking controller with observer scheme is
proposed in Section 3. Section 4 presents some experimen-
tal results. The paper conclusions are stated in Section 5.
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2. DYNAMIC MODEL OF A MANIPULATOR
ROBOT

The dynamic behavior of a fully actuated n-degree-of-
freedom (DOF) robot manipulators can be derived from
the Euler-Lagrange equations of motion resulting in

H(q)q̈ +C(q, q̇)q̇ + g(q) = τ (1)

where q ∈ ℜn is the joint position vector, H(q) ∈ ℜn×n

is the inertia matrix, C(q, q̇)q̇ ∈ ℜn represents the
centrifugal and Coriolis forces/torques, g(q) ∈ ℜn is the
gravity vector, τ ∈ ℜn is the vector input torque .

Model (1) have the following properties (Kelly et al.,
2005):

Property 1. The inertia matrix H(q) is symmetric and
positive definite, i.e. yTH(q)y > 0, for all q, y ∈ ℜn. ✷

Property 2. The inertia matrix H(q) satisfies

λh‖y‖
2 ≤ yTH(q)y ≤ λH‖y‖

2,

where

λh = λmin
∀q{H(q)}, λH = λmax

∀q{H(q)}

for all q,y,∈ ℜn
✷

Property 3. The matrix Ḣ(q)−2C(q, q̇) is skew-symmetric,
i.e.,

yT

(

Ḣ(q)− 2C(q, q̇)
)

y = 0,

for all q, q̇ and y ∈ ℜn. ✷

3. PROPOSED CONTROL–OBSERVER SCHEME

In this section, the tracking control problem of rigid robot
manipulators without velocity measurements is studied.
Continuous robust control for trajectory tracking without
velocities measurements of rigid robots is presented. First,
it is defined the following vector functions

⌈y⌋α =







|y1|
αsign(y1)

...
|yn|

αsign(yn)






(2)

tanh(y) =







tanh(y1)
...

tanh(yn)






, ∀y ∈ ℜn. (3)

where α ∈ ℜ is a positive constant. The function
|y|αsign(y) can be written as

|y|αsign(y) =

{

yα, y > 0
0, y = 0

−(−y)α, y < 0
(4)

Notice that |y|αsign(y) is well-defined at y = 0 and

lim
y→0+

|y|αsign(y) = 0, lim
y→0−

|y|αsign(y) = 0.

Then, ⌈y⌋α in (2) is a continuous vector function for all
y and its derivative is given by

d

dt
⌈y⌋α = αΓ(⌈y⌋α−1)ẏ (5)

where Γ(⌈y⌋α−1) = diag
{

⌈y1⌋
α−1, . . . , ⌈yn⌋

α−1
}

∈
ℜn×n.

3.1 Observer design

It is desired to design a position tracking control law
while velocity measurements are not available. Then, the
corresponding observation and tracking errors are defined
as

z
△
= q − q̂, (6)

and

∆q
△
= q − qd, (7)

respectively.

Based on (Arteaga-Pérez et al., 2006), we propose the
following velocity observer

ξ̇= z (8)

˙̂qo = q̇d −Λx∆q +KdΛzξ (9)

˙̂q = ˙̂qo +Λzz +Kdz + η (10)

η̇ = k1

∫

Sign(z) + k2⌈z⌋
α (11)

where Λz,Λx,Kd, k1, k2 ∈ R
n×n are positive definite

diagonal matrices.

3.2 Controller design

The next step consists in designing a tracking controller
by using the estimated velocities. Based on (Arteaga-
Pérez et al., 2006) we define

s= ˙̂q − q̇d +Λx⌈∆q⌋α (12)

σ̇ =Kβs+ sign(s), (13)

where Kβi ∈ R
n×n is a positive definite diagonal matrix,

sign(s) = [sign(si1), . . . , sign(sin)]
⊤ with sij element of s

for j = 1, . . . , n, qd, q̇d is the position and velocity desired
and α ∈ R.

Consider now the following variables

q̇o =
˙̂q −Λz⌈z⌋

α (14)

q̇r = q̇di −Λx⌈∆q⌋α −Kγσ (15)

so
△
= q̇o − q̇r, (16)

where Kγ ∈ R
n×n is a positive definite diagonal matrix.

Based on the previous definitions, the proposed control
law is given by

τ = −K tanh(so) (17)

where K ∈ ℜn×n is a positive definite diagonal matrix.
At this moment we are working on the theoretical test.

We claim that the n-link robot manipulator in closed loop
with the control law (17) and the observer (8)-(10) has the
following properties:

i) Any closed-loop variable is bounded.
ii) The position tracking errors converge to zero.
iii) The position tracking errors converge to zero.

It remains as future research to provide an analytical
proof and formalize the result in the form of a theorem.
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4. EXPERIMENTAL RESULTS

In this section experimental results are presented. The
experimental setup is composed of a fully actuated Ge-
omagic Touch device 3-DOF (see Fig .1). This device
runs in a computer with Windows 7. The robot has
six joints but only the first three joints are actuated by
DC motors. Therefore last three joints were mechanically
braked during the experiments.

The controller was implemented on a PC computer and
programmed using Microsoft Visual Studio with a sample
time of 1[ms] in C++ language.

The Gain tuning has been done heuristically for the
scheme, because some gains depend on uncertain terms.
The control gains were set to Λx = 15.0, 16.0, 15.0, Kγ =
0.5, 0.5, 0.5, Kβ = 0.05, 0.05, 0.05, K = 0.16, 0.28, 0.26,

∆z = 1.0, 1.0, 1.0,Kdi = 15.0, 15.0, 15.0,K1 = 0.1, 0.1, 0.1,
K2 = 0.016, 0.018, 0.016, and α = 9/11.

In each of the joints a reference signal of different fre-
quency was chosen. It is important to mention that the
amplitudes of the desired trajectories for the joints are
different, therefore the scales are also different. The de-
sired trajectory is given by

qd(t) =
180

π

[

−0.4 + 0.4 cos(3t)
1.2 + 0.2 cos(t)

−1.56− 0.1 cos(2t)

]

[◦]

The initial position of the robot is q(0) = [ 0 80 −95 ]
T
[◦].

Fig. 1. Experimental platform; Geomagic touch of 3D
Systems

Figure 2 shows the desired and real trajectories. As can
be appreciated, the results are pretty good. In Figure
3 shows the tracking errors. They are smaller than 1 ◦

during most of the motion. Furthermore, the table 1
shows the performance index. In Figure 6 observation
errors are shown. Notice that they are smaller than 0.5
◦ during most of the motion. Furthermore, the table
2 shows the performance index. Figure 4 shows that
the control signal is bounded and does not saturate the
actuator. For comparison purposes, the estimated and
desired velocities are shown in 5. As expected, after the
transient response the estimated velocity converges to the
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Fig. 2. Positions qi=1,..,3 (——), qdi=1,..,3 (- - - ).

desired one. In Figure 7 are shown the estimated position
only for comparison. Finally, in Figure 8 are shown the
estimated velocity and the derivative desired position.
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Fig. 3. Tracking errors a) q̃1, b) q̃2 and c) q̃3.

In order to compare, in a more objective way, the behavior
of the system controlled with the 3 different schemes, we
have calculated the RMSE from 0 to 30 seconds (30,000
samples), of the position error as follows:

scheme ∆q1 ∆q2 ∆q3

Scheme proposed 0.3300 0.1618 0.1720

PID 4.3778 3.7616 3.1295

Pliego-J. (Submitted for review) 0.7326 0.6856 0.5508

Table 1. RMSE of the position error

variable ∆z1 ∆z2 ∆z3

Scheme proposed 0.5641 0.1807 0.1518

Table 2. RMSE of the observation error
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Fig. 4. Control signal, a) |τ1|, b) |τ2| and c) |τ3|
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Fig. 5. Estimate-desired velocity errors, ˙̃qi=1,..,3 ≈
˙̂qi=1,..,3 − q̇di=1,..,3.
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Fig. 6. Observation error z = q − ˙̂q.
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Fig. 7. Measurement-estimate position, q (- - -) vs q̂ (—-).
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Fig. 8. Joint velocities, ˙̂q vs (——) q̇d (- - - ).

5. CONCLUSIONS

In this paper we addressed the problem of trajectory
tracking of robot manipulators without using velocity
measurements. To overcome this particular problem a
robust controller in combination with a nonlinear velocity
observer are proposed. The performance of proposed
control-observer scheme was assessed by experimental
tests. Experimental results show that the control-observer
drives the tracking and observation errors near to the
origin (ultimate boundedness).

The main advantages observed from the outcomes of this
particular set of experiments are the following

• the proposed controller generates smoother control
signals than the well-known PID controller.

• The proposed scheme does not saturate actuators.
• The implementation of the controller is simple in the
sense that the knowledge of robot dynamic model
and their parameters are not needed.

It remains as future work evaluate the performance of the
proposed approach in bilateral teleoperation tasks.
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