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Abstract: In this paper synchronization of a small–world network composed of Cellular Neural
Networks (CNN) is addressed. Each nonlinear system used to compose the network is the
standard CNN. Such model will be used as generator of chaotic behavior. The resulting small–
world network will be created with Newman–Watts algorithm and synchronized by using the
coupling matrix technique. On the other hand, secret communications, that includes a suitable
selection of the chaotic signal as improvement of the security level, are evaluated as potential
application. Criteria considering energy and frequency characteristics are used to choose the
chaotic signal that best hides the message. Numerical simulations of the encryption, transmission
and retrieval of a message are provided to corroborate the effectiveness of the procedure.
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1. INTRODUCTION

In this paper, synchronization of chaos and its application
are discussed. Due to the importance for engineering,
in the last two decades both fields have been studied
extensively.

The chaos has its beginning in the 1960’s when E.
Lorenz obtained the trajectories of equations describing
the weather (Lorenz, 1963). As a result, many systems
have been created to deepen its study. Among the chaos
generators, one can find conventional chaotic oscillators
(Chua et al., 1986; Lorenz, 1963), multi–scroll attractor
chaotic oscillators (Yalçin, 2007), fractional–order chaotic
oscillators (Petráš, 2008) and Cellular Neural Networks
(Yang and Sun, 2010), for instance.

The acronym CNN for Cellular Neural Network was pro-
posed by L.O. Chua and L. Yang in 1988 (Chua and
Yang, 1998). The most remarkable characteristics of CNNs
are their ability of real–time signal processing and their
local interconnections (Chua and Yang, 1998; Yalçin et al.,
2004).

On the other hand, chaos synchronization has its begin-
ning in the 1990’s when, L.M. Pecora and T.L. Carroll
synchronized two identical chaotic oscillators with differ-
ent initial conditions (Pecora and Carroll, 1990). As a
result, chaotic communications have been implemented
as the main application and some encryption schemes

have been proposed for private communications: chaotic
masking scheme (Arellano-Delgado et al., 2013), chaos
shift keying scheme (Yang and Jiang, 2012) and chaotic
modulation scheme (Bhat and Sudha, 2012; Wang et al.,
2012), to mention a few.

Several methods have been proposed to achieve chaotic
synchronization. Among the methods to achieve synchro-
nization between coupled chaotic oscillators, one can find
output synchronization (Zhang et al., 2017), the slid-
ing modes strategy (Chen et al., 2017), synchronization
through adaptive or active control (Yang et al., 2018) and
Wang–Chen method (Wang and Chen, 2002b; Soriano-
Sánchez et al., 2015, 2016a,b), for instance.

The last topic included in this paper is the small–world
network. D.J. Watts and S.H. Strogatz suggested the first
algorithm to introduce the small–world property, fulfilling
two main characteristics: high clustering coefficient and
short average path length (Watts and Strogatz, 1998).
Some of the most recent works on this topic have shown
some other important characteristics (Soriano-Sánchez
and Posadas-Castillo, 2018; Bhaumik and Santra, 2017;
He and Xue, 2018).

In this paper the simulation of a private communication
process is performed. Firstly, some standard CNNs are
arranged in small–world topology by using the Newman–
Watts algorithm. The resulting complex network is syn-
chronized through the Wang–Chen method and its dynam-
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ics are considered to encrypt a message. Secondly, the re-
sulting chaotic dynamics are evaluated to determine their
energy and frequency characteristics. The chaotic signal
with the best results is chosen as candidate to encrypt the
message. Thirdly, the confidential message is encrypted,
transmitted and retrieved to show a potential application
of this topics.

The paper is organized as follows. In Section 2 the pre-
liminaries of CNN, the model of the standard CNN, the
definition of a complex networks and their synchroniza-
tion are provided. Small–world networks and their main
characteristics are described in Section 3. Synchronization
results are provided in Section 4. Selection criteria, the
encryption, transmission and retrieval of a confidential
message are provided in Section 5. Some conclusions are
given in Section 6

2. PRELIMINARIES

In the present section the necessary information on the
standard CNN, the definition of complex network and the
method to carry it to behave synchronously are provided.

2.1 The standard CNN

Among the existing definitions of CNN, authors resort to
the following one, given in (Chua and Yang, 1998):

Definition 1. A Cellular Neural Network is an spatial
arrangement consisting of locally–coupled cells. Each cell
is a dynamical system which has an input u(t) ∈ R

u, an
output y(t) ∈ R

y and a state x(t) ∈ R
x, evolving according

to some prescribed dynamical laws.

An example of an isolated cell is given in Fig. 1.

Fig. 1. A two–dimensional isolated cell: input uij(t) ∈ R
u,

threshold zij(t) ∈ R
z, which is usually assumed to be

scalar, state xij(t) ∈ R
x and output yij(t) ∈ R

y.

Each cell is coupled only among the neighboring cells lying
within some prescribed sphere of influence with radius r,
i.e., the r–neighborhood of the cell, which is defined as
follows (Chua and Yang, 1998)

Sr(i, j) = {C(k, l)|max {|k − i|, |l − j|} ≤ r,
1 ≤ k ≤ M, 1 ≤ l ≤ N} .

(1)

Depending on the magnitude of the r–neighborhood, one
can build M ×N rectangular arrays of cells.

Authors will describe the standard CNN originally pro-
posed by L.O. Chua and L. Yang in 1988 which is described
as follows (Chua and Yang, 1998)

ẋij = −xij + zij +
∑

kl∈Sr(i,j)

aklykl

+
∑

kl∈Sr(i,j)

bklvkl , i = 1, . . . ,M ; j = 1, . . . , N,
(2)

and
yij = f(xij), (3)

where zij is a scalar for simplicity, Sr(i, j) is the sphere of
influence with radius r, i.e., the r–neighborhood of the cell.

∑

kl∈Sr(i,j)

aklykl and
∑

kl∈Sr(i,j)

bklvkl are the local couplings,

and

f(xij) =
1

2
(|xij + 1| − |xij − 1|) . (4)

For the particular case where M = 1, N = 2, a00 = 2,
a0,−1 = 1.2, a01 = −1.2, b00 = 1, v1(t) = 4.04sin (πt/2)
and v2(t) = 0, one obtains
{

ẋ1 = −x1 + 2f(x1)− 1.2f(x2) + 4.04 sin
(π

2
t
)

,

ẋ2 = −x2 + 1.2f(x1) + 2f(x2),
(5)

with the nonlinear function

f(x1,2) =
1

2
(|x1,2 + 1| − |x1,2 − 1|) . (6)

It was first shown in (Zou and Nossek, 1991) that (5) –
(6) exhibited chaotic behavior for the parameters given.
In Fig. 2a–b the chaotic attractor and the state variables
generated from (5)–(6) are shown, respectively.
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Fig. 2. (a) View (x1, x2)-plane for the chaotic attractor of
the standard CNN (5)–(6). (b) x1(t) and x2(t) state
variables obtained with x(0) = [−0.2, 0.1]T .

2.2 Complex networks and their synchronization

Once authors have described the chaotic system to com-
pose the network, the definition, suggested by Wang
(Wang, 2002), is provided.

Definition 2. A complex network is defined as an intercon-
nected set of oscillators (two or more), where each oscilla-
tor is a fundamental unit, with its dynamic depending on
the nature of the network.

Each oscillator is defined as follows

ẋi = f(xi) + ui , xi(0), i = 1, 2, . . . , N, (7)

whereN is the size of the network, xi = [xi1, xi2, . . . , xin]
∈ R

n represents the state variables of the oscillator i.
xi(0) ∈ R

n are the initial conditions for oscillator i.
ui ∈ R

n establishes the synchronization between two or
more oscillators and is defined as follows (Wang and Chen,
2002a)

ui = c

N
∑

j=1

aijΓxj , i = 1, 2, . . . , N. (8)

The constant c > 0 represents the coupling strength.
Γ ∈ R

n×n is a constant matrix to determine the coupled
state variable of each oscillator. Assume that following
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condition for matrix Γ = diag(r1, r2, . . . , rn) is a diagonal
matrix. If two oscillators are linked through their k–th
state variables, then, the diagonal element rk = 1 for a
particular k and rj = 0 for j 6= k.

Synchronization is achieve through (8), where aij are the
elements of A ∈ R

N×N which is the coupling matrix. The
matrix A shows the connections between oscillators; if the
oscillator i–th is connected to the oscillator j–th, then
aij = 1, otherwise aij = 0 for i 6= j. The diagonal elements
of A matrix are defined as

aii = −

N
∑

j=1,j 6=i

aij = −

N
∑

j=1,j 6=i

aji i = 1, 2, ..., N. (9)

The dynamical complex network (7)–(8) is said to achieve
synchronization if

x1(t) = x2(t) = . . . = xN(t) as t → ∞. (10)

In this paper authors will synchronize N–coupled CNNs
arranged in small–world topology.

3. NEWMAN–WATTS SMALL–WORLD ALGORITHM

In this section the small–world algorithm, used to generate
the complex network, will be described. In 1999, M.E.J.
Newman and D.J. Watts proposed a modified version
of the original small–world model (Newman and Watts,
1999a,b).

The small–world property consists in the existence of long–
range links connecting pairs of nodes distant from each
other. The main features of the small–world networks
are the following: on one hand the clustering coefficient
C, which is defined as the average fraction of pairs of
neighbors of a CNN that are also neighbors of each other.
The clustering coefficient Ci of the CNN i is defined as
the ratio between the actual number Ei of edges that exist
between ki CNNs and the total number ki(ki − 1)/2, so

Ci =
2Ei

ki(ki − 1)
. (11)

The clustering coefficient C of the whole network is the
averaged of Ci over all i. On the other hand the average
path length L, which is defined as the distance between
two CNNs averaged over all pairs of CNNs (Wang, 2002;
Barrat and Weigt, 2000)

L =
1

N(N − 1)

∑

i6=j

dij , 1 ≤ i, j ≤ N, (12)

where dij is the distance between CNN i and CNN j.
Due to the existence of long–range links, the small–world
network has high clustering coefficient C(N, p) and short
average path length L(N, p).

When applying the Newman–Watts algorithm, authors
start from the nearest neighbor topology and the small–
world property is introduced by adding N(N−(2k+1))p/2
links to pairs of CNNs randomly chosen.

In Fig. 3 the evolution of the Newman–Watts small–
world algorithm is shown. At p = 0 the topology remains
unchanged and the network is considered regular. When
0 < p < 1 one obtains a small–world network by adding

Fig. 3. Evolution of the Newman–Watts small–world al-
gorithm. The solid lines are the original links. The
dash–dot lines are the links randomly added.

links to randomly pairs of CNNs. At the point where p = 1
all the possible links have been added and the network has
become globally coupled.

In Fig. 4 the evolution of the clustering coefficient C
and the average path length L when applying the small–
world algorithms is shown. When p = 1, Newman–Watts
algorithm generates a globally coupled network whose
clustering coefficient is the highest possible. i.e., every pair
of CNN is connected through a link.
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Fig. 4. Clustering coefficient C and average shortest path
length L for a network generated with the Newman–
Watts algorithm.

In the next section the synchronization results of the
small–world network are shown.

4. SYNCHRONIZATION OF SMALL–WORLD
NETWORKS

In this section authors will present the synchronization
results of a small–world network. The network is composed
of the standard CNN described in section 2, and it was
generated by using the Newman–Watts algorithm.

4.1 Conditions for Synchronization by Using the Coupling
Matrix

Suppose there are no isolated clusters in the complex
network, then the coupling matrix A from section 2 is a
symmetric irreducible matrix, so one eigenvalue of A is
zero and all the other eigenvalues are strictly negative,
this means, λ2,...,N(A) < 0.

Theorem 1. ((Wang, 2002)). Consider the dynamical net-
work (7). Let

0 = λ1 > λ2 ≥ λ3 · · · ≥ λN , (13)

be the eigenvalues of its coupling matrix A. Suppose that
there exist an n × n diagonal matrix H > 0 and two
constants d̄ < 0 and τ > 0, such that

[Df (s (t)) + dΓ ]T H +H [Df (s (t)) + dΓ ] ≤ −τIn, (14)
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for all d ≤ d̄, where In ∈ R
n×n is an unit matrix. If

moreover,
cλ2 ≤ d̄, (15)

then the synchronization state (10) is exponentially stable.

The coupling strength is computed as follows

c ≥

∣

∣

∣

∣

d̄

λ2

∣

∣

∣

∣

, (16)

which will affect the stability of the synchronization state
(10) through the control law (8).

4.2 Synchronization results

In the following, complex networks of identical chaotic
CNNs will be synchronized. The CNNs considered is the
standard CNN described by (5)–(6).

Considering a synchronization scheme ofN–coupled chaotic
CNN, the coupling matrix of the topology is obtained
as explained in section 2. All its eigenvalues are 0 =
λ1 > λ2 ≥ λ3 . . . ≥ λN . As the small–world property is
introduced, the largest nonzero eigenvalue λ2(p) will vary,
thus, the coupling strength given by (16) becomes

c(p) ≥

∣

∣

∣

∣

d̄

λ2(p)

∣

∣

∣

∣

. (17)

The coupling strength c(p) is computed for each λ2(p),
which varies depending on the small–world algorithm.
The obtained ratio is the lowest boundary necessary for
each type of CNN to reach synchrony and it decreases as
the probability increases. Initial conditions were generated
randomly for each chaotic standard CNN within the range
[−16, 10] without repetition. The Gamma matrix is defined
such that synchronization is achieved by the first state
variable, i.e., Γ = diag(1, 0). The size of the complex
network is N = 300. The periodic boundary conditions
are k = 3. The small–world property is introduced by
Newman–Watts algorithm.

The coupling strength is computed according to (17),
where d̄ = −10 and d̄ = −1 were used. According to
(8), the control laws ui1 for i = 1, . . . , N are given by
the A matrix nonzero elements for all cases. By using
d̄ = −10, the chaotic state variables x1(t) and x2(t) of a
single standard CNN, described by (5)–(6), are stabilized.
The coupling strength c is computed from (17), thus,
c(p) ≥ | − 10/λ2(p)|.

The set of equations that describes the complex network
is given as follows



















ẋi1 = −xi1 + 2f(xi1)− 1.2f(xi2)

+4.04 sin
(π

2
t
)

+ c

N
∑

j=1

aijxj1,

ẋi2 = −xi2 + 1.2f(xi1) + 2f(xi2),

(18)

with the nonlinear function

f(xi1,2) =
1

2
(|xi1,2 + 1| − |xi1,2 − 1|) , (19)

where 1 ≤ i ≤ 300. By using p = 0.2, the coupling
strength was set in c = 1 and the following synchro-
nization results were obtained. Figure 5a shows the time
evolution of some chaotic state variables xj1 and xj2

for j = 26, 53, 249, 130. Figure 5b shows the phase

portraits between some arbitrary chosen states and the
chaotic attractor. Synchronization is confirmed by the
phase portraits, therefore, condition x1(t) = x2(t) = . . . =
xN (t) as t → ∞ holds.
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Fig. 5. (a) Time evolution of state variables xj1 and
xj2 for j = 26, 53, 248, 130. (b) Phase portraits
to corroborate synchronization between xi1 vs. xj1

for i = 1, 61, 121; j = 121, 181, 241 and view
(x14,1, x14,2)–plane of the chaotic attractor

In the next section, the simulation of a private communi-
cation system is performed. The results of the encryption,
transmission and retrieval of a confidential message will be
provided.

5. CHAOTIC ENCRYPTION

In this section, authors suggest criteria for assessing the
energy and frequency characteristics of the chaotic signals.
These data will be used to select the best chaotic signal to
encrypt a confidential message.

The first criterion suggests considering the energy level
of the chaotic signal. The criterion is described as follows
(Soriano-Sánchez et al., 2015)

N−1
∑

n=0

|xc(n)|
2 ≫

N−1
∑

n=0

|xm(n)|2, (20)

where xc(n) is the samples set of the chaotic signal and
xm(n) is the samples set of the message (digital audio).
The criterion, J1 is defined as the ratio between the
right and the left parts of (20), i.e., J1 yields the times
the chaotic signal energy exceeds the message energy,
therefore, J1 ≫ 1 results in a good encryption.
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The second criterion considers the signal energy in the
frequency range where the majority of the message energy
is located. This is done to ensure good encryption from
the frequency domain. The criterion is described as follows
(Soriano-Sánchez et al., 2015)

N−1
∑

k=0

α(k)|Xc(k)|
2 ≫

N−1
∑

k=0

α(k)|Xm(k)|2, (21)

where Xc(k) are the chaotic signal spectrum samples,
Xm(k) are the message spectrum samples and α(k) is a
frequency weighting function that selects the range where
the message is located. J2 is defined as the ratio between
right and left parts of (21), which gives the relation
between chaotic signal energy and message energy in a
specific frequency band if α(k) = 1 in K ∈ [k1, k2].
Criterion J2 will yield how many times the weighted
chaotic signal energy exceeds the weighted energy of the
message, thus, J2 ≫ 1 results in a good encryption.

The resulting indices are given in Table 1. These data were
obtained from the complex network previously synchro-
nized. The weighting function α(k) has a unity gain in the
message frequency range 0.01–5 kHz and null elsewhere.
The total energy of the message is 3.6085×103.

Table 1. Indices J1, J2 after applying selection
criteria (20) and (21) and the correlation be-
tween the messagem(t) and its encryption s(t)
in time and frequency domain rm,s and Rm,s

respectively. aChaotic signal energy. b × 104.

State Ea J1 J2 rm,s Rm,s

x1,1 3.6447b 10.1004 1.4491 0.0046 0.0118

x1,2 0.7651b 2.1204 2.2055 0.0067 -0.0021

5.1 Encryption results

The aim of this result is to apply the apparent random-
ness of chaotic systems to hide information, and use their
ability to be synchronized to retrieve it. For this particular
case the chaotic CNNs are arranged in small–world topol-
ogy. The chaotic signal to mask the message was chosen
based on its encryption capability determined by (20)–
(21).

Fig. 6. Two–channel communication diagram with multi–
user modality

In Fig. 6 the two–channel communication diagram with
multi–user modality is shown. The additive chaotic en-
cryption will be used to hide the confidential message. It

consists on the application of autonomous chaotic oscilla-
tors whose output signal is added to the information signal.
This sum is sent over a communication channel. Another
chaotic signal of the encoder is also transmitted and used
by the decoder to synchronize an equivalent chaotic oscil-
lator with the encoder system. The reconstructed chaotic
signal is then subtracted from the sum transmitted which
finally restores the information (Dachselt and Schwarz,
2001).

Authors will consider as a confidential message a short part
of the classical song Le nozze di Figaro (The Marriage of
Figaro) by W. A. Mozart. Figure 7 shows the resulting
signals of the communication process. At the top, the
message to be encryptedm(t); in the middle, the encrypted
message s(t) = x1,2(t) + m(t) which is transmitted by
the second channel; finally at the bottom, the retrieved
message m′(t) = s(t)− x′

1,2(t) for every user.
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Fig. 7. Resulting signals of the communication process. At
the top, the message m(t) to be encrypted. In the
middle the transmitted signal s(t) which is the sum
of the x1,2 chaotic state and the confidential message
m(t). At the bottom, the retrieved message m′(t)

The encryption was performed by using the x1,2 state of
the standard CNNmodel since, as explained before, almost
all its energy is located in the message frequency band.
Without hesitation, selecting the chaotic signal based on
its energy and bandwidth characteristics improves the se-
curity level of the encrypted message, since it is prevented
from retrieval by conventional filtering techniques.

6. CONCLUSIONS

The synchronization of complex networks composed of
chaotic CNN models arranged in small–world topology is
highlighted. For purposes of encryption, the use of such
systems allows us to generate a wide variety of chaotic
signals, which makes the selection process more effective,
since the greater the number of signals evaluated, more
extensive is the field of requirements that can be met.

The use of criteria to select the chaotic signal to hide the
message, which consider energy and frequency character-
istics, is without hesitation the most remarkable contri-
bution of the paper, due to it brings an improvement in
the security level of the encrypted message. Authors have
shown the importance of knowing the message bandwidth
to choose a suitable chaotic signal. The encrypted mes-
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sage is prevented from being retrieved by using filtering
techniques.
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