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Fernando López-Caamal ∗∗∗ Héctor Hernández-Escoto ∗∗∗
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Abstract: Real-time optimization is a control method that aims for operating a process
in optimal conditions along its operation. Within this class of methods, Extremum Seeking
Control is a model-free real-time optimization strategy, which uses only output measurements
to compute the optimal controlled input of a process with a convex input-output map. However,
its convergence time is long. In this article, a real-time optimization strategy based on the super-
twisting algorithm is introduced. As shown by our simulations results, its convergence time
may be shorter with respect to the gradient-based optimization algorithm used by classical
extremum seeking control. The feasibility of the real-time optimization strategy proposed is
demonstrated in simulations for a biohydrogen production process.
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1. INTRODUCTION

Optimization problems are everywhere, people try to
make the best choices all along their life; we try to
select the best candidate in an election (or at least the
less worse); manufacturers aim for maximum efficiency
in the operation of their production processes, energetic
industries desire to maximize the energy produced by
their processes, etc. Optimization is an important method
in decision science and in the analysis of physical systems.
To make use of this method, some objective must be
firstly identified, that is a quantitative measure of the
performance of the process of interest. This objective
could be profit, time, potential energy, or any quantity
or combination of quantities that can be represented by
a single number. The objective depends on certain char-
acteristics of the process, called optimization variables or
unknowns. Thus, the objective of the optimization is to
find the optimal values of the variables that maximize

or minimize the objective. However, often the variables
are restricted, or constrained, in some way. The strategy
followed must therefore consider these constraints when
the optimization problem is solved (Nocedal and Wright,
2000).

Real-time optimization (RTO) encompasses a family of
optimization methods that incorporate process measure-
ments in the optimization framework to drive a real
process (or plant) to optimal performance, while meeting
operation constraints. RTO has emerged over the past
forty years to overcome the drawbacks associated with
plant-model mismatch. Uncertainty can have three main
sources, namely, (i) parametric uncertainty when the val-
ues of the model parameters do not correspond to the
reality of the process at hand; (ii) structural plant-model
mismatch when the structure of the model is not perfect;
(iii) process disturbances. Of course these three sources
are not mutually exclusive. RTO incorporates process
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measurements in the optimization framework to combat
the detrimental effect of uncertainties (Marchetti et al.,
2016).

In recent years several RTO strategies have been pro-
posed, some of them are model-based while others are
model-free. Extremum seeking control is a model-free
approach used in control applications where there is a
nonlinearity in the control problem and the nonlinearity
has a local minimum or a local maximum (Ariyur and
Krstic, 2003). In this article some preliminar ideas about
using the super-twisting algorithm as an extremum seek-
ing controller are presented. Indeed, the use of second-
order sliding modes to solve real-time optimization prob-
lems has been recently explored (Angulo, 2015). Besides,
proportional-integral extremum seeking controllers simi-
lar to the one proposed in this work has been recently
promoted (Guay and Dochain, 2017).

The article is organized as follows: in Section 2 the op-
timization problem to solve is presented. In Section 3
the super-twisting algorithm and the sliding variable con-
sidered to solve the optimization problem are proposed.
In Section 4 the feasibility of the real-time optimization
strategy is demonstrated through closed-loop simulations
on a biohydrogen production process. Finally, in Section
5 some conclusions and perspectives about the proposed
strategy are discussed.

2. PROBLEM FORMULATION

Let us consider a dynamic system described by the
following state space model:

ẋ(t) = f(x, u, w)

y(t) = h(x)
(1)

where x ∈ R
n is the state vector, u ∈ R is the controlled

input, w ∈ R is the uncontrolled input and y ∈ R is the
measured output.

In addition, let us consider an unknown function y =
l(u,w), with l : R2 → R, which maps the inputs to the
output in steady state. The optimization problem to solve
is stated as

max
u

l(u,w)

such that:

ẋ(t) = f(x, u, w)

y(t) = h(x)

umin ≤ u ≤ umax.

(2)

The objective function l(u,w) to maximize satisfies:

Assumption 1. The function l(u,w) is twice continuously
differentiable with respect to u and has an unique maxi-
mizer u∗ of l in an open neighborhood N for each value
of w (Nocedal and Wright, 2000). Moreover,

∇ul(u
∗, w) =

∂l

∂u
|(u∗,w) = 0,

∇2
ul(u

∗, w) =
∂2l

∂u2
|(u∗,w) < 0.

Since we are interested in computing a finite maximum
value of the output y, the uncontrolled input satisfies:

Assumption 2. The uncontrolled input w(t) is a bounded
function of time, i. e. |w(t)| ≤ c.

Hence, the problem is to propose an algorithm to find
the optimal controlled input u∗ in the neighborhood N ,
such that the output y is maximized for each value of the
uncontrolled input w.

3. REAL-TIME OPTIMIZATION BASED ON THE
SUPER-TWISTING ALGORITHM

In the last years a powerful collection of algorithms for
optimization of smooth functions has been developed.
All algorithms require the user to supply initial guess,
usually denoted by u(0). Beginning at u(0), optimization
algorithms generate a sequence of iterates {u(k)}∞k=0 that
terminate when either no more progress can be made or
when it seems that a solution has been approximated with
sufficient accuracy. In deciding how to move from one
iterate u(k) to the next, the algorithms use information
about the function l at u(k), and possibly also information
from earlier iterates u(0), u(1), . . . , u(k−1). They use this
information to find a new iterate u(k + 1) with a higher
function value l than u(k) (Nocedal and Wright, 2000).

The optimization problem (2) can be solved by line
search methods, in which the optimization algorithm
chooses a direction pk and searches along this direction
from the current iterate u(k) for a new iterate with a
higher function value l(u). The direction along which
the function l increases most rapidly is the gradient
∇ul (Nocedal and Wright, 2000). In the gradient-based
line search method each iteration computes the gradient
∇ul(u(k), w(k)) and then decides how far to move along
that direction. The iteration is given by

u(k + 1) = u(k) + γ∇ul(u(k), w(k)),

where the scalar γ > 0 is called the step length. To
select γ, a tradeoff between a substantial increase of l and
the shortest convergence time to u∗ must be considered
(Nocedal and Wright, 2000).

Let us define γ := α∆t, with ∆t = t(k + 1) − t(k), and
α > 0. Replacing it in (3) we have

u(k + 1) = u(k) + α∆t∇ul(u(k), w(k))

or
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∆u

∆t
= α∇ul(u(k), w(k)).

By applying the limit when ∆t → 0 we have

u̇(t) = α∇ul(u,w). (3)

Notice that the optimization algorithm (3) is the opti-
mization algorithm used by classical extremum seeking
controllers (Ariyur and Krstic, 2003).

Since the optimization algorithm (3) uses the gradient
∇ul(u,w) but l(u,w) is an unknown function, in real
applications either, an approximation or an estimation
of ∇ul(u,w) must be considered.

In order to bypass the uncertainty related to the unknown
function l(u,w), let us consider not the gradient but
the sign of the gradient in algorithm (3), which, indeed,
contains the direction information. A robust optimization
algorithm can then be proposed as

u̇(t) = α sign(∇ul(u,w)).

The equation above is a first order sliding mode, with the
gradient σ = ∇ul(u,w) as the sliding variable, and has the
form of the integral part of the super-twisting algorithm
with sliding variable defined as σ = ∇ul(u,w).

Let us now suppose that σ satisfies the following assump-
tion,

Assumption 3. The dynamics of the sliding variable can
be described by

σ̇(t) = f ′(t, x) + g′(t, x)u(t) ,

where f ′ and g′ are unknown smooth functions (Shtessel
et al., 2014).

This way, the anti-windup super-twisting controller

u(t) = λ|σ|1/2sign(σ) + u1(t)

u̇1(t) =

{

Gaw(umin − u(t)); u < umin

Gaw(umax − u(t)); u > umax

αsign(σ); umin ≤ u ≤ umax

,
(4)

where λ > 0 is the proportional gain, α > 0 is the integral
gain, Gaw is the anti-windup gain and σ = ∇ul(u,w) is
the sliding variable, guarantees the appearance of a 2-
sliding mode σ = σ̇ = 0, which attracts the trajectories
in finite time. The control u(t) enters in finite time the
segment [umin, umax] and stays there. It never leaves the
segment, if the initial value is inside at the beginning
(Shtessel et al., 2014).

Thus, the main result of this work is stated as:

Conjecture 1. If α > 0 and σ = 0 in finite time, due
to Assumptions 1, 2 and 3, the controlled input u(t) ∈

N , computed by the super-twisting controller (4), is a
maximizer of the output y(t) for each value of w(t).

4. RESULTS

In order to verify the feasibility of the super-twisting
controller (4) as real-time optimization strategy, let us
consider the biohydrogen production process modeled by
the following set of ordinary differential equations (ODE)
(Torres Zúniga et al., 2015),
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, (5)

where Glu, Ace, Pro, Bu, EtOH, X, CO2 and H2

represent the concentrations (in gL−1) of glucose, acetate,
propionate, butyrate, ethanol, biomass, carbon dioxide
and hydrogen, respectively, in the liquid phase. The
vector r describes the kinetics of the involved biological
reactions (in gL−1d−1), D = Qin/V is the dilution rate
(in d−1) and ρCO2

and ρH2
the gas flow rates of carbon

dioxide and hydrogen (in gL−1d−1), respectively. Finally,
K ∈ R

8×2 represents the matrix of pseudo-stoichiometric
coefficients.

The reaction pathway is described by two Monod-type
reactions occurring in parallel. Thus, the vector r is
composed of the specific glucose uptake rate multiplied
by the biomass concentration in the reactor:

r =









µmax,1Glu

KGlu,1 +Glu
µmax,2Glu

KGlu,2 +Glu









X,

where µmax,l is the maximum specific growth rate of the
microorganisms (in g[Glu]g[X]−1d−1) and KGlu,l is the
half-saturation constant (in gL−1) for l = 1, 2.

Furthermore, the differential equations for the gas phase
with constant gas volume are

dCO2,gas

dt
= −

CO2,gasQgas

Vgas
+ ρCO2

V

Vgas
(6)

dH2,gas

dt
= −

H2,gasQgas

Vgas
+ ρH2

V

Vgas
, (7)

with the total biogas flow at the reactor output given by

Qgas =
RTamb

Patm − pvap,H2O
V

(

ρH2

MH2

+ ρCO2

)

(8)
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ρH2
= kLaH2

(H2 −MH2
KH,H2

pH2,gas) (9)

pH2,gas =
H2,gasRTreac

MH2

(10)

ρCO2
= kLaCO2

(CO2 −KH,CO2
pCO2,gas) (11)

pCO2,gas = CO2,gasRTreac, (12)

where CO2,gas and H2,gas are, respectively, the carbon
dioxide concentration (in molL−1) and the hydrogen
concentration (in gL−1) in the gas phase.

As shown in Equation (8), the total biogas flow rate at the
reactor output (in Ld−1) is the sum of the hydrogen gas
flow rate plus the carbon dioxide gas flow rate (Qgas =
qH2,gas+qCO2,gas). The carbon dioxide and the hydrogen
gas flow rates are calculated by considering the transfer of
the gas from the liquid phase to the gas phase. The carbon
dioxide and the hydrogen concentrations at the liquid-gas
interface in equilibrium are calculated by considering the
Henry law. The pressure of each gas component can be
calculated using the ideal gas law for the two gases.

We are interested in maximizing the hydrogen production
rate (in L[H2]L

−1d−1) defined as the hydrogen flow rate
produced per volume unit,

HPR =
qH2,gas

V
. (13)

Therefore, the biohydrogen production can be described
as the model (1), with u = Qin, w = Gluin, y = HPR.
Thus, the optimization problem to solve is stated as

max
Qin

l(Qin, Gluin)

such that:

Qin,min ≤ Qin ≤ Qin,max.

(14)

Since the optimization strategy proposed is based in the
gradient ∇lu, but the function l(Qin, Gluin) is unknown,
such a gradient is approximated as

∇lu =
∆HPR

∆Qin
. (15)

Ramı́rez et al. (2015) propose a static model to describe
the effect of the organic loading rate (OLR) on the
hydrogen production rate (HPR) in the dark fermenter
of interest as

HPR(OLR) = −4.53× 10−5OLR3 + 6.95× 10−3OLR2

(16)

where the OLR is defined as

OLR = 1.067 ∗DGluin = 1.067
QinGluin

V

For Gluin = 20gL−1 the optimal input flow rate obtained
isQ∗

in = 4.31Ld−1 (corresponding to an optimal hydraulic
retention time of 5.01h), which maximizes the HPR to
HPRmax = 24.24L[H2]L

−1d−1.

The closed-loop system, biohydrogen production process
+ real time optimization strategy, was simulated in Mat-
lab, the ODEs were solved by the stiff solver ode15s and
the parameters of the model (5)-(13) were taken from
(Torres Zúniga et al., 2015).

In order to solve the optimization problem (14), let us
first consider the gradient-based line search algorithm
(3) with the gradient approximated by (15) and α = 1.
The influent glucose considered is Gluin = 20Ld−1, while
the restriction on the input is 4h ≤ HRT ≤ 12h, with
HRT = V/Qin, the hydraulic retention time of the pro-
cess. Figure 1 shows the HPR obtained from model (5)-
(13). As can be observed, the optimization started five
days after the process beginning, then, the HPR slowly
converges to its maximum value. On the other hand,
Figure 2 shows the HRT computed by (3). As can be
verified, the input converges to the optimal value after
eighty days from the optimization beginning. This is a
large convergence time because the HRT of the process
ranges from 4 to 12 hours. The convergence time is there-
fore an important disadvantage for such algorithm (as for
classical extremum seeking control). As can be regarded,
the optimal HRT computed by the algorithm (3) is lower
than the theoretical optimal HRT. Nevertheless, the max-
imum HPR are the same HPRmax = 24.24L[H2]L

−1d−1.
This is because the models considered are different. While
the online optimization algorithm (3) considers that the
process is described by the dynamical model (5)-(13), the
theoretical calculus was made over the static model (16).

0 10 20 30 40 50 60 70 80 90 100

Time (d)

0

5

10

15

20

25

H
y
d
ro

g
e
n
 P

ro
d
u
c
ti
o
n
 R

a
te

 (
L
[H

2
]/
L
d
)

Fig. 1. HPR computed by the gradient-based optimization
algorithm (3).
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Fig. 2. HRT computed by the gradient-based optimization
algorithm (3).

Let us now consider the super-twisting controller (4) with
the gradient approximated by (15) and the parameters
λ = 0.075, α = 1 and Gaw = 30. The influent glucose
considered is shown in Figure 3, while the restriction on
the input is 4h ≤ HRT ≤ 12h.
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Fig. 3. Glucose at the bioreactor input.

Figure 4 shows in green the HPR obtained from model
(5)-(13). As can be observed, once the optimization
started five days after the process beginning, the HPR
converges to the maximum value in only two days. On the
other hand, Figure 5 shows in green the HRT computed
by the super-twisting controller (4). As can be verified,
the HRT respect the constraint imposed all along the
simulation.

Let us now compare the super-twisting controller (4) with
the model-based real-time optimization strategy proposed
by Torres et al. (2018), which has considerably shorter
convergence time with respect to the optimization algo-
rithm (3). The influent glucose considered is the same as
in the previous case (see Figure 3), while the restriction
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Fig. 4. HPR computed by the super-twisting algorithm
(4).
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Super-twisting algorithm-based strategy, HRT=4h
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Fig. 5. HRT computed by the super-twisting algorithm
(4).

on the input is updated to 6h ≤ HRT ≤ 12h. Figure
4 shows in red the HPR by the model-based real-time
optimization strategy while in blue the HPR by the super-
twisting-based real-time optimization strategy. As can
be observed, the HPR computed by the super-twisting
controller is slightly higher than the HPR by the model-
based optimizer. However, the convergence time of the
model-based optimizer is shorter than the convergence
time of the super-twisting controller. This is due to the
fact that the super-twisting controller uses only output
measurements but does not consider information about
the model of the biohydrogen production process. As
can be observed in Figure 5, both strategies respect the
constraint imposed practically all along the simulation.
Nevertheless, when the glucose concentration at the biore-
actor input chenges, the control input computed by the
super-twisting controller presents larger oscillations than
those produced by the control input computed by the
model-based optimization strategy (see Figure 5).
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5. CONCLUSIONS AND PERSPECTIVES

In this article a real-time optimization strategy based on
the super-twisting algorithm was presented. Compared
with the gradient-based line search algorithm used by
classical extremum seeking control, the convergence time
of the super-twisting-based optimizer is shorter (both
strategies use the same gradient approximation). Nev-
ertheless, compared with a model-based optimizer, the
convergence time is larger. This is expected because the
super-twisting-based optimizer only uses measurements
of the output and the controlled input generated to ap-
proximate the gradient. It is well known that the more
information about the process model, the shorter is the
convergence time of the optimization strategy.

At this point some questions arise: How the proportional
term of the super-twisting controller is helping to improve
the convergence time? The convergence of the super-
twisting-based optimizer can be assured for any dynamic
system (1) respecting Assumptions (1)-(3)? How the sta-
bility of the closed-loop system can be assured? Can the
gradient ∇ul(u,w) be better estimated? These questions
trace a path to follow by our research group.
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