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Abstract: Chaotic oscillators have been implemented using embedded systems like field-
programmable gate arrays (FPGAs). Their applications in secure communications require the
synchronization of them in a master-slave topology, for instance. However, this is not a trivial
task because one must guarantee a low synchronization error that depends on the selection of
an appropriate step-size of a numerical method. That way, this paper describes how to select
the step-size for a successful simulation and how to implement the master-slave synchronization
of two chaotic oscillators using FPGAs. We discuss details on the numerical simulation of the
synchronization using the seminal work of Pecora & Carroll and also discuss FPGA issues.
Finally, we implement a chaotic secure communication system to show that synchronization
methods with high error produce loss of data, as shown by the transmission and reception of
a color image using two chaotic oscillators.

Keywords: Chaos, synchronization, FPGA, secure communication system, numerical method,
image processing.

1. INTRODUCTION

Chaotic oscillators have been implemented with differ-
ent electronic devices and nowadays with embedded sys-
tems like field-programmable gate arrays (FPGAs) Tlelo-
Cuautle et al. (2016). For instance, several chaotic os-
cillators introduced in Sprott (2003), are simulated and
analyzed to generate their bifurcation diagrams, compute
their Lyapunov exponents, fractal dimension and entropy.
Those chaotic oscillators can be synchronized and im-
plemented using FPGAs. However, one must guarantee
that chaotic behavior will not be suppressed and that the
synchronization error is low to avoid loss of data.

Among the currently available synchronization methods,
this paper is based on the seminal work of Pecora &
Carroll Pecora and Carroll (1990) in order to highlight
that the synchronization error generates loss of data when
implementing a secure communication system. In this
manner, the cases of study are two Sprott’s chaotic os-
cillators whose nonlinear functions are the multiplication
of two state variables or a squared state variable. They
are simulated using the simple Forward Euler method,

⋆ This work is partially supported by CONACyT under project
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from which we detail the FPGA-based implementation
as already shown in Tlelo-Cuautle et al. (2016), where
one can find applications to random number generators,
neural networks and secure communications.

Chaotic oscillators have challenges in the development of
new security applications. For example, as mentioned in
Alam et al. (2018), chaotic circuit-based cryptography is a
promising candidate to overcome the deficiency of conven-
tional cryptography. Chaotic circuits are high sensitive to
initial conditions and parameters, so that their behavior
becomes difficult to predict and the phenomena can be
compared with key-dependent confusion and diffusion in
cryptography. In fact, generating the same cipher key in
both transmitter and receiver is a challenge to guarantee
security. This issue is highlighted herein by showing that
a high synchronization error produces loss of data due to
the bad selection of the step-size in a numerical method
and the length of the digital word or computer arithmetic
in an FPGA.

The development of accurate synchronized chaotic sys-
tems is quite useful for industrial Internet of Things,
as shown in Wang et al. (2018). In general, for chaotic
security systems, the design of the synchronization stage
and the selection of appropriate parameters of the driv-
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ing and response systems, are challenges to ensure the
stability and minimization of the synchronization error.
The following section summarizes the synchronization of
two chaotic oscillators in a master-slave topology applying
the seminal work of Pecora & Carroll. Afterwards, we
detail the FPGA-based implementation and finally dis-
cuss issues that produce loss of data in a chaotic secure
communication system.

2. SYNCHRONIZATION IN CHAOTIC SYSTEMS

The Pecora & Carroll synchronization scheme has of-
ten been described as a ”master-slave” system topol-
ogy. Essentially, this topology consists of two identical
chaotic systems Pecora and Carroll (1998). Therefore,
both chaotic systems are described by the same set of
differential equations, with the same parameter values,
but they can have different initial conditions. For syn-
chronization to occur, the output from, at least, one of the
coupled differential equations of the first chaotic system
must be made available to the second chaotic system, as
sketched in Fig. 1 Jovic (2011).

Fig. 1. The block diagram of the master−slave chaotic
synchronization scheme using the state variable x as
the driving signal.

To perform the synchronization it is possible to take any
of the three variables x, y, z as driving, from the master
system. The recommendation to the correct selection of
the driver variable is the observation and determination
of the influence that it has over the differential equations.
Unlike other kind of synchronization, the method intro-
duced by Pecora & Carroll is slow, because oscillation of
the slave has to wait the output of the master. Although,
the time iteration will increase at double.

Having defined the topology for the synchronization as
the master-slave system in Fig. 1, the pattern that in-
dicates that the system will be synchronized are the
eigenvalues of the Jacobian of the slave system. If the
eigenvalues of the real parts are negative, synchronization
will be successful. This is a necessary condition but not
enough since there may be a system with eigenvalues
equal to zero and synchronization can occur.

The synchronization method proposed by Pecora & Car-
roll is tested herein by using two chaotic systems from

Sprott’s Collection Sprott (1994). The Sprott’s case G is
described in (1) and case L in (2), respectively,

˙xm = 0.4xm + zm
˙ym = xmzm − ym
˙zm = −xm + ym

(1)

˙xm = ym + 3.9zm
˙ym = 0.9x2

m − ym
˙zm = 1− xm

(2)

where m denotes the master block from Fig. 1. In this
cases we consider the state variable x as drive because it
is the variable that is present throughout the system and
has an influence on the state variables y and z. The slave
systems for both cases of Sprott are described by (3) and
(4), respectively.

ẏs = xmzs − ys
żs = −xm + ys

(3)

ẏs = 0.9x2
m − ys

żs = 1− xm
(4)

To determine the step-size for the numerical simulation of
the synchronization, one needs to evaluate the Jacobian of
the slave system, which in for Sprott’s case G it becomes,

Jacobian (JG) =

[

−1 xm

1 0

]

.

According to the equilibrium point, we have the value of
x=2 and it is replaced in the Jacobian.

Jacobian (JG) =

[

−1 2
1 0

]

The eigenvalues of Sprott’s case G are: λ1,2 = -0.5±1.32j,
as one sees {Re} < 0. Similarly, it is solved for the Sprott’s
case L but in this case λ1,2 = 0, so that {Re} = 0. Con-
sidering that these roots have a real and negative part, is
very probable that the system can be synchronized.

Realizing the simulation of the synchronization using
MATLABTM but programming the numerical method
known as forward Euler, the solution of the system of
differential equations is computed using a step size h =
0.01. The simulation results in this case are shown in Fig.
2. Figure 3 shows the synchronization errors obtained for
both Sprott’s cases. It can be observed that there exist
a big error thus indicating that synchronization does not
exist.

Changing the step-size the synchronization may occur.
For example, reducing the step size 100 times, i.e. from
0.01 to 0.0001, the synchronization for both Sprott’s
cases occurs as shown in Fig. 4. In this case one can
infer that a reduction in the value of the step size
leads to a reduction in the synchronization error, which
decreases in a similar amount, i.e. three magnitude orders,
as shown in Fig. 5. Compared to the error shown in
Fig. 3, it really diminished three orders. However, still
the synchronization error is not as good as by using
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Fig. 2. Phase plane diagrams for the master and slave
state variables: (a) y and (b) z for the Sprott’s case
G, and (c) y and (d) z for the Sprott’s case L, both
using a step size of 0.01.
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Fig. 3. Magnitude of the synchronization error using as
drive x with step size 0.01 for the Sprott’s cases: (a)
G and (b) L.

other synchronization methods like the one based on

Hamiltonian forms and observer approach applied in
Tlelo-Cuautle et al. (2016).
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Fig. 4. Phase plane diagrams for the master and slave
state variables: (a) y and (b) z for the Sprott’s case
G, and (c) y and (d) z for the Sprott’s case L, both
using a step size of 0.0001.

3. FPGA-BASED IMPLEMENTATION

After performing the numerical simulation, the FPGA-
based implementation of the chaotic oscillators requires
the use of digital blocks that can be described by hardware
description languages as Verilog or VHDL, and then syn-
thesized into an FPGA. The same occurs for the master-
slave system that performs the synchronization of two dy-
namical systems. The experiments were performed using
the FPGA ”Cyclone IV GXEP4CGX150DF31C7 ” from
Altera. The experimental observation of the chaotic at-
tractors requires the use of a digital-to-analog converter,
which have resolution of 16 bits.

The VHDL description of the synchronized system in the
master-slave topology for Sprott’s case G is performed
as shown in Fig. 6. More details can be found in Tlelo-
Cuautle et al. (2016). Those descriptions are synthesized
into the FPGA and then they are observed by a Lecroy’s
oscilloscope as shown in Figs. 7 and 8. Recall that
the synchronization is performed according to Pecora &
Carrol.

The resources used in the Altera FPGA to the imple-
mentation of the chaotic systems synchronization based
on Sprott’s cases G and L, are shown in Table 1 and
obtained from the synthesizer of Quartus II software. It
is observed that the Forward-Euler discretization method
uses less resources in the FPGA than 4th-order Runge-
Kutta (RK4), more details can be found in Boubaker and
Jafari (2018). In addition, the first method is enough to
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Fig. 5. Magnitude of the synchronization error using as
drive x with step size 0.0001 for the Sprott’s cases:
(a) G and (b) L.

Fig. 6. VHDL description of the main blocks to evaluate
the equations of the Sprott’s case G for the state
variables xi+1, yi+1, zi+1 from (1).

solve the chaotic systems and generate chaos. The last col-
umn presents the time occupied by an iteration, obtained
from the multiplication of the maximum frequency and
the number of cycles.

(a) (b)

Fig. 7. Experimental observation of the Sprott’s attrac-
tors in their phase-space portraits (x(t) vs. y(t)) with
the following initial conditions: Sprott case G using
xm(0) = 0.1, ym(0) = 0 and zm(0) = 0 and Sprott
case L using xs(0) = 0.1, ys(0) = 0 and zs(0) = 0,
respectively. In the oscilloscope channel A and B: 1
Volt/Div.

(a) (b)

(c) (d)

Fig. 8. Synchronization of the master-slave topologies:
Sprott G (a) ym(t) vs. ys(t), (b) zm(t) vs. zs(t), and
Sprott L (c) ym(t) vs. ys(t) and (d) zm(t) vs. zs(t).
In the oscilloscope channel A and B: 1 Volt/Div.

4. APPLICATION TO IMAGE TRANSMISSION AND
DISCUSSION

The synchronization applying the method of Pecora &
Carroll Pecora and Carroll (1990) makes the slave able to
follow the master oscillator. If this occurs, then one can
implement a chaotic secure communication system as de-
scribed in Tlelo-Cuautle et al. (2016), which basically can
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Table 1. Resources associated to the Pecora-
Carroll synchronization implementation
using the FPGA Ciclone IV GX-

EP4CGX150DF31C7

Chaotic
system

Numerical
method

Logic
elements

Registers
Maximun
frequency
(MHz)

Cicles for
iteration

Iteration
latency
(ns)

Case G
Forward-Euler 1096 751 111.31 20 180

RK4 3131 1763 108.31 36 332

Case L
Forward-Euler 1108 772 113.6 22 194

RK4 3350 1919 115.83 40 345

be a system that transmit contaminated data (addition
of chaos to the original image) and then the information
is recovered by eliminating chaos (subtraction of chaos
to the chaotic channel), also known as masking data,
like audio, image or video. This chaotic communication
system is sketched in Fig. 9 Jovic (2011).

The process begin masking the original data (in this
case an image) with the chaotic drive (master) of the
transmitter system; then, the resultant contaminated
signal with chaos travels through a secure medium or
channel to the slave system, where the chaotic receiver
unmask the data to obtain or recover the original image.
If perfect synchronization is performed then the original
and the recovered images must be exactly equal, while
ideally the correlation between the chaotic channel and
the image should be zero.

Fig. 9. Scheme for chaotic secure communications.

Figures 10 and 11 show experimental results of the appli-
cation of the chaotic secure communication system using
both cases of Sprott, namely: case G and L described
above. In both cases, the original or the image being
transmitted is observed a the left side of the Figures.
This image is introduced into the FPGA from a personal
computer applying the serial communication protocol RS-
232 with a speed of 128,000 Baud, but any protocol can be
used. The masking of the image with the chaotic informa-
tion generates the chaotic channel data that is shown in
the middle of the Figures. As one sees, the original image
is almost well encrypted. Finally, in the receiver stage,
the chaos generated by the slave oscillator is subtracted
from the chaotic channel and then the recovered image
is shown at the rigth side of the images in Figs. 10 and
11. The recovered image is again send to the personal
computer to observe the data.

As one can see in the recovered images using both
cases of Sprott, some information is lost due to the

Fig. 10. Master−Slave Synchronization of the Sprott G
System.

Fig. 11. Master−Slave Synchronization of the Sprott L
System.

synchronization error, which is not as small as required.
In fact, the magnitude of the synchronization error using
as drive x with step size 0.0001 for the Sprott’s cases
G and L shown in 5, is not constant, so that perfect
synchronization does not occur. This is not a surprise
because the method proposed by Pecora & Carroll was
the very first one and the salve system is reduced to
two differential equations. This limitation produces such
an error as demonstrated herein even for a more small
step size. Another source of error in the FPGA-based
implementation of a chaotic secure communication system
is the one caused by the numerical integration method.
As one knows forward Euler is the simplest numerical
method and it has the biggest error if the step size is not
the appropriate one. Therefore, in a bigger system as the
whole synchronization, if the step size is not the good one,
then the numerical error increases. Another issue is that
the FPGA needs to define the computer arithmetic, which
is not infinite and then the selection of a small digital word
may also increase the error in both, the chaotic oscillator
and the synchronization.

Other problem that one must take into account when
observing the experimental data in an oscilloscope, is the
use of a digital-to-analog converter, which in the majority
of cases it is of 16 bits in resolution. Therefore, if one uses
fixed-point notation of 32 bits for processing the chaotic
signals and then in the secure communication system,
then 16 bits may be loss when using the digital-to-analog
converter. In this manner, the synchronization error still
having a step size lower than 0.0001, may not be avoided
due to the limitations in both the computer arithmetic
in the FPGA and the resolution of the digital-to-analog
converter. In other words, the truncation on the number
of bits in the FPGA and its connection to the digital-to-
analog converter is insufficient to get a successful recovery
of the data free of errors. The solution is the selection of
another synchronization method that be able to reduce
the synchronization error.
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5. CONCLUSION

This paper showed the application of the synchronization
method introduced in the seminal work of Pecora &
Carrol to two chaotic oscillators taken from Sprott’s
cases. Simulation results were presented with different
step sizes using the forward Euler numerical method, thus
concluding that a low step size leads to better results. The
whole synchronization method was implemented in an
FPGA and then a chaotic secure communication system
was developed and used to test the transmission of an
image. We highlighted that the synchronization method
generates and error that affects the transmission of data
in a chaotic system and that to avoid loss of information
another synchronization method must be used to reduce
numerical errors.
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