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Pavel Zuñiga Haro ∗

∗ Department of Mechanical-Electrical Engineering, CUCEI -
University of Guadalajara, Jal 44430 Mex
(e-mail: jangel.rodriguez@alumnos.udg.mx,
dunstano.delpuerto@academicos.udg.mx,

pavel.zuniga@cucei.udg.mx).

Abstract: In this article, a reduced model based on dynamic phasors for the SVC is proposed.
By assuming that the connection bus voltage of the SVC is correctly regulated, the capacitor
voltage dynamic is neglected. Consequently, a reduction of the differential equation number of
the SVC model is achieved. In addition, a comparison is made between a detailed model and
the proposed model. The results show that the proposed model has an acceptable performance
when the compensator operating modes nearly satisfy the demanded assumption.
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1. INTRODUCTION

In the last decades, with the emergence of micro-grids
and technological development of devices based on power
electronics, more renewable energy technologies such as
wind energy and photovoltaic systems have proliferated,
(Hossain and Mahmud (2014)). But their stochastic dy-
namics can bring an improper operation such as voltage
fluctuation and power quality, causing instability in the
systems, where an effective compensation is necessary for
an optimal operation, (Foster et al. (2006)). However,
despite the modernity of these systems, the classical Static
VAR Compensator (SVC) is still a practical option to im-
prove performance. For instance, in (Awad et al. (2017))
the SVC is combined with super-capacitors to mitigate
switching overvoltages in micro-grids and in (Kahle et al.
(2003)) the SVC compensates very strict requirements of
the CERN’s Super Proton Synchrotron accelerator.

The SVC is a FACTS device (Flexible AC Transmis-
sion Systems) that is connected in shunt to the electric
power system, and is an alternative equipment to im-
prove transient stability and damping performance for
power systems. Its operation is based on power electronics
devices that allow flexibility in the control of network
parameters, (Hingorani and Gyugyi (2000)). While it is
true that the SVC has several advantages, (Hingorani and
Gyugyi (2000)), the main challenge is the representation
of discrete events in the circuit due to the switching of
the power devices and its effect in the dynamics of the
capacitor and the inductor. Therefore, the development
of simple and accurate models of the SVC is still neces-

sary to efficiently approximate and capture its dynam-
ics, allowing to realize Electromagnetic Transient (EMT)
studies and to understand its operation for control design,
(Gomes et al. (2006); Zhijun et al. (2009)).

The generalizated state-space averaging method presented
in (Sanders et al. (1991)), is the base of the Dynamic
Phasors (DP) approach, which is used in this work. DP
is a powerful tool for harmonic analysis, which allows
the representation of a periodic time-domain in terms
of its harmonic components. Moreover, it is an effective
tool to characterize commutation devices, like the SVC,
allowing a study of the system based on power electronics
in the form of a state-space representation, (Almer and
Jonsson (2009)). It is also a powerful tool to develop
phasor models that are very useful in the analysis of large
power systems (Mattavelli et al. (1997)). Dynamic phasor-
based models have been developed to perform harmonic
studies of electric power systems in order to predict the
behavior of the power electronics devices in near pe-
riodicity condition obtaining good results, (Kotian and
Shubhanga (2015); Gomes et al. (2006)). For instance,
since the Thyristor-Controlled Series Capacitor (TCSC)
and the SVC are based on the TCR, models of the former
have been studied to analyze the SVC’s behavior.

For the TCSC, in (Mattavelli et al. (1997)) it is proposed
a reduced model of the TCSC, by assuming that the
line current is always sinusoidal and constant, and the
inductor current is symmetrical, where the faster response
of the TCR current, versus the capacitor voltage one, was
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considered.As a result, simple but powerful dynamic mod-
els for the TCSC were derived. Afterwards, the harmonic
characteristics of this simplified model were presented in
(Yun et al. (2009)). Similarly, based on the dual behavior
between TCSC and SVC devices, we propose a reduced
model for the SVC device. In particular, by assuming that
the connection bus voltage is correctly regulated, (i.e. the
SVC maintains the voltage close to the desired value),
the voltage dynamics is considered constant and therefore
neglected. Consequently, a reduction of the differential
equation number of the SVC model is achieved. Moreover,
since the reduced model can be represented in the state-
space form, studying its structure is the next step to
derive control strategies for the TCR current.

2. DYNAMIC PHASORS

The generalizated state-space averaging method, firstly
presented in (Sanders et al. (1991)), is the base of the
dynamic phasors approach developed based on the fact
that a time-domain signal x(τ) can be represented, on
the time interval τ ∈ (t− T, t], using a Fourier series,

x(τ) =

∞
∑

n=−∞

〈x〉n(t) · e
jnωτ , (1)

where ω = (2π)/T , 〈x〉n is the n-th complex time-varying
Fourier coefficient and is called Dynamic Phasor (DP),
with T being the fundamental period, which defines the
observation window length that slides over the signal,
defined as τ ∈ (t−T, t]. Hence, if the fundamental period
varies, the observation window length too.

The DP’s are time-dependent functions, since the interval
under consideration slides as a function of time. The n-th
dynamic phasor 〈x〉n is defined as,

〈x〉n(t) =
1

T

∫ t

t−T

x(τ) · e−jnωτdτ, (2)

which represents the average over a fundamental period
of the signal, the averaging is applied in each cycle of the
signal, therefore, the computational resource is reduced.

The following two properties of complex Fourier coeffi-
cients are used for harmonic analysis in state-space ap-
proach. The time derivate of the n-th complex Fourier
coefficient satisfies the following equation:

d

dt
〈x〉n(t) =

〈

d

dt
x(t)

〉

n

− jnω〈x〉n(t). (3)

Moreover, if the frequency is varying considerably on
time, the approximation of (3) loses accuracy, (Yang et al.
(2016)). But for slowly-varying signals in frequency, it is
a good approximation to determine the rate of change of
the Fourier coefficients, (Sanders et al. (1991)).

The n-th dynamic phasor resulting from the product of
two signals x(t) and y(t) is defined as,

〈x · y〉n =

∞
∑

l=−∞

〈x〉n−l ∗ 〈y〉l, (4)

which is equivalent to the discrete convolution of the
dynamic phasors of the signals, (Zhijun et al. (2009)).
For a real valued signal x(t), the relation between 〈x〉n
and 〈x〉−n is given for a complex conjugate of 〈x〉n as,

〈x〉−n = 〈x〉∗n. (5)

The purpose of approaching a time-domain signal in
dynamic phasor form is to represent its dynamics in
a “quasi-stationary” state. The accuracy approximation
depends on the selection of the harmonic components
that provide the band-limitation in the frequency-domain,
(Mattavelli et al. (1997)).

3. MODEL OF SVC

Fig. 1. Circuit diagram of a single-phase SVC.

A basic single-phase SVC is shown in Fig. 1, consisting
of a TCR (Thyristor Controlled Reactor) in parallel with
a fixed capacitor. The TCR comprises an anti-parallel-
connected pair of thyristors in series with a linear (air-
core) inductor, where the thyristors act as a bidirectional
switch due to each thyristor conducts in positive and
negative half-cycles of the supply voltage. The following
time-domain equations describe the SVC’s dynamics,

C
d

dt
vc(t) = isvc(t)− il(t), (6)

L
d

dt
il(t) = q(t)vc(t),

where vc represents the capacitor voltage, L is the induc-
tance of the TCR, C is the capacitance, il is the inductor
current, ic the capacitor current, isvc is the compensator
current, and q is the switching function that denotes the
operating state of the thyristors valve: q = 1 when one
thyristor is in conduction, q = 0 when both thyristors are
off, (Zhijun et al. (2009); Jusan et al. (2010)).

Assumption 1. The thyristors are considered to be ideal
and the operation of both is symmetrical, therefore, only
harmonics of odd order will be generated by the TCR.
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Fig. 2. TCR current and voltage signals form.

Using the dynamic phasors’ properties of Section 2, (6)
can be rewritten in dynamic phasors terms as follows,

C
d

dt
〈vc〉n = 〈isvc〉n − 〈il〉n − jnωC〈vc〉n, (7)

L
d

dt
〈il〉n = 〈q · vc〉n − jnωL〈il〉n,

where 〈vc〉n is the n-th voltage dynamic phasor, 〈il〉n is
the n-th inductor current dynamic phasor and 〈isvc〉n
is the n-th compensator current dynamic phasor (time
dependence has been suppressed for a compact notation).

Moreover, note that as more Fourier coefficients are con-
sidered the number of equations increases; for each differ-
ential equation in complex form in (7) are obtained two
equations, the real and imaginary part, so it is essential to
model only the Fourier coefficients that capture the dy-
namic behavior for a good approximation of the original
signal, (Yun et al. (2009); Zhijun et al. (2009)).

3.1 Modelling of switching function in phasor terms

The function q represents conduction of both thyristors
in a period, in a transient-state, the expression is an
approximation due to the non-linearity of the components
and fundamental operation of devices, e.g. PLL (Phase-
Locked Loop).

Assumption 2. The voltage is essentially sinusoidal and
it is taken as the PLL’s reference signal for the synchro-
nization of the firing pulses of the thyristors.

Assumption 3. The fundamental component of the induc-
tor current is essentially symmetrical with respect to the
zero crossing of the instantaneous voltage, (Jusan et al.
(2010); Kotian and Shubhanga (2015)).

The switching function in dynamic phasor terms is
modelled based on Fig. 2 and (2) as follows,

〈q〉 =











〈q〉0 =
σ

π
for n=0

〈q〉n =
sin(nσ2 )

nπ
2

· e−jn(ξ+Θ) for n 6= 0
(8)

where σ is the conduction angle, α is the firing angle of
the thyristor, ξ is the phase angle corresponding to the
negative zero crossing of the voltage (ξ = π

2 − arg[〈v〉1]),
σ∗ is the conduction angle reference (σ = σ∗ + 2Θ),

with α∗ = ξ − σ∗

2 , θPLL is the angle of the PLL and
Θ is the gap between the current peak and the zero
crossing of the voltage, and in steady-state tends to
zero (Θ = arg[〈il〉1 · 〈v〉

∗

1]−
π
2 ). Under Assumption 3, the

prevailing conduction angle σ can be approximated as,
σ = 2(π − α + θPLL + Θ). Moreover, the switching
function q(σ, ξ,Θ) can be expressed as a function of the
components 〈v〉1 and 〈il〉1 and, consequently, (7) renders
a state-space model.

In particular, by using the above assumptions and rela-
tions, the state-space model (7) in terms of the funda-
mental frequency DP model is given by,

[

〈vc〉1
〈il〉1

]

=







−jω
−1

C
〈q〉0 − 〈q〉2

L
−jω







[

〈vc〉1
〈il〉1

]

+

[

1

C
0

]

[〈isvc〉] (9)

where it has been used,

〈q · vc〉1 = 〈q〉2〈vc〉
∗

1 + 〈q〉0〈vc〉1; 〈vc〉
∗

1 = 〈vc〉−1. (10)

3.2 Proposed model

Here, small perturbations around the nominal voltage are
assumed to reduce the order of the model in (7). The
reduction is based on the fact that, in practice, most
modern SVC control systems have an effective voltage
control at the nominal or, among the SVC’s functions,
one is to maintain the voltage between its terminals
close to the reference value, (Padiyar (2007)). Analogous
model orden reduction of TCSC using the dynamic phasor
approach has been proposed in (Mattavelli et al. (1997)),
considering that the fundamental phasor of inductor
current settles more quickly than the fundamental DP
capacitor voltage, which results have motivated this work.

Assumption 4. The disturbances are small around the
nominal voltage of the SVC, hence the voltage between
compensator terminals remains near constant, the capac-
itance and inductance are considered to be linear with
dependence on the fundamental frequency.

According Assumption 4, the voltage dynamics at the
capacitor is neglected, therefore for the dynamics of 〈vc〉n
in (7), it can be approximated as follows,

d

dt
〈vc〉n =

〈isvc〉n − 〈il〉n
C

− jnω〈vc〉n = 0, (11)

which is replaced in (7), obtaining the expression,

d

dt
〈il〉n =

[

〈q · isvc〉n − 〈q · il〉n
jnωLC

]

− jnω〈il〉n. (12)

Hence, the SVC can be seen as a variable current source,
where the compensator current is a function of the voltage
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close to the reference value of the SVC and the equivalent
susceptance of the compensator, isvc(σ) = v ·Bsvc(σ),

Bsvc(α) = Bc +Btcr(σ)







Bc = ωC

Btcr(σ) =
1

ωL

[

σ − sin(σ)

π

]

(13)

where Bc is the capacitive susceptance and Btcr(σ) rep-
resents the equivalent inductive susceptance.

Substituting (13) in (12), the expression of the inductor
current is obtained as a function of the variation of the
equivalent susceptance of the compensator,

d

dt
〈il〉n =

[

〈q · v〉n ·Bsvc(α)− 〈q · il〉n
jnωLC

]

− jnω〈il〉n.(14)

Remark 1. In the same way that the detailed model, as
more Fourier coefficients are considered the number of
equations increases, however, this number is reduced in
half when assuming a constant bus voltage.

In particular, the state-space form of the proposed model
in terms of the fundamental phasors, where 〈q̂〉 := 〈q〉0 −
〈q〉2, is written as follows,

d

dt
〈il〉1 =

[

−〈q̂〉

jωLC
− jω

]

〈il〉1 +

[

〈q̂〉 ·Bsvc(α)

jωLC

]

〈v〉1.(15)

4. PERFORMANCE RESULTS OF MODELS

In this section, the simulation results of three SVC
models are compared, the detailed circuit based model
implemented in MATLAB R©/SIMULINK R©, hereinafter
called Simulink model; the complete dynamic phasors
model in (9), hereinafter called the 2n model; and the
proposed reduced order dynamic phasors model in (15),
hereinafter called the n model. The 2n model is compared
against the Simulink one using the SVC state-variables,
that is, the vc and il. For the n model, the comparison
against the Simulink model and the 2n model is presented
for the TCR inductor current only, since the capacitor
voltage is assumed to be constant.

All simulations are implemented using the test system
shown in Fig. 3, where the capacity of the compensator
is ±100MVAr, with L=28.9mH, C=205.85µF, Ztl = 2
+ 1e−6Ω and VG = 20 kV at 60 Hz. An integration
time-step of 5 µs with the ode23tb method is used in
order to avoid numerical oscillations due to the highly
stiff behavior of the commutations, (Hong et al. (2009)).

All simulations consider a firing angle of the thyristors
that takes the following values: 90◦ in 0s-0.4s; 97◦ in
0.4s-0.8s; 100◦ in 0.8s-1.2s; 130◦ in 1.2s-1.6s; and 97◦ in
1.6s-2s. The signals from the Simulink model are shown
as waveforms in the time-domain, whereas the signals
from the 2n and n models correspond to the harmonic
coefficient of the fundamental frequency component of the
corresponding signals. The figures that show a harmonic
spectrum are obtained through the 2n or n model simply
by including the corresponding harmonic coefficients.

Fig. 3. Study system
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Fig. 4. Harmonics generated in the TCR current

4.1 Simulation results

The TCR acts like an adjustable inductance since the
variation of the firing angle changes the fundamental
component of the inductor current and consequently its
equivalent susceptance, (Hingorani and Gyugyi (2000)).
The magnitude of the harmonics in the TCR current due
to the distorted waveform caused by the switching of the
thyristors (Simulink model) is illustrated in Fig. 4. It is
seen that each harmonic component reaches its peak value
at a different firing angle, therefore, for each operating
condition (firing angle), the harmonics present in the
inductor current waveform have a different magnitude.

Due to the action of TCR, the compensator has four oper-
ating modes subject to the firing angle: blocking, bypass,
capacitive, and inductive mode. When the thyristors are
off during each cycle (α = 180◦) the inductance of the
TCR branch is always disconnected from the circuit and
the equivalent reactance will be equal to the capacitive
reactance of C; it operates in blocking mode. When the
thyristors are always on (α = 90◦) the inductance of the
TCR branch is always in the circuit and the equivalent
reactance will be equal to the parallel of the inductive and
capacitive reactance of L and C, respectively; it operates
in bypass mode. When the firing angle (α) has a value
between 90◦ and 180◦, the SVC can either be in the
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capacitive or the inductive region, depending on the value
of α and the position of the resonance angle.

The operating regions of the SVC are shown in Fig.
5. If the inductive and capacitive reactance are equal,
XC = XL(α), the equivalent susceptance tends to be infi-
nite, under this condition the SVC operates in resonance
mode; this operating point must be avoided since it may
lead to instability. In practice, the resonance point can be
modified due to the influence of other elements of the net-
work (e.g. harmonic filters, transmission lines, FACTS).
As the α increases the equivalent inductance decreases,
moving away from the resonance to the capacitive region.

Fig. 6 shows the capacitor voltage of the SVC, where
it can be seen that the harmonic coefficient accurately
tracks the envelope of the instantaneous time-domain
voltage. It is important to note that the close tracking
of the time-domain signal envelope confirms the accurate
performance of the 2n model, and that assumptions 2 and
3 are reasonable to consider. The harmonic components
of the capacitor voltage are shown in Fig. 7 for different
values of α, showing that the dominant harmonics are
negligible; non-triplen odd-order.
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Fig. 8. TCR current dynamic phasor response to step
changes in firing angle of model order “2n” versus
current phasor of model order “n”.

Fig. 8 shows the fundamental component harmonic coef-
ficient of the TCR current; in this case, for the 2n and n
models. It can be seen that the results for both models
are very similar. The similarity seen from this results
show the accuracy of the proposed n model. However,
it can be noted that the n model deviates from the 2n
model when the firing angle of the thyristors is 130◦; the
capacitor voltage differs the most from the reference value
in α = 130◦, as seen in Fig. 6. That is, the accurate repre-
sentation of the inductor current fundamental component
by the n model is achieved when the capacitor voltage of
the SVC is operating close to the bus voltage reference.
This result is consistent with Assumption 4 that considers
this voltage constant to derive the proposed model; there-
fore the discrepancy when the capacitor voltage deviates
from the reference one. This also impacts the transient
response of the dynamic phasor of model n, which loses
accuracy compared to the 2n model due to elimination of
the capacitor voltage dynamics.

The harmonic content of the TCR for different values of α
is shown in Fig. 9, where again only odd order harmonics
are present; it can be seen that as α increases, the mag-

San Luis Potosí, San Luis Potosí, México, 10-12 de Octubre de 2018 516 Copyright©AMCA. Todos los Derechos Reservados www.amca.mx



3
5

7
90

11

Harmonic order

50

90 13

100

100 110

150

C
u

rr
en

t 
m

ag
n

it
u

d
e 

(A
)

15120

delay angle ( ) (Deg)

200

130

250

17140

300

150 160 19170 180

Fig. 9. Harmonic content in the TCR current

nitude of the harmonics decreases since the conduction
angle becomes smaller.

5. CONCLUSION

This paper presented a reduced model of the SVC device
using the dynamic phasors approach. By assuming that
the connection bus voltage is correctly regulated, (i.e.
the SVC maintains the bus voltage close to the reference
value), the capacitor voltage dynamic is neglected. Conse-
quently, a reduction of the differential equation number of
the SVC model is achieved. The proposed model has well
tracked the envelope, with respect to the detailed model,
of the inductor current waveform, when the compensator
operates nearly on the capacitive region. But the reduced
model leaks accuracy in the presence of large voltage
variations. However, in practice there are safety limits
that do not allow large voltage variations, therefore model
n and model 2n could be used to estimate the original
time-domain signal of the state variables.

Currently, works toward improvement on the reduced
model response are carried out by a slight refinement in
the evaluation of 〈q ·v〉1 or 〈q · il〉1 in (15). Namely, rather
than using only the fundamental component to represent
v or il for this evaluation, an extended expression with sig-
nificant harmonic content will be consider, similarly as in
(Mattavelli et al. (1997)). At the same time, applications
for power factor control, reactive power compensation,
and voltage regulation based on the model n are being
developed.
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