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Abstract: In this document, we propose a non-linear PD tracking controller with adaptive
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validation confirmed the results that were obtained theoretically.
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1. INTRODUCTION

Feedfoward control is a conceptually simple strategy that
uses the inverse dynamics of a given system evaluated
along the reference trajectories as a control law (Kelly
et al. (2005)). Nevertheless, to apply this kind of control
strategy, one must have access to a precise model of
the plant and all of its parameters. An improvement on
this control strategy is given by the PD control plus
feedforward scheme.

The dynamics of robot manipulators are usually difficult to
model due to the existence of non-linearities and paramet-
ric uncertainties. Consequently, model based controllers
do not always perform adequately. To circumvent this
issue, a wide variety of techniques, such as neural networks
and fuzzy systems, have been explored. Robust controllers
are designed to work despite having a limited amount
of information on the plant. Model-free controllers offer
a robust framework to solve the tracking and regulation
problem.

Regressor-based adaptive control, as it is studied in chap-
ters 14, 15 and 16 of (Kelly et al. (2005)), is a very effective
technique for achieving the control objective when para-
metric uncertainties are present in the plant. Nevertheless,
a certain degree of knowledge regarding the structure of
the mathematical model is required to implement this kind
of controllers. On the other hand, regressor-free adaptive
controllers do not need that degree of knowledge of the
system. Approximation techniques, like Fourier series, al-
low us to implement regressor-free control and attain ro-
bustness even without complete knowledge of the system’s
dynamics.

A kind of Fourier series based controllers have been stud-
ied by several authors recently. For example, in Kho-
rashadizadeh and Majidi (2017) Fourier series were used
to solve the chaotic synchronization problem applied to
communications. The Fourier controller was compared
with a fuzzy system and it was determined that both
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of them exhibit a satisfactory performance. Nevertheless,
it was stated that Fourier series are superior in terms
of computational efficiency and simplicity. In Tsai and
Huang (2008) a function approximation based controller
was used to control a highly non-linear pneumatic servo
system in the presence of a time-varying payload. It was
found that the Fourier controller gave the system a high
level of robustness. In Khorashadizadeh and Fateh (2013)
Fourier series were used to estimate the uncertainty of a
given model for an electrically driven robot manipulator.
The voltage control strategy that was developed on the
paper was shown to function adequately depending on
the number of Fourier terms used. It was also found that
every possible frequency of the uncertain signal should be
covered by the Fourier terms for optimal performance.

In this document, we solve the tracking control problem
for robot manipulators with unknown parameters and dy-
namics that make it difficult to implement the feedforward
part of the controller. This is done by using Fourier series
to approximate the unknown dynamics. We propose a non-
linear PD tracking controller with adaptive Fourier series
compensation. Asymptotic convergence of the position and
velocity errors is proven and the control scheme is vali-
dated experimentally.

Regressor-free adaptive control based on Fourier series
offers a simple, and computationally efficient, alternative
to the more common model-free controllers that use neural
networks like the one described in Puga-Guzmán et al.
(2014).

2. PRELIMINARIES

The maximum and minimum eigenvalues of the matrix M
are denoted by λMax{M} and λmin{M} respectively. The
norm of x ∈ R

n is denoted by ‖x‖.
The hyperbolic tangent function is defined as

tanh(x) =
ex − e−x

ex + e−x
. (1)

Throughout this document the following notation is used
to denote the hyperbolic tangent of every element of a
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vector x ∈ R
n.

tanh(x) =




tanh(x1)
tanh(x2)

...
tanh(xn)


 (2)

The sign function is defined as

sign(x) =

{
1 x > 0
0 x = 0
−1 x < 0

. (3)

As in the definition of tanh(x), sign(x) is used to denote

sign(x) =




sign(x1)
sign(x2)

...
sign(xn)


 . (4)

2.1 Robot dynamics

The dynamics of a n-link robot manipulator, in joint space,
considering the presence of viscous friction at the robot
joints can be written as (Kelly et al. (2005)):

M(q)q̈ + C(q, q̇)q̇ + g(q) + Fvq̇ = τ (5)

where q ∈ R
n is the vector of joint positions, M(q) is the

symmetric positive definite inertia matrix C(q, q̇)q̇ ∈ R
n

is the vector of centripetal and Coriolis torques, g(q) ∈ R
n

is the vector of gravitational torques, Fv ∈ R
n×n is a

diagonal positive definite matrix containing the viscous
friction coefficients of the joints, and τ ∈ R

n is the vector
of torque inputs.

The following properties hold for robot manipulators with
revolute joints (Kelly et al. (2005)).

Property 1. The inertia matrix M(q) ∈ R
n×n is a symmet-

ric and positive definite matrix. Therefore, because of the
Rayleigh-Ritz theorem, it holds that

λmin{M(q)}‖x‖2 ≤ xTM(q)x ≤ λMax{M(q)}‖x‖2 (6)

for all x ∈ R
n

Property 2. The vector of centripetal and Coriolis torques
satisfies

‖C(q,x)y‖ ≤ kC1
‖x‖‖y‖ (7)

for all q,x,y ∈ R
n where kC1

> 0 is a positive constant.

Property 3. The matrix

1

2
Ṁ(q)− C(q, q̇) (8)

is skew-symmetric. It is also true that

Ṁ(q) = C(q, q̇) + C(q, q̇)T . (9)

Property 4. The residual dynamics term h(t, q̃, ˙̃q) is de-
fined as

h(t, q̃, ˙̃q) = [M(qd)−M(qd − q̃)]q̈d

+ [C(qd, q̇d)− C(qd − q̃, q̇d − ˙̃qd)]q̇d (10)

+ g(qd)− g(qd − q̃)

where
q̃ = qd − q. (11)

There exist constants kh1
≥ 0 and kh2

≥ 0 such that

‖h(t, q̃, ˙̃q)‖ ≤ kh1
‖ ˙̃q‖+ kh2

‖tanh(q̃)‖, (12)

for all q̃, ˙̃q ∈ R
n.

2.2 Fourier series

A trigonometric polynomial is a sum that has the form:

f(x) = a0 +
l∑

m=1

(am cosmx+ bm sinmx). (13)

If the sum is infinite, it is called a trigonometric series. If
f(x) is an integrable function on [−π, π], the sum is called
a Fourier series.

Trigonometric polynomials have interesting properties re-
lated to the approximation of functions. This is due to
the fact that the space of real valued trigonometric poly-
nomials is a unital subalgebra of the space of continuous
functions that separates points. As a consequence of the
Stone-Weierstrass theorem, the set of all trigonometric
polynomials is dense in the space of continuous functions
defined on a compact set (see Rudin (1976)).

An interesting property of trigonometric polynomials is
given by the following theorem (Wilcox and Myers (2009)).

Let f be a square integrable funtion on the interval [−π, π]
and sn be the nth partial sum of the Fourier series for f .
Then sn converges to f in the L2 norm. That is, given
any ǫ > 0, there exists an N such that n > N implies
‖sn − f‖2 < ǫ.

This theorem highlights the fact that when using trigono-
metric polynomials to approximate a function, the approx-
imation error can be made arbitrarily small by adding
terms to the polynomial.

3. PROPOSED CONTROLLER

First, we define

z(t) = M(qd)q̈d + C(qd, q̇d)q̇d + g(qd) + Fvq̇d, (14)

that is, the dynamics of the robot manipulator evaluated
on the desired trajectories.

The so called feedforward control law τff has a relatively
simple structure,

τff = z(t). (15)

Nevertheless, this control law requires the exact knowledge
of the plant parameters plus a PD action to function
adequately (see chapter 12 of Kelly et al. (2005)). In order
for us to find a way around this problem, we first substract
(5) from (14) which gives us:

M(q)¨̃q + C(q, q̇) ˙̃q + h(t, q̃, ˙̃q) + Fv
˙̃q = z(t)− τ , (16)

where we have defined the tracking error as

q̃ = qd − q. (17)

The function z(t) can be approximated by a finite number
of terms from the Fourier series. Thus, we may write

z(t) = WTφ(t) + ǫ, (18)

in which W ∈ R
N×n is the coefficient matrix for the

Fourier terms, φ ∈ R
N is a vector containing the first

N terms (where N is odd) of the Fourier series, and
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ǫ ∈ R
n is the approximation error of the series, that is,

ǫ = [ǫ1 ǫ2 ... ǫn]
T .

For the general case, the structure of φ(t) and W may be
written as

φ(t) =




1
sin(ωt)
cos(ωt)
sin(2ωt)
cos(2ωt)

...

sin

(
N − 1

2
ωt

)

cos

(
N − 1

2
ωt

)




∈ R
N ,

where ω ∈ R is a constant value that can be used as a
tuning parameter (Khorashadizadeh and Majidi (2017)),
and

WT =




a01 a11 b11 a21 b21 ... aN−1

2
1
bN−1

2
1

a02 a12 b12 a22 b22 ... aN−1

2
2
bN−1

2
2

...
...

...
...

...
...

...
a0n a1n b1n a2n b2n ... aN−1

2
n bN−1

2
n


 ∈ R

n×N

The proposed control law has the form

τ = ŴTφ(t) +Kptanh(γq̃) +Kd
˙̃q +∆sign(r), (19)

with

r = ˙̃q + βtanh(γq̃), (20)

where Kp, Kd, ∆ ∈ R
n×n are diagonal positive definite

matrices, γ, β ∈ R
+ are positive constants, and Ŵ is the

matrix of estimated Fourier coefficients.

Under control law (19), equation (16) can be written as

M(q)¨̃q + C(q, q̇) ˙̃q + h(t, q̃, ˙̃q) + Fv
˙̃q = WTφ(t)

+ ǫ− ŴTφ(t)−Kptanh(γq̃)−Kd
˙̃q −∆sign(r). (21)

The coefficients of the matrix Ŵ are updated according to
the following equation:

˙̂
W = Γφ(t)rT (22)

where Γ ∈ R
N×N is a symmetric positive definite matrix.

The error between the ideal coefficients and the estimated
ones is denoted by

W̃ = W − Ŵ . (23)

3.1 Convergence of the error dynamics

To study the convergence of the position and velocity
errors the following assumptions are made.

Assumption 1. The vector of desired trajectories qd, and
the derivatives q̇d and q̈d are continuous and their norm
is bounded.

Assumption 2. There exists a constant kǫ ≥ 0 such that
kǫ ≥ ‖ǫ‖ (Khorashadizadeh and Majidi (2017)).

Now, consider the Lyapunov function

V (t, q̃, ˙̃q, W̃ ) =
1

2
˙̃qTM ˙̃q + αtanh(γq̃)TM ˙̃q

+

n∑

i=1

kpi
γ−1 ln(cosh(γq̃i)) +

1

2
Tr(W̃

TΓ−1W̃ ) (24)

which is a positive definite function where kpi
is the i-

th element of the diagonal Kp matrix and q̃i is the i-th
element of the vector q̃. By using the properties of the
inertia matrix we can see that

V (t, q̃, ˙̃q, W̃ ) ≥
[

‖ ˙̃q‖
‖tanh(γq̃)‖

]T
P

[
‖ ˙̃q‖

‖tanh(γq̃)‖

]

+
1

2
Tr(W̃

TΓ−1W̃ ) (25)

with

P =




1

2
λmin{M} α

2
λMax{M}

α

2
λMax{M} γ−1

2
λmin{Kp}


 . (26)

For P to be positive definite, by Sylvester’s theorem, we
must be able to select α such that

0 < α <

√
γ−1λmin{Kp}λmin{M}

λMax{M} . (27)

Since the right-hand side of (27) is comprised entirely by
positive constants, it is always possible to chose an α that
satisfies the inequality (because of the density property of
the real numbers). Notice that (24) is radially unbounded
because of (25).

Next, we compute the time derivative of (24).

V̇ (t, q̃, ˙̃q, W̃ ) =
1

2
˙̃qT Ṁ ˙̃q + ˙̃qTM ¨̃q + αγ ˙̃qTSech2(γq̃)M ˙̃q

+αtanh(γq̃)T Ṁ ˙̃q + αtanh(γq̃)TM ¨̃q (28)

+tanh(γq̃)TKp
˙̃q + Tr(W̃

TΓ−1 ˙̃
W ).

The matrix Sech2(x) is defined as in (Kelly et al. (2005)),
that is

Sech2(x) =




sech2(x1) 0 ... 0
0 sech2(x1) ... 0
...

...
...

0 0 ... sech2(xn)


 . (29)

By using property 3 of the previous section and equations
(20) and (21) we can write (28) as

V̇ (t, q̃, ˙̃q, W̃ ) = − ˙̃qT [Fv +Kd] ˙̃q − rTh− rT W̃Tφ (30)

+αγ ˙̃qTSech2(γq̃)M ˙̃q + αtanh(γq̃)TCT ˙̃q

−αtanh(γq̃)T [Fv +Kd] ˙̃q + rT [ǫ−∆sign(r)]

−αtanh(γq̃)TKptanh(γq̃) + Tr(W̃
TΓ−1 ˙̃

W ).

To further simplify (30) we use the properties that the
trace of a matrix possesses (Ioannou and Sun (2012)),

Tr(A+B) = Tr(A) + Tr(B) (31)

Tr(yx
T ) = xT y, (32)

and equation (22)
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V̇ (t, q̃, ˙̃q, W̃ ) =− ˙̃qT [Fv +Kd] ˙̃q − rTh+ rT [ǫ−∆sign(r)]

+αγ ˙̃qTSech2(γq̃)M ˙̃q + αtanh(γq̃)TCT ˙̃q

−αtanh(γq̃)T [Fv +Kd] ˙̃q

−αtanh(γq̃)TKptanh(γq̃). (33)

To continue with the analysis we look for an upper bound
on (33). To this end, notice that from the Rayleigh-Ritz
theorem we have

− ˙̃qT [Kd + Fv] ˙̃q ≤ −λmin{Kd + Fv}‖ ˙̃q‖2 (34)

and

− αtanh(γq̃)TKptanh(γq̃)

≤ −αλmin{Kp}‖tanh(γq̃)‖2. (35)

By using the Cauchy-Schwarz theorem we may write

− αtanh(γq̃)T [Fv +Kd] ˙̃q

≤ αλMax{Kd + Fv}‖ ˙̃q‖‖tanh(γq̃)‖. (36)

From property 2 of the preliminaries section, and using
the triangle inequality we can state that

αtanh(γq̃)TCT ˙̃q ≤ αkC1
‖q̇d‖M‖ ˙̃q‖‖tanh(γq̃)‖

+ αkC1

√
n‖ ˙̃q‖2, (37)

in which ‖q̇d‖M is meant to denote an upper bound on the
norm of the desired velocity vector.

Taking into account property 4 we can write

− rTh ≤ αkh2
‖tanh(γq̃)‖2

+ [αkh1
+ kh2

]‖tanh(γq̃)‖‖ ˙̃q‖+ kh1
‖ ˙̃q‖2. (38)

Since the maximum value of sech(x) is 1, we have
λMax{Sech2(γq̃)} = 1. Therefore,

αγ ˙̃qTSech2(γq̃)M ˙̃q ≤ αγλMax{M}‖ ˙̃q‖2. (39)

As a consequence of the equivalence of norms (‖r‖2 ≤
‖r‖1), assumption 2, and the Cauchy-Schwarz inequality
we have

rT [ǫ−∆sign(r)] ≤ −[λmin{∆} − kǫ]
n∑

i=1

|rn|. (40)

Finally, putting together all the previously presented in-
equalities and rearranging the terms in matrices as it is
done by Puga-Guzmán et al. (2014), we may write

V̇ (t, q̃, ˙̃q, W̃ ) ≤ −1

2

[
‖ ˙̃q‖

‖tanh(γq̃)‖

]T
Ω1

[
‖ ˙̃q‖

‖tanh(γq̃)‖

]

− [λmin{∆} − kǫ]

n∑

i=1

|rn| (41)

with

Ω1 =




αs1 −1

2
[αs4 + s5]

−1

2
[αs4 + s5] s2 − αs3


 (42)

and

s1 = λmin{Kp} − kh2

s2 = λmin{Kd + Fv} − kh1

s3 = γλMax{M}+ kC1

√
n (43)

s4 = kh2
+ kC1

‖q̇d‖M + λMax{Kd + Fv}
s5 = kh1

.

For Ω1 to be a positive definite matrix we impose the
restrictions

λmin{Kp} > kh2
=⇒ s1 > 0 (44)

λmin{Kd + Fv} > kh1
=⇒ s2 > 0. (45)

And by Sylvester’s theorem, Ω1 is positive definite if there
exists α such that

2s1s2 − s4s5

s24 + 4s1s3
− 2

√
s21s

2
2 − s1s4s5s2 − s1s3s

2
5

(s24 + 4s1s3) 2

< α <
2s1s2 − s4s5

s24 + 4s1s3
+ 2

√
s21s

2
2 − s1s4s5s2 − s1s3s

2
5

(s24 + 4s1s3) 2
,

(46)

which will always be true if

s1 >
s4s5

s2
(47)

and

s1 >
s3s

2
5 + s2s4s5

s22
. (48)

Accordingly, the derivative V̇ (t, q̃, ˙̃q, W̃ ) will be negative
semi-definite if Kp is chosen big enough and

λmin{∆} > kǫ. (49)

Now, since (24) is positive definite and radially un-

bounded, every level set V (t, q̃, ˙̃q, W̃ ) = c is compact.

From the fact that V (t, q̃, ˙̃q, W̃ ) is a decreasing function
of time, we can conclude that every solution of the sys-
tem of differential equations (21)-(22) is bounded on their
maximal interval of definition.

Next, notice that by taking the integral of (41) we obtain
∫ t

0

‖ ˙̃q‖2dt+
∫ t

0

‖tanh(γq̃)‖2 ≤ V (0, q̃(0), ˙̃q(0), W̃ (0))

λmin{Ω1}
.

(50)

Therefore, q̃, ˙̃q ∈ Ln
∞

and q̃, ˙̃q ∈ Ln
2 . Since every element

in Ŵ is bounded and φ(t) ∈ LN
∞

we can conclude from

(21) that ¨̃q ∈ Ln
∞
. As a consequence of Lemma A.5 of

Kelly et al. (2005) (Barbalat’s lemma for the vector case),
we have

lim
t→∞

‖q̃‖ = 0 (51)

lim
t→∞

‖ ˙̃q‖ = 0. (52)

4. EXPERIMENTAL VALIDATION

The experimental setup is a 2-DOF revolute joint robot
arm located at Instituto Tecnolgico de La Laguna, Mexico,
previously used in (Zavala-Ŕıo et al. (2015)). The robot
actuators are direct-drive brushless servomotors operated
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Fig. 1. Position and desired position for the first link
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Fig. 2. Position and desired position for the second link
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Fig. 3. Control input for the first link
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Fig. 4. Control input for the second link

Fig. 5. 2-DOF robot manipulator used in the experiments

in torque mode. That is, they act as torque sources and
receive analogue voltages as a torque reference signal. Joint
positions are obtained using incremental encoders which
send the information to a DSP 32-bit microprocessor. The
control algorithm is executed at a 2.5 millisecond sampling
period on a PC-host computer.

The selected tuning gains are presented in table 1. The
adaptation gain Γ was selected to be Γ =diag{200}. For
each link we used the first five terms of the Fourier series.

The desired joint positions were chosen as

qd1
= sin(t) + 0.5(1− e−0.5t)

qd2
= sin(2t) + 0.5(1− e−0.5t)

Figures 1 and 2 show the position and desired position
of the first and second links respectively. Figures 2 and
3 show the demanded control input. Figure 5 shows the
experimental setup.

Experimental results show an adequate performance of
the controller. The tracking errors become smaller as time
progresses. The control input remains within the physi-
cally acceptable bounds (τ1 ∈ [−150Nm, 150Nm], τ2 ∈
[−15Nm, 15Nm]).

Table 1. Controller gains

Link Kp Kv ∆

1 1000 5 0.5

2 10 5 0.1

5. CONCLUSION

A non-linear PD controller with adaptive Fourier series
compensation was proposed. Asymptotic convergence of
the position and velocity errors to zero was theoretically
proven. Experimental results show a decent performance
of the controller.
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