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Abstract: The purpose of this work is to show the control of a quad-rotor aircraft using the
velocity field method, which is a suitable strategy to generate the trajectory that the quad-
rotor must follow. The proposed field is two-dimensional, because of that, we must impose some
restrictions: the altitude (z) and the yaw angle (ψ) are fixed at a desired value, hence the system
is restricted to behave as two independent systems of four integrators in cascade for x and y
coordinates. The nested saturation controller is used to track the desired velocities in both: x−θ
and y − φ subsystems. This controller is exponentially stable, thus, a correct tracking could be
guaranteed. Simulations results show the effectiveness of this proposal.
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1. INTRODUCTION

Quad-rotors commonly referred as drones are unmanned
aerial vehicles (UAV) that have taken importance in the
scientific community because they are a good test base for
the implementations of several control techniques. One of
the advantages of this aircraft is the size, making them
suitable to work in a laboratory under desired conditions.

This work proposes a velocity field method strategy, where
the UAV follows a predefined vector field, thus regulating
the velocity the vehicle reaches the desired trajectory. This
method has been applied mostly in robotic arms as shown
by Moreno & R.Kelly (2003)-Moreno (2007), in Fukui &
Wada (2016) for a therapeutic n−link manipulator, using
the passive velocity field controller developed by Li (1995)
, another application is developed in Pérez-D’Arpino et al.
(2008) using a vision system the desired trajectory is
generated with the objective to avoid obstacles, also in
Narikiyo & Kawanishi (2017) the method is used for an
exoskeleton. We present an easy way to generate the
velocity flow. It consists on the weighted sum of two
fields, namely: the approaching field that points from any
position to the closest point of the desired trajectory; and
the tangential field, that is anywhere tangential to the
closest point.

In order to guarantee the vehicle to follow the proposed
velocity field, we have used nested saturation control.
Contributions to this field were made by several authors,
just to mention, a stabilization of a quad-rotor is shown in
Castillo et al. (2004)-Sanchez et al. (2008) implementing
the nested saturation controller Teel (1992), quad-rotor
formations are presented in Garćıa-Delgado et al. (2012)
implementing the well know potential field method and
obstacle avoidance with the same technique is achieved in
Garćıa-Delgado & Dzul (2009).

In the following sections we focus in the velocity field
to control the movement of the quad-rotor in Euclidean
plane, in Section 2 the dynamic model of a six degrees
of freedom body representing the quad-rotor is deter-
mined, the control strategy is developed in Section 3 us-
ing Proportional-Derivative (PD) controllers for altitude
and yaw and the nested saturation algorithm for the roll
and pitch angles, in Section 4 we present the proposed
velocity field to be followed, whereas the results of the
implementation of the velocity field with nested saturation
controller are shown and discussed in Section 5, finally
the conclusions of the paper and an appendix showing
derivatives of the velocity function, are presented.
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Fig. 1. Quad-rotor helicopter outline

2. DYNAMIC MODEL

The Euler-Lagrange formalism is implemented for the
dynamic model of the quad-rotor. This model is obtained
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representing the aircraft as a rigid body in space attached
to one force and three torques. The motors dynamics and
the propeller flexibility are despised.

Consider a quad-rotor helicopter as shown in Figure 1. The
generalized coordinates of the system are

q =
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]

=
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where ξ = (x, y, z)T ∈ R3 denotes the center of mass
position of the quad-rotor, relative to the inertia frame
I, and η = (φ, θ, ψ) ∈ R3 represents the orientation of the
body frame, expressed in Euler’s angles.

The dynamic model of the quad-rotor is:

mẍ= u(cψsθcφ + sψsφ) (1)

mÿ =−u(cψsφ − sψsθcφ) (2)

mz̈ = ucθcφ −mg (3)

φ̈= τ̃φ (4)

θ̈= τ̃θ (5)

ψ̈ = τ̃ψ (6)

with m being the mass of the vehicle, g the gravitational
constant, sa = sin a, ca = cos a, and

τ̃ = [τ̃φ, τ̃θ, τ̃ψ]
T = J

−1(τ −C(η, η̇)η̇)

where τ̃ is a vector with the quad-rotor torques, J rep-
resents the inertial matrix and C stands for the Coriolis
matrix.

3. CONTROL STRATEGY

For the aircraft control we assume that the altitude an yaw
angles are fixed at some desired value.

3.1 Altitude and Yaw Control

Let us define ψd = 0 ∀ t > 0, such that, the quad-rotor
maintains a zero degree yaw angle during the flight. The
control is obtained through

τ̃ψ = −kpψψ̃ − kvψψ̇ (7)

where ψ̃ = (ψ−ψd), kpψ and kvψ denote the proportional
and derivative constants of the PD controller.

In a similar way the control of a constant altitude can be
achieved applying the control input.

u = (r1 +mg)
1

cos θ cosφ

where r1 = −kpz z̃ − kvz ż we obtain

u = [(−kpz z̃ − kvz ż) +mg]
1

cos θ cosφ
(8)

where z̃ = zd−z represents the altitude error, kpz and kvz
are positive constants related to the PD controller. The roll
and pitch angles (φ, θ) must be small to avoid singularities
in (8), these angles are obtained by the nested saturation
controller.

3.2 Roll and Pitch Control

To stabilize the quad-rotor, the nested saturation con-
troller is used. This method was proposed by Teel (1992).
It is used to stabilize a chain of integrators in cascade, and
is exponentially stable for both, regulation and tracking
trajectory.

Consider the quad-rotor model (1)-(6), under the control
inputs (8) and (7). After a finite time, z → zd, and

ż = ψ = ψ̇ = 0, and considering to be restricted to small
angles θ and φ, such that sin(φ) ≈ φ and cos(φ) ≈ 1,
and so for θ. The system (1)-(6) can be seen as a reduced
system:

ẍ= gθ (9)

θ̈= τ̃θ (10)

ÿ =−gφ (11)

φ̈= τ̃φ (12)

where both subsystems are integrators in cascade

d
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
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
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


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
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d
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


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


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


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
(13)

Let us call the subsystems state variables x and y, so that

x =







x
ẋ
θ

θ̇






and y =






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

With the purpose to achieve tracking trajectory, it is
necessary to stabilize the error of each variable, this is

xe =







ex
ėx
eθ
ėθ






=






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




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


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ėy
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




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


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ẏ − ẏd
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(14)

Each subsystem can be represented as ẋ = Axx + Bxu,
with x ∈ Rn, u ∈ R, then a linear transformation exist
zx = Tzxxe that maps (13) in ż = Azz +Bzu, where

Az =













0 k2 k3 . . . kn
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...
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0 0 0 . . . 0
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



, Bz =













1
1
...
1
1













where the elements k1, . . . , kn 6= 0 ∈ R.

In this particular case the transformation matrix elements
Tzx are:

Tzx =











k2k3k4

g

k2k3 + k2k4 + k3k4

g
k2 + k3 + k4 1

0
k3k4

g
k3k4 1

0 0 k4 1
0 0 0 1











(15)

and the vector xe is that from (14). In a similar way
zy = Tzyy, is defined Tzy as:
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Tzy =











−

k2k3k4

g
−

k2k3 + k2k4 + k3k4

g
k2 + k3 + k4 1

0 −

k3k4

g
k3k4 1

0 0 k4 1
0 0 0 1











(16)

And the vector ye is given in (14), where the control law
according the conventional nested saturation function, for
the case of thacking trajectory is

u = x
(n)
d − σbn(knzn + σbn−1

(kn−1zn−1 + · · ·+ σb1(k1z1)))

with

σbn(s) =







−b, if s < −b

s, if − b ≤ s ≤ b

b, if s > b

where b is a positive constant, therefore, the controller for
the roll angle is

τ̃φ = φ̈d−σb4(k4z4x+σb3(k3z3x+σb2(k2z2x+σb1(k1z1x))))
(17)

and for the pitch angle is

τ̃θ = θ̈d−σb4(k4z4y+σb3(k3z3y+σb2(k2z2y+σb1(k1z1y))))
(18)

with b1, b2, b3 and b4 as the limits of the saturation
function.

4. VELOCITY FIELD

The objective for the velocity field method in this par-
ticular case is to follow a predefined trajectory. For this
method it is necessary to calculate two vector fields, ap-
proaching field and tangential field. The approaching field
is defined by the vectors that aim directly to the trajectory,
in which each vector Vac is obtained as the normalized sub-
traction of the closest point to the trajectory, as proposed
by Pérez-D’Arpino et al. (2008). The trajectory to follow
is a circle of radius rtr and the center at the point (ox, oy),
expressed by

xtr = ox + rtr cos(α), α ∈ [0, 2π] (19)

ytr = oy + rtr sin(α), α ∈ [0, 2π] (20)

In order to calculate the approaching field, it is necessary
to find the closest point from any position of the workspace
to the trajectory. This closest point is calculated by

min
(

√

(x− xtr)2 + (y − ytr)2
)

(21)

where xtr and ytr are the points conforming the trajectory.
Let us define the vectors:

ξ̄ =

[

x̄
ȳ

]

=

[

x− ox
y − oy

]

, ξ̃ =

[

x̃
ỹ

]

=

[

xcl − x
ycl − y

]

where x̄, ȳ are the difference between any point of the
workspace and the center of the circular trajectory, and
x̃, ỹ are the position errors from any point of the workspace
and its closest point within the desired trajectory.

The coordinates of the closest point to the trajectory are

xcl = ox + rtr cos(αcl)

ycl = oy + rtr sin(αcl)

where αcl denotes the angle of the closest point to the
trajectory. Taking the Equations (19)-(20) to calculate xcl

and ycl, we can define the distance between the actual
position and the closest point in the trajectory as

‖ξ̃‖ =
√

x̃2 + ỹ2 (22)

The angle αcl is obtained from the derivative of the
distance ‖ξ̃‖ with respect to αcl, or d‖ξ̃‖/dαcl = 0, and it
is

αcl = atan2(ȳ, x̄)

The approaching field is defined as

Vac =
ξ̃

‖ ξ̃ ‖
(23)

Let us denote the partial derivatives of xcl and ycl as vxc

and vyc .

vc =

[

vxc

vyc

]

=

[

−rtr sinαcl
rtr cosαcl

]

These values are necessary to generate the tangential field
as follows

Vtg =
vc

‖ vc ‖
(24)

The velocity field is obtained performing the normalized
weighted sum

V =
F1Vac + F2Vtg

‖ F1Vac + F2Vtg ‖
(25)

where F1 and F2 are functions of the Euclidean distance
between the point in space and the desired trajectory,
which are given by:

F1 =
2

1 + e−γ‖ξ̃‖
− 1, F2 = 1− F1 (26)

The behavior of this functions allows us to obtain a field
in which the directions of the tangential vectors prevails
over the approaching vectors in the trajectory vicinity,
when the opposite effect occurs far from the trajectory,
this behavior is affected by modifying the constant γ. In
Figure 2 is shown a velocity field generated with a value
γ = 0.4, ox = 40, oy = 30 and rtr = 10.
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Fig. 2. Velocity field of Equation (25), with desired trajec-
tory at position (40, 30) and radio rtr = 10m.
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Type Constant Value

Quad-rotor
Model

m

g

0.5 kg
9.81 m/s2

NS Controller
constants

k1
k2
k3
k4

1
1
1
1

NS Controller
Boundaries

b1
b2
b3
b4

0.1
0.2
0.4
0.8

PD Gains
for z

kpz
kvz

0.5
0.8

PD gains
for ψ

kpψ
kvψ

0.374
0.8

Table 1. Constants used in simulations.

The velocity field vector is expressed by (25). It represents
the desired velocity that the vehicle must achieve at each
instant. In order to track the trajectory, with the nested
saturation controller, according to state vectors (14) and
control laws (17) and (18), it is necessary to compute
three successive derivatives of the velocity field. They are
developed in Appendix A.

5. SIMULATION RESULTS

The results were obtained through simulations in Simulink
of MATLABR©. The experiments were performed with the
following initial conditions x(0) = 0, y(0) = 0, z(0) = 1
and ψ(0) = 0, and the constants shown in Table 1.

Given that the desired trajectory does not need a specific
position at any particular time, and it is instead a desired
flow, the position error can be suppressed in the state
vectors xe and ye, from (14), that is

xe =







0
ėx
eθ
ėθ






=







0
ẋ− ẋd
θ − θd
θ̇ − θ̇d






and ye =







0
ėy
eφ
ėφ






=







0
ẏ − ẏd
φ− φd
φ̇− φ̇d







(27)

The desired variables are obtained from








ẋd
θd
θ̇d
θ̈d









=









Vx
V̇x/g

V̈x/g...
V x/g









and









ẏd
φd
φ̇d
φ̈d









=









Vy
−V̇y/g

−V̈y/g
−
...
V y/g









So that, we can use the nested saturation controller in
(17)-(18).

Figure 3 shows the trajectory followed by the drone. The
initial position is marked with a cross. Then, the vehicle
is carried by the velocity field flow towards the trajectory.
It reaches the trajectory in a soft way and remains there
thereafter.

Figure 4 shows the position error according to (22). This
value represents the distance of the vehicle with respect
to the closest point of the desired trajectory. It can be
seen that the vehicle reaches the trajectory in around 25
seconds and the error maintains low thereafter.

Figure 5 depicts the quad-rotor speed error, this is, the
norm of the velocity error vector [ėx, ėy]

T . With this
value, it is possible to see whether the velocity field is
properly followed. Indeed, it can be seen that the velocity
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Fig. 3. Trajectory of the vehicle using a velocity field.
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Fig. 4. Position error, ‖ξ̃‖.

reference is reached in approximately 7 seconds, and the
vehicle keeps following the velocity reference.
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Fig. 5. Speed error.

6. CONCLUSIONS

The most important contributions in this work are the
generation of a velocity field that gives reference of velocity
to reach and to move into a circular trajectory, and the
implementation of an exponentially stable control law,
namely nested saturation. For this particular application,
the nested saturation controller shows a proper control
response. In the preview section of simulation results, we
show that the combination of these strategies carries to a
good scheme to track a trajectory.
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Appendix A. VELOCITY FIELD DERIVATIVES

Let us define the actual position vector as

ξtr =

[

x
y

]

and the temporal derivatives by way of

ξ̇tr =

[

ẋ
ẏ

]

, ξ̈tr =

[

ẍ
ÿ

]

,
...
ξ tr =

[...
x...
y

]

A.1 First Derivative of the Velocity Field

In order to simplify equations, let us perform the product
“⊗” of two bidimentional vectors a and b as

c = a⊗ b = det([a b]) = a1b2 − a2b1

so that the result is scalar and a⊗ a = 0.

Then, the derivative of αcl is expressed as

α̇cl =
x̄ẏ − ȳẋ

x̄2 + ȳ2
=
x̄ẏ − ȳẋ

‖ξ̄tr‖2
=

ξ̄tr ⊗ ξ̇tr

ξ̄Ttrξ̄tr

The time derivatives of the desired trajectory equations
are

ẋtr =−rtrα̇ sinα

ẏtr = rtrα̇ cosα

Therefore, the derivatives of the points xcl and ycl is

ẋcl =−rtrα̇cl sinαcl = α̇clvxc

ẏcl = rtrα̇cl cosαcl = α̇clvyc

Let us define an equation for the velocity error as

˙̃
ξtr = ṽ =

[

˙̃x
˙̃y

]

=

[

ẋcl − ẋ
ẏcl − ẏ

]

The approaching field derivative is

V̇ap =

˙̃
ξtr − (V T

ap
˙̃
ξtr)Vap

‖ξ̃tr‖

Defining an equation for the tangential accelerations vec-
tor

v̇c =

[

v̇xc

v̇yc

]

=

[

−α̇clvyc
α̇clvxc

]

The time deivative of the tangential field is

V̇tg =
v̇c − (V T

tg v̇c)Vtg

‖vc‖

Let us define

h(ξ̃tr) = −γ‖ξ̃tr‖, and f(ξ̃tr) = eh(ξ̃tr) (A.1)

We can rewrite (26) as

F1 =
2

1 + f(ξ̃tr)
− 1, F2 = 1− F1

Considering the functions f(ξ̃tr) and h(ξ̃tr) of (A.1), we
have

ḣ(ξ̃tr) =−γ(V T
ap

˙̃
ξtr),

ḟ(ξ̃tr) = eh(ξ̃tr)ḣ(ξ̃tr) = f(ξ̃tr)ḣ(ξ̃tr) (A.2)

and the derivative of Equation (26) can be written as

Ḟ1 =
−2ḟ(ξ̃tr)

[1 + f(ξ̃tr)]2
, Ḟ2 = −Ḟ1 (A.3)

Let us define the velocity field numerator vector as

V = F1Vap + F2Vtg

The time derivative is

V̇a = F1V̇ap + F2V̇tg + Ḟ1Vap + Ḟ2Vtg

Then, the time derivative of the velocity field is

V̇ =
V̇a − (V T V̇a)V

‖Va‖
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A.2 Second Derivative of the Velocity Field

The second derivative of αcl is

α̈cl =
ξ̄tr ⊗ ξ̈tr − 2(ξ̄Ttrξ̇tr)α̇cl

ξ̄Ttrξ̄tr

The derivative of the points ẋcl and ẏcl is

ẍcl = α̈clvxc
+ α̇clv̇xc

ÿcl = α̈clvyc + α̇clv̇yc

The velocity error derivative of ṽ is

¨̃
ξtr =

[

ẍcl − ẍ
ÿcl − ÿ

]

The second derivative of the approaching field defined in
(23) is

V̈ap =

¨̃
ξtr − (V̇ T

ap
˙̃
ξtr + V T

ap
¨̃
ξtr)Vap − 2(V T

ap
˙̃
ξtr)V̇ap

‖ξ̃tr‖

Let us define an equation for the derivative of tangential
accelerations

v̈c =

[

v̈xc

v̈yc

]

=

[

−α̈clvyc − α̇clv̇yc
α̈clvxc

+ α̇clv̇xc

]

Then the second derivative of the tangential field definend
in (24) is

V̈tg =
v̈c − (V̇ T

tg v̇c + V T
tg v̈c)Vtg − 2(V T

tg v̇c)V̇tg

‖vc‖

With the functions ḟ(ξ̃tr) and ḣ(ξ̃tr) of (A.2), we define

ḧ(ξ̃tr) =−γ(V̇ T
ap

˙̃
ξtr + V T

ap
¨̃
ξtr),

f̈(ξ̃tr) = ḟ(ξ̃tr)ḣ(ξ̃tr) + f(ξ̃tr)ḧ(ξ̃tr) (A.4)

and the derivative of (A.3) is written as

F̈1 =
−2f̈(ξ̃tr)

[1 + f(ξ̃tr)]2
+ [1 + f(ξ̃tr)]Ḟ

2
1 , F̈2 = −F̈1 (A.5)

The time derivative of the vector V̇a is

V̈a = F1V̈ap + F2V̈tg + 2Ḟ1V̇ap + 2Ḟ2V̇tg + F̈1Vap + F̈2Vtg

Then, the second time derivative of the velocity field is

V̈ =
V̈a − (V̇ T V̇a + V T V̈a)V − 2(V T V̇a)V̇

‖Va‖

A.3 Third Derivative of the Velocity Field

The third derivative of αcl is

...
αcl =

ξ̄tr ⊗
...
ξ tr + ξ̇tr ⊗ ξ̈tr − 2(ξ̄Ttrξ̈tr + ξ̇Ttrξ̇tr)α̇cl

ξ̄Ttrξ̄tr

−
4(ξ̄Ttrξ̇tr)α̈cl

ξ̄Ttrξ̄tr

The derivative of the points ẋcl and ẏcl is

...
x cl =

...
αclvxc

+ 2α̈clv̇xc
+ α̇clv̈xc

...
y cl =

...
αclvyc + 2α̈clv̇yc + α̇clv̈yc

The acceleration error derivative ˙̃v is
...
ξ̃ tr =

[...
x cl − ẍ...
y cl − ÿ

]

The third derivative of the approaching field defined in
(23) is

...
V ap =

...
ξ̃ tr − (V̈ T

ap
˙̃
ξtr + 2V̇ T

ap
¨̃
ξtr + V T

ap

...
ξ̃ tr)Vap

‖ξ̃tr‖

−
3(V̇ T

ap
˙̃
ξtr + V T

ap
¨̃
ξtr)V̇ap + 3(V T

ap
˙̃
ξtr)V̈ap

‖ξ̃tr‖

The third derivative of the tangential velocity field is

...
v c =

[...
v xc...
v yc

]

=

[

−
...
αclvyc − 2α̈clv̇yc − α̇clv̈yc...
αclvxc

+ 2α̈clv̇xc
+ α̇clv̈xc

]

The third derivative of the tangential field defined in (24)
is

...
V tg =

...
vc − (V̈ T

tg v̇c + 2V̇ T
tg v̈c + V T

tg

...
vc)Vtg

‖vc‖

−
3(V̇ T

tg v̇c + V T
tg v̈c)V̇tg + 3(V T

tg v̇c)V̈tg

‖vc‖

Through the functions f̈(ξ̃tr) and ḧ(ξ̃tr) of (A.4), we define

...
h (ξ̃tr) =−γ(V̈ T

ap
˙̃
ξtr + 2V̇ T

ap
¨̃
ξtr + V T

ap

...
ξ̃ tr),

...
f (ξ̃tr) = f̈(ξ̃tr)ḣ(ξ̃tr) + 2ḟ(ξ̃tr)ḧ(ξ̃tr) + f(ξ̃tr)

...
h (ξ̃tr)

and the derivative of (A.5) is written as

...
F 1 =

−2
...
f (ξ̃tr)

[1 + f(ξ̃tr)]2
+ 3[1 + f(ξ̃tr)]F̈1Ḟ1

−[1 + f(ξ̃tr)]Ḟ
3
1 + ḟ(ξ̃tr)Ḟ

2
1 ,

...
F 2 =−

...
F 1

The time derivative of V̈a is

...
V a = F1

...
V ap + F2

...
V tg + 3Ḟ1V̈ap + 3Ḟ2V̈tg

+3F̈1V̇ap + 3F̈2V̇tg +
...
F 1Vap +

...
F 2Vtg

Then, the third velocity field time derivative is

...
V =

...
Va − (V̈ T V̇a + 2V̇ T V̈a + V T

...
Va)V

‖Va‖

−
3(V̇ T V̇a + V T V̈a)V̇ + 3(V T V̇a)V̈

‖Va‖
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