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Abstract:

This paper addresses the problem of synchronization for a class of fractional order chaotic
systems with a double-scroll attractor propagates on a line. Based on the stability theory of
fractional order systems, some basic dynamical properties are studied, such as equilibrium
points, Lyapunov exponents and strange attractors of the chaotic system. Using the active
control approach the synchronization of incommensurate fractional order systems with different
basins of attraction is achieved. The numerical results illustrate that fast synchronization can
be achieved between fractional order chaotic systems.
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1. INTRODUCTION

Chaotic systems and their implementations have been
studied during the last decades. In (Hsiao 2018, Lan et al.
2018, Rasmussen et al. 2017, Cicek et al. 2018, Abernethy
and Gooding 2018) the sensitivity of chaotic systems to
parameters and initial conditions are considered for many
real-world applications such as data encryption, secure
communication power systems, biology, circuit theory,
control. Fractional calculus has been considered as the ex-
tension of the integer-order calculus to non-integer order
calculus. It has also become a powerful tool to describe the
dynamics of complex systems which appear frequently in
several branches of science and engineering. For instance
in the field of viscoelasticity, robotics, feedback ampli-
fiers, electrical circuits, control theory, electro analytical
chemistry, fractional multi-poles, electromagnetics, bio-
engineering, as shown in (Saadia and Rashdi 2018, Sun
et al. 2018, Long et al. 2018, Ionescu and Kelly 2017, Guo
et al. 2018).

The chaotic dynamics of fractional order systems began
to attract the interest of the scientific community in
recent years. The chaotic systems can also be modeled
more accurately by non-integer differential equations.

According to the Poincare-Bendixson theorem (Hirsch
and Smale 1965), chaos can exist in a given continuous
autonomous dynamical system specified by differential
equations if it has three or more dimensions. However,
by introducing fractional derivative with order 0 < q < 1
into the well-known chaotic systems, many authors found
that these systems with fractional version remain chaotic
and associated with the advances in numerical methods
for solving them and their electronic implementations as
can be consulted in (Diethelm and Ford 2002, Garrapa
2018, Zambrano-Serrano et al. 2016, Li and Chen 2004,
Grigorenko and Grigorenko 2003, Pham et al. 2018,
Munoz-Pacheco et al. 2018) and (Petras 2011).

Since (Pecora and Carroll 1990) have shown that chaotic
systems can be synchronized by introducing an appropri-
ate coupling. The notion of synchronization of chaos has
become an important research area in nonlinear science,
not only for understanding the complicated phenomena
in various fields but also due to its potential applications
especially in secure communication and image encryption.
Two indistinguishable chaotic systems, starting from non-
identical initial values, would evolve in time to completely
different trajectories because of the sensitive dependence
of chaotic systems to their initial values. The aim of
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synchronizing chaos is to ensure that the states track
the desired trajectory. A variety of approaches have been
proposed to deal with synchronization of chaotic systems,
these included, backstepping, adaptive, and active con-
trols as mentioned in (Shukla and Sharma 2017, Singh
et al. 2017). Chaos synchronization using Active control
method was proposed by (Bai and Lonngren 1997). If the
nonlinearity of the system is known, an active controller
can be easily designed according to the given conditions
of the chaotic system to achieve synchronization globally,
and it is treated as one of the most interesting control
strategy for its simplicity (Singh et al. 2017).

With the inspiration from the above discussions, In this
paper, a fractional order system with a double-scroll at-
tractor propagates on a line is presented, based on mod-
ifying a parameter, the position of the chaotic attractor
in the phase plane is modified. Also a dynamic analysis
of the system will be presented. Moreover, we consider
the problem of chaos synchronization of incommensurate
fractional order systems. Preliminaries are discussed in
Section 2. In Section 3, systems’ descriptions are given.
Section 4 contains the synchronization which is achieved
using Active control method. Numerical simulation and
results are carried out in Section 5. which is followed by
a Conclusion given in Section 6.

2. MATHEMATICAL BACKGROUND

Fractional order calculus is a generalization of integration
and differentiation to non-integer order, denoted by the
operator Dtq, where q ∈ R is the fractional order. This
operator is a notation for taking both the fractional
derivative and the fractional integral of a function into
a single expression and can be formally defined as

aD
q
t f =



















dqf

dtq
, q > 0,

f, q = 0,
∫ t

a

f(dτ)q, q < 0.

(1)

where f is a function of time. There are several different
definitions for the fractional differential operator that can
be adopted for (1). Hereafter, we consider the fractional
derivative operator dq/dtq , with q < 1, to be Caputo’s
derivative with starting point a = 0 defined by

Dq
t f(t) =

1

Γ(m− q)

∫ t

0

f (m)(τ)

(t− τ)q+1−m
dτ, (2)

where m is an integer number and Γ(·) is the Gamma
function. Caputo’s derivative of order α is a formal
generalization of the integer derivative under Laplace
transformation and is widely used in the engineering field
(Sun et al. 2018).

2.1 Fractional predictor-corrector algorithm

The numerical method used in this work to compute the
solution of the fractional order systems is the Adams-
Bashforth-Moulton predictor-corrector scheme, reported

in (Diethelm and Ford 2002, Garrapa 2018). The predictor-
corrector scheme is based on the Caputo fractional dif-
ferential operator (2) which allows us to specify both
homogeneous and inhomogeneous initial conditions.

Consider the following fractional differential equation:

Dαy(t) = f(t, y(t)), 0 ≤ t ≤ T ;

y(k)(0) = y
(k)
0 , k = 0, 1, . . . , n− 1.

(3)

The solution of (3) is given by an integral equation of
Volterra type as

y(t) =

⌈α⌉−1
∑

k=0

yk0
tk

k!
+

1

Γ(α)

∫ t

0

(t− z)α−1f(z, y(z))dz. (4)

How it is showed in (Diethelm and Ford 2002), there is
a unique solution of (3) on some interval [0, T ], thence
we are interested in a numerical solution on the uniform
grid {tn = nh|n = 0, 1, . . . , N} with some integer N and
stepsize h = T/N , then (4) can be replaced by a discrete
form to get the corrector as follows

yh(tn+1) =

⌈α⌉−1
∑

k=0

yk0
tk

k!
+

hα

Γ(α+ 2)
f (tn+1, y

p
h(tn+1))

+
hα

Γ(α+ 2)

n
∑

j=0

aj,n+1f (tj , yh(tj)) , (5)

where

aj,n+1 =















nα+1 − (n− α)(n+ 1)α, j = 0,
(n− j + 2)α+1 + (n− j)α+1

−2(n− j + 1)α+1, 1 ≤ j ≤ n,
1, j = n+ 1,

(6)

Moreover, the predictor has the following structure

yph(tn+1) =

⌈α⌉−1
∑

k=0

yk0
tk

k!
+

1

Γ(α)

n
∑

j=0

bj,n+1f(tj , yh(tj)), (7)

with bj,n+1 defined by

bj,n+1 =
hα

α
((n+ 1− j)α − (n− jα)). (8)

The error of this approximation is given by

max
j=0,1,...N

|y(tj)− yh(tj))| = O(hP ), (9)

where P = min(2, 1 + α).

2.2 Stability of fractional order systems

Starting from Eqs. (1) and (2), it is possible to study the
stability of fractional order systems. A fractional order
differential equation with 0 < q < 1 typically presents
a stability region that is larger than that of the same
equation with integer order q = 1.

Proposition 1 The roots of the equation f(x) = 0 are called
the equilibria of the fractional order differential system
Dqx = f(x), where x = (x1, x2, . . . , xn)

T ∈ R, f(x) ∈ R
and Dqx = (Dq1x1, D

q2x2, . . . , D
qnxn)

T , qi ∈ R+, i =
1, 2, . . . , n.
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Theorem 1. Consider the following n−dimensional frac-
tional order system

Dq1x1 = a11x1 + a12x2 + . . .+ a1nxn,

Dq2x2 = a21x1 + a22x2 + . . .+ a2nxn, (10)

...

Dqnxn = an1x1 + an2x2 + . . .+ annxn,

where all qi’s are rational numbers between 0 and 1.
Assume m be the lowest common multiple of the de-
nominators ui’s of qi’s, where qi = vi/ui, (ui, vi) = 1,
ui, vi ∈ Z+ for i = 1, 2, . . . , n. Define:

∆(λ) =









λmq1 − a11 −a12 . . . −a1n
−a21 λmq2 − a22 . . . −a2n
...

...
. . .

...
−an1 −an2 . . . λmqn − ann









.

(11)
Then the zero solution of system (10) is globally asymp-
totically stable in the Lyapunov sense if all roots λ’s of
the equation det(∆(λ)) = 0 satisfy | arg(λ)| > π/2m.
∆(s) is called the characteristic matrix and det(∆(λ))
is called the characteristic polynomial of systems (10),
(Petras 2011).

Theorem 2. The equilibrium point E∗ is asymptotically
stable if and only if the instability measure

ρ = (π/2m)−min
i
{arg(λi)}, (12)

is strictly negative, i.e., ρ < 0. Where λi’s are roots of
equations: det(diag([λmq1 λmq2 . . . λmqn ])−∂f/∂x|x=E∗) =
0, ∀E∗ ∈ Ω (Petras 2011, Munoz-Pacheco et al. 2018).

If ρ = 0 have the geometric multiplicity one, then E∗ is
stable.

Remark If ρ is positive, then E∗ is unstable and the sys-
tem may exhibit chaotic behavior (Petras 2011, Munoz-
Pacheco et al. 2018).

3. MODEL DESCRIPTIONS

Recently, (Munoz-Pacheco et al. 2018) proposed a new
fractional order chaotic system with a variable double-
scroll attractor on a line, as follows

Dq1x= z + x(y − a),

Dq2y = 1− |x|, (13)

Dq3z =−x− z.

Where (x, y, z) are the state variables, a is a real parame-
ter, and (q1, q2, q3) ∈ [0, 1] are the fractional orders. In the
fractional order chaotic system (13) the Caputo definition
(2) has been used. In order to find the numerical solu-
tions of fractional order system (13), we have applied the
Adams-Bashforth-Moulton predictor-corrector algortihm
of subsection 2.1

In order to obtain equilibrium points, keep the left-hand
side of system (13) be zero and then the system’s equation
can be written as

0 = z + x(y − a),

0 = 1− |x|, (14)

0 =−x− z.

The new fractional order system has only two unstable
equilibrium points, which are denoted by E∗ =(x∗, y∗, z∗),
Therefore E1 = (1, 1+a,−1) and E2 = (−1, 1+a, 1). From
(14) we observed the relation of the parameter a with
the equilibrium point i.e., when the value of a is a real
value, a chaotic attractor is observed with propagation
on a line. For investigating the stability and type of these
two equilibrium points, we consider the Jacobian matrix
corresponding to different equilibria and calculate their
eigenvalues. The Jacobian matrix of system (13) is given
by

J =

(

y∗ − a x∗ 1
−sgn(x∗) 0 0

−1 0 −1

)

.

The eigenvalues as shown in Table 1. According to Theo-
rem 1 the fractional order system is asymptotically stable
if q < 0.8180.

Table 1. Eigenvalues of the Jacobian matrix
for equilibria E1 and E2

E1 E2

λ1 −0.6823 -0.6823

λ2 0.3412 + 1.1615i 0.3412 + 1.1615i

λ3 0.3412− 1.1615i 0.3412− 1.1615i

According to Theorem 1 in previous section and by setting
m = 100, the eigenvalues λi are attained as follows

det(diag(λmq1 , (λmq12, . . . , (λmqn)))− J |x∗) = (15)

λ255 − λ170 + λ168 + λ87 + 1 = 0. (16)

As was demonstrated in (Petras 2011), only roots in the
first Riemann’s sheet satisfy −π/m < φ < π/m with
φ = |arg(λ)| and therefore have a physical meaning. Roots
with |arg(λ)| > π/m are not physical.

By solving (15), λ1,2 = 1.0021± 0.0152j with φ = 0.0152
are the only roots satisfying −0.0314 < φ < 0.0314.

In order to generate chaos in system (13), the instability
measure defined by Theorem 2. The instability measure is
ρ = 0.0004 for λ1,2, and therefore the proposed fractional
order system (13) satisfies the necessary condition for
exhibiting a double-scroll chaotic attractor. Additionally,
the minimum fractional order, where the chaotic behavior
can be found, is q > 0.818. The phase portraits of chaotic
incommensurate fractional system with a variable double-
scroll attractor on a line (13) are shown in Fig 1. When
q1 = 0.85, q2 = 0.83, q3 = 0.87, and setting different
values of parameter a like a = −8, a = −4, a = 0, and
a = 4. Also, the double-scroll chaotic attractor is only
observed when the system (13) is defined in the fractional
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Fig. 1. Chaotic attractor of incommensurate fractional-
order system with q1 = 0.85, q2 = 0.83, q3 = 0.87,
and different values of parameter a = −8, a = −4,
a = 0, and a = 4.

Fig. 2. Periodic attractor of incommensurate fractional-
order system with q1 = 1, q2 = 1, q3 = 1, and
different values of parameter a = −8, a = −4, a = 0,
and a = 4.

order domain. Conversely, a periodic attractor is obtained
for integer-order as shown in Fig. 2. Additionally, this
dynamics is also verified by computing the Lyapunov
spectrum since a positive Lyapunov exponent is a firm
of chaos. Figure 3 shows the Lyapunov spectrum for
system. The chaotic behavior is valid for fractional orders
qi ∈ [0.818, 0.985].

4. SYNCHRONIZATION BETWEEN
INCOMMENSURATE FRACTIONAL ORDER

SYSTEMS WITH ATTRACTORS PROPAGATING
ON A LINE

In this section we study the synchronization between
incommensurate fractional order systems. Assuming that
the fractional order system (13) with a1 = 0 drives the
fractional order system (13) with a2 = 4, we define the
drive and response system as follows
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Fig. 3. Lyapunov exponent spectrum of the system (13).

Dq1x1 = z1 + x1(y1 − a1),

Dq2y1 = 1− |x1|, (17)

Dq3z1 =−x1 − z1,

and

Dq1x2 = z2 + x2(y2 − a2) + u1,

Dq2y2 = 1− |x2|+ u2, (18)

Dq3z2 =−x2 − z2 + u3,

The unknown terms u1, u2, u3 in (18) are active control
functions to be determined. Define the error functions as

e1 = x2 − x1,

e2 = y2 − y1 (19)

e3 = z2 − z1.

Equation (19) together with (17) and (18) yields the error
system

Dq1e1 = z2 + x2(y2 − a2)− z1 − x1(y1 − a1) + u1,

Dq2e2 =−|x2|+ |x1|+ u2, (20)

Dq3e3 =−x2 − z2 + x1 + z1 + u1.

We define active control functions ui as

u1 = V1 − z2 − x2(y2 − a2) + z1 + x1(y1 − a1),

u2 = V2 + |x2| − |x1|, (21)

u3 = V3 + x2 + z2 − x1 − z1.

The terms Vi are linear functions of the error terms ei(t)
given by V1 = −e1, V2 = −e2 and V3 = −e3. With the
choice of ui given by (21) the error system (20) becomes

Dq1e1 =−e1,

Dq2e2 =−e2, (22)

Dq3e3 =−e3.

It is clear from the stability analysis in section 2 that the
system (22) is asymptotically stable. Hence we get the
required synchronization.
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5. SIMULATIONS AND RESULTS

Numerical simulations are given to visualize the synchro-
nization between considered systems and to verify the
effectiveness of the proposed method. Adams-Bashforth-
Moulton method is used to solve the fractional order
differential equations with time step size 0.015. Param-
eters of the driven system are taken as q1 = 0.85,
q2 = 0.83, q3 = 0.87, a = 0 and response system
q1 = 0.85, q2 = 0.83, q3 = 0.87, a = 4. The initial
conditions x1(0) = 2, y1(0) = 2, z1(0) = 2 and x2(0) =
3, y2(0) = 4, z2(0) = 3 respectively. The initial error
is [e1(t), e2(t), e3(t)]

T = [1, 2, 1]T . The graphical result
of the phase portrait of system (17) and (18) without
applying active control approach is presented in Fig. 4.
Figure 5 displays the phase portraits of drive system
(17) and response system (18) applying active control ap-
proach. The graphical presentation of the synchronization
through error analysis is depicted in Fig. 6. In Fig. 7-9, we
present the synchronization in the phase space for each
state-variables x1 − x2, y1 − y2, z1 − z2.

Fig. 4. Phase portraits of the fractional order system
with q1 = 0.85, q2 = 0.83, q3 = 0.87, a = 0
for the blue attractor and q1 = 0.85, q2 = 0.83,
q3 = 0.87, a = 4 for the orange attractor. The
initial conditions x1(0) = 2, y1(0) = 2, z1(0) = 2 and
x2(0) = 3, y2(0) = 4, z2(0) = 3 respectively. (Color
online)

6. CONCLUSION

Based on active control theory, the synchronization be-
tween incommensurate fractional order systems with a
double-scroll attractor propagates on a line was presented.
Lyapunov exponent spectrum, phase portraits, instability
measure and fractional order stability proved the chaos
generation of the considered system. Numerical simula-
tions proved the effectiveness of the proposed method.
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