
Quadrotor Control Simulation with

Multirate Integration Methods ⋆

Antonio Matus-Vargas ∗ Gustavo Rodriguez-Gomez ∗

Jose Martinez-Carranza ∗,∗∗

∗ Instituto Nacional de Astrof́ısica, Óptica y Electrónica, Puebla, PUE,
72840 Mexico (e-mail: grrodrig,matusv@inaoep.mx).

∗∗ University of Bristol, Bristol, BS8 1UB UK (e-mail:
carranza@inaoep.mx)

Abstract: In this paper, we apply multirate integration methods for quadrotor simulation.
Models described by ordinary differential equations can be separated by slow and fast dynamics
that can be solved by numerical strategies tailored to such dynamics. Multirate methods take
advantage of this fact to integrate the slow subsystem with a larger step than the fast one,
which saves computational effort. We compare execution times and errors of the multirate
strategies with the traditional Runge-Kutta method. Moreover, we deploy a multirate scheme
in a control application and present simulation results.
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1. INTRODUCTION

Currently, quadcopters are used in a wide range of ap-
plications. Some of these applications require to contin-
uously compute calculations involving the quadcopter’s
model to adjust some parameters, for instance, those
parameters involved in the attitude control. In this case,
the demand for computational resources increases signif-
icantly.

In general, the dynamic behavior of the Ordinary Dif-
ferential Equations (ODEs) of the quadrotor can be de-
composed in a small set of fast components and a set
of slow components. Traditional numerical techniques fail
to efficiently approximate the solution since the fast dy-
namics restricts the integration step for the slow compo-
nents. Using special integration strategies, such as mul-
tirate integration methods, allows to associate a numeric
method and a different integration step to each dynamics
of the quadrotor; the fast components are associated with
the smallest integration step. Execution time saving is
achieved because the greater number of equations con-
tained in the slow dynamics are integrated fewer times
than the fast system.

Multirate integration methods are widely used in real-
time simulation (Gear, 1981), modular dynamic system
simulation (Rükgauer and Schiehlen, 1998), and electrical
network simulation (Günther and Rentrop, 1993). To
the authors’ knowledge, this type of scheme has not
been applied in quadcopter simulation. In this work, we
focus on applying this special numerical technique to the

⋆ This work was supported by CONACyT.

model of the quadrotor to attain highly efficient numerical
simulations.

We explore the dynamic behavior of the quadrotor to
propose a partition of the fast and slow variables. The
partition considers four fast state variables and eight slow
state variables. In this research, a multirate strategy is
applied to the nonlinear model of the quadrotor, which is
described by twelve ODEs.

The applied multirate strategy consists of integrating the
fast and slow dynamics with the explicit Euler method.
We employ three techniques for implementing the mul-
tirate strategy: the first interpolates the state variables
from the slow to the fast system, the second and the third
use forward and backward information, respectively.

Through a set of simulations, we compare the efficiency of
the multirate technique with a traditional implementation
of the fourth-order Runge-Kutta. The saving in execution
time is up to 82% with respect to the traditional strategy.
Furthermore, we deploy the multirate model in a control
application and evaluate the system in a realistic simula-
tion.

The structure of the article is the following: Section 2
presents the literature considering the application of
multirate integration methods. The quadrotor model is
described in Section 3. In Section 4, we explore the
dynamics of the quadrotor and propose a partitioning
scheme. We evaluate the multirate methods in Section 5.
Section 6 describes the application and presents the
results. Lastly, conclusions are given in Section 7.
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2. RELATED WORK

Application areas of multirate integration methods in-
clude electrical network simulation (Bartel and Günther,
2002), robotic systems (Esposito and Kumar, 2001), and
multibody systems (Arnold, 2007). Besides, these integra-
tion strategies are widely used in the real-time simulation
of full scope power plants and flight simulators.

Mauritis et al. (1998) adopted multirate integration
methods to approximate the solution of the convection-
dominated flow problem. In that work, some theoretical
results about the stability and accuracy of these type of
methods are proved.

Multirate integration has been used in circuit simula-
tions (van Eijndhoven et al., 1990). They partitioned
the system equations in one large sparse set of network
equations and many small sets of component equations.
The integration time step of the fast dynamic is assigned
independently and individually for each component. Also,
they use piece-wise linear relation for all nonlinear equa-
tions.

Thiele et al. (2014) implemented in the environment Mod-
elica a strategy that allows the modeler to use multirate
integration methods. They used interpolation polynomial
extrapolation to couple the slow dynamics with the fast
dynamics.

3. QUADROTOR MODEL

Fig. 1. Coordinate frames definition.

The mathematical model of the quadrotor can be deduced
by introducing a world-fixed coordinate system {W}
and a body-fixed coordinate system {B}, see Fig. 1.
The nonlinear model of the quadrotor can be obtained
using the Newton-Euler equations or the Euler-Lagrange
formalism (Bouabdallah and Siegwart, 2007). We have
chosen a model that describes the position and orientation
of the body frame with respect to the world frame. This
model consists of the following 12 ODEs:

ẋ = vx
ẏ = vy
ż = vz
v̇x = u1(sinψ sinφ+ cosψ sin θ cosφ)/m− cdvx
v̇y = u1(sinψ sin θ cosφ− cosψ sinφ)/m− cdvy
v̇z = u1 cos θ cosφ/m− g − cdvz

φ̇ = p+ r cosφ tan θ + q sinφ tan θ

θ̇ = q cosφ− r sinφ

ψ̇ = (r cosφ+ q sinφ)/ cos θ

ṗ = [u2 + qr(Iyy − Izz)]/Ixx
q̇ = [u3 + pr(Izz − Ixx)]/Iyy
ṙ = [u4 + pq(Ixx − Iyy)]/Izz

, (1)

where s = [x, y, z]T is the position vector from the
origin of the body frame to the origin of the world
frame, [vx, vy, vz]

T is the velocity of the vehicle in the
world frame, η = [φ, θ, ψ]T is the vector of Euler angles
(roll, pitch, and yaw), ω = [p, q, r]T is the angular
velocity in the body frame, m is the mass of the vehicle,
I = diag(Ixx, Iyy, Izz) is the inertia matrix, cd is the
normalized drag coefficient, g is the gravity acceleration,
and [u1, u2, u3, u4]

T is the control input vector. The
inclusion of the drag coefficient is justified for high speed
and even moderate flight regimes (Svacha et al., 2017).

The values of the model parameters used in this work are
presented in Table 1. These values approximately corre-
spond to the parameters of a Parrot Bebop 2 quadcopter.
Throughout Sections 4 and 5, it is assumed that control
inputs come from a stable cascade control scheme of the
form presented in Matus-Vargas et al. (2019b), for which
parameters are not shown for the sake of brevity.

Table 1. Model parameter values

Parameter Value

m 0.4875 kg
Ixx 0.00223 kg m2

Iyy 0.00299 kg m2

Izz 0.00480 kg m2

cd 0.1 s−1

g 9.81 m s−2

4. QUADROTOR MODEL PARTITIONING

In this section, we shall provide a discussion of the quadro-
tor model that will aid in the design of the partitioning
scheme for the multirate integration strategy.

4.1 Heuristic Analysis

In the design of control systems for MAVs, a common
assumption is the time-scale separation between the posi-
tion and attitude dynamics, which correspond to the slow
and fast time-scale of the vehicle model (Bertrand et al.,
2008). If we further separate the attitude dynamics, we
can naturally claim that the angular velocity vector has
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the fastest time-scale of the model. Rating the fastness of
the components of this vector can be done by looking at
the values of the moment of inertia about each axis. The
bigger the moment of inertia, the slower the dynamics.
Consequently, sorting the components from the fastest to
the slowest, we get q, p, and r.

The partition could be formed with only p and q. Never-
theless, research has shown that there exists a connection
between the coupling of the slow and fast subsystems
and the stability of multirate methods. In particular,
the multirate stability region collapses when the coupling
increases (Rodriguez-Gomez et al., 2004). Taking this
information into account and noting that vz remains close
to zero in normal operation, we also consider as fast the
variables vx and vy.

Variables vx and vy are expressed in the world coordinate
system, whereas p and q in the body-fixed coordinate
system. Intuitively, this means that r couples the afore-
mentioned variables. We could include r as in the fast
subsystem, but we would reduce the saving in execution
time. Instead, we opt for taking vx, vy, q, and r as
the fast subsystem. This arrangement provides a good
trade-off between the execution time saving and coupling
reduction.

To try to confirm that such a partition might be possible,
we can check the eigenvalues of the original system across
the solution trajectory. In Fig. 2, we have plotted the
eigenvalues of the system for six different times across
the solution. There is a gap of approximately five units
along the real axis between the most negative eigenvalues
and the ones that concentrate near the imaginary axis.
This provides evidence that the original system possesses
a fast time-scale and a few slow time-scales.

Fig. 2. Eigenvalues of the original system for different
times across the solution.

5. MULTIRATE EVALUATION

We are interested in evaluating the performance of the
multirate method applied to the quadrotor model. For
that, we implemented the multirate integration method
in C++. Also, we utilized a C++ version of the fixed-
step fourth-order Runge-Kutta (RK4) as the baseline.
The integration routines were executed on a laptop that

is equipped with an Intel Core i7-4710HQ processor and
a DDR3-1600 memory module.

We chose to evaluate two main indicators, the error
and the execution time. The latter was estimated with
the chrono library. The former was computed using the
relative error formula taking as the “true” values the
results of the RK4 method. The outcomes for the time
and the error were obtained from separate tests since the
output stream was disabled for the time tests.

The baseline (RK4) trajectories were obtained using
a time step of 0.001 s. For the multirate variant, we
set the multirate factor to the lowest possible value,
which is two, and search for the largest time step in the
set {0.10, 0.05, 0.04, 0.02, 0.01} such that the maximum
relative error of the position trajectories is below 10%,
which is a reasonable selection for most indoor flights.
We use this setup as a starting point to collect a total
of four sets of results which are obtained by doubling
the multirate factor and halving the time step. The
same initial and final times are used for all integration
procedures, ti = 0 and tf = 5 s. For the execution times,
we perform 10 runs keeping the same setup and then
obtain the average.

In summary, we are going to evaluate the multirate parti-
tion of the model with three numerical strategies: interpo-
lation, forward information, and backward information.
For each numerical strategy, four tests are going to be
reported, totaling 12 cases.

Numeric results for our partition appear in Table 2. The
partition was created by identifying the fast variables and
their coupling with other variables. Here, the fast subsys-
tem is formed with four variables: vx, vy, q, and r; the
remaining variables are assigned to the slow subsystem.

Table 2. Results for the multirate partition.

# Type Step [s]
MR
factor

Max. pos.
rel. error

Avg. exec.
time [µs]

1 Interp. 0.04 2 9.47% 316.9
2 0.04 4 19.92% 528.5
3 0.02 2 8.33% 600.5
4 0.02 4 7.65% 1016.5
5 Forw. 0.10 2 15.97% 147.1
6 0.10 4 8.73% 215.5
7 0.05 2 6.89% 251.9
8 0.05 4 4.07% 376.5
9 Backw. 0.04 2 16.71% 290.3
10 0.04 4 13.23% 460.6
11 0.02 2 6.64% 561.2
12 0.02 4 5.39% 930.7

From the table, it can be seen that, excepting the first
interpolation pair, doubling the multirate factor decreases
the error while halving the time step reduces the error for
all strategies. In the table, the best results are achieved
with the forward information strategy since errors under
10% are achieved with smaller average execution times
compared to the rest. The best configuration for this
partition is deemed to be the seventh test. This configu-
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ration offers the best trade-off between error magnitude
and average execution time.

To provide a qualitative comparison between the baseline
and the multirate solutions, we will plot the variable with
the greatest error resulting from the multirate solution
and the same variable from the baseline solution. To
find such variable, we first obtain the dimensionless with
the min-max normalization method for both integration
methods. Then, we compute the Mean Absolute Error
(MAE) of each state variable. Finally, the variable to be
plotted is identified as the one with maximum MAE.

We found that the variable with maximum MAE is the
third component of the angular velocity, r. For reference,
the value of the MAE was 0.0108 rad/s. The trajectories
of this variable resulting from the baseline and the best
multirate configuration are shown in Fig. 3. Good quali-
tative behavior is observed.

Fig. 3. Solution trajectories of the angular velocity r;
fourth order Runge-Kutta method (solid), and mul-
tirate method (dashed).

For comparison purposes, we have collected execution
times of the baseline and the multirate approach under
similar conditions. Recalling, the time step of the baseline
is 0.001 s, so we set the fast time step of the multirate
method to that same duration. Similar to the stages of the
RK4 method, we selected the multirate factor to be equals
to four. The initial and final times were the same as in
previous tests. A total of twenty tests were performed for
each integration method. The results are summarized in
Fig. 4. The multirate method generates an improvement
of about 82% in execution time while maintaining the
relative error of the position under 5%.

6. APPLICATION

Given that we have found that the multirate method
with forwards information is the most suitable for our
quadrotor mathematical model, we deployed this numer-
ical integration scheme in a control application.

6.1 Implementation Details

We are particularly interested in developing a position
controller for a quadcopter. This controller runs as the

Fig. 4. Arithmetic mean with error bars of the execution
times for the fourth order Runge-Kutta method
(RK4), the multirate method (MR).

outer loop, while a low-level attitude controller runs as
the inner loop. We consider that the vehicle is equipped
with an onboard monocular camera. In addition to the
RGB image, we can construct a synthetic depth image by
assuming that the ground is flat and knowing the height
and angle of the camera (Rojas-Perez and Martinez-
Carranza, 2015). With this information, we are in a
position to use the RGB-D version of the ORB-SLAM2
algorithm to estimate the pose of the camera, which will
be the feedback of the position controller.

The SLAM system produces an estimate of the pose,
in essence, position and orientation. However, the state
space of the model contains also linear and angular veloc-
ities. We estimate these velocities by applying the first-
order divided difference formula. Specifically, linear ve-
locities are computed from measurements of the position,
and angular velocities are obtained from measurements of
the Euler angles assuming that ω ≈ η̇, which is valid for
small-angle incursions.

The process of constructing the synthetic depth image
after the reception of the RGB image causes a drop
in the output frequency of the SLAM system. A drop
in measurement frequency would limit the effectiveness
of the controller. To overcome this issue, we will make
use of the multirate model to make predictions of the
vehicle’s state and use them as feedback. We will also take
advantage of the model to predict the current state with
the model given a delayed measurement. The particular
objective is to run the outer loop at a higher frequency
than the SLAM system.

To use the multirate model, we need to determine the
model integration time for state prediction when we get
a measurement, ∆tm. After we predict the state from the
measurement, the model will be integrated afterward at
fixed steps with the same duration of the control loop
period to fill the gaps until we get a new measurement,
we will refer to it as ∆tc. The other two parameters are the
integration time step to reach ∆tm and ∆tc, which will
be referred to as δtm and δtc, respectively. The parameter
∆tc is easily determined since it must be equal to the
control loop period.
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For the control of position, let us define ux, uy, uz, and uφ
as the global control signals for the x, y, z, and φ state
variables, respectively. Each control signal is a function
of the error defined generically as e∗ = ρ − γ, where ρ is
the reference signal and γ is the measurement. In order
to preserve the direction in global coordinates of the x-y
projection of the vector generated by the position control
signals, the transformation in (2) must be applied.

F =
√

u2x + u2y

ux,b = F cos

[

arctan

(

uy
ux

)

− ψ

]

uy,b = F sin

[

arctan

(

uy
ux

)

− ψ

]

. (2)

In addition, we consider that the previous outputs are
related to the references of the inner loop as follows:

φr = uy,b/αmax θr = uy,b/αmax

vz,r = uz/vz,max ψ̇r = uψ/ωmax
, (3)

where αmax is the maximum tilt angle, vz,max is the
maximum vertical speed, and ωmax is the maximum
rotation speed. In all tests, these parameters are set to
0.349 rad, 1 m/s, and 1.745 rad/s, respectively. The left
hand side of (3) represent the final commands that are
sent to the vehicle. In practice, the combination of (2)
and (3) has been proven effective for waypoint tracking
(Matus-Vargas et al., 2019a).

Finally, we estimate the input of the simulation model in
the following form:

u1 = m(g + kpredv̇z,r) u2 = Ixxkpredθ̈r

u3 = Iyykpredφ̈r u4 = Izzkpredψ̈r
, (4)

in which kpred is the feedback prediction factor, which
indicates to what extent the desired state will be achieved
during ∆tc. We fixed the value of kpred to 0.2 for all tests;
we found this value empirically to deal with overshoot.
Derivatives in (4) are estimated by applying the first-
order divided difference formula along with the signals
in (3).

6.2 Results

We evaluate the performance of our application in a realis-
tic simulation. For this purpose, we employed the Gazebo
robot simulator. Additionally, we used an implementation
of the AR.Drone 2.0 1 . This implementation allows us to
access to the video stream of the down-looking camera
and the ultrasonic sensor measurements. In the 3D en-
vironment, we load the drone and add texture to the
ground for the ORB-SLAM2 algorithm. In the simulation,

1 http://wiki.ros.org/tum_simulator

the pose measurement produced by the modified ORB-
SLAM2 is reduced to ∼15 Hz. Our objective is to run
the position control loop at 40 Hz, which means that
∆tc = 1/40 = 0.025 s. For simplicity, we consider that
δtm = δtc = 0.005 s. Since we are trying to evaluate our
application as close as possible to reality, we do not use
the pose measurements provided by Gazebo.

In order to test for any performance enhancement, we
shall compare the control performance without and with
the multirate model. To minimize the control influence,
we assign proportional controllers to ux, uy, uz, and uφ,
so that u∗ = k∗e∗, and tune their gains to achieve good
end-point tracking. Then, we further increase kx until we
noticed oscillations. For clearness, we focused on finding
differences in performance without and with the model
only on this axis. The final gains were assigned in the
following way: kx = 0.8, and ky = kz = kφ = 0.1.

The first set of tests was performed to find a suitable
value for ∆tm. In Fig. 5, we show the error response of
five simulations, where the “w/o model” legend refers to
the response without using the multirate model. In this
figure, it can be seen that the value of ∆tm = 0.15 s yields
the best result, so we keep this value for additional tests.

Fig. 5. Error responses of the x-axis for various values of
∆tm in simulation.

We proceed to evaluate formally any improvement on per-
formance with the use of the multirate model. For that,
we collect results from five simulations without and with
the model keeping ∆tm = 0.15 s. Using the trajectory
of the error, we compute both the Root Mean Square
Error (RMSE) and the Integral Absolute Error (IAE).
Results for these measures are summarized in Fig. 6. The
plot shows that there is a significant RMSE reduction
while using the model. Meanwhile, the reduction in the
IAE is not clear. To ratify these results, we perform a t-
test assuming unequal variances for each error measure.
The alternative hypothesis is that the error measure using
the model is significantly lower than the error measure
without using the model, and the null hypothesis is that
the error measure for both cases is equal. As expected,
we found that with 99.99% of confidence we reject the
null hypothesis and claim that the RMSE with the model
is significantly lower than the RMSE without the model.
Alternatively, we found that with 98.6% of confidence we
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Fig. 6. Box plots of the error measures obtained from
simulations.

reject the null hypothesis and claim that the IAE with
the model is significantly lower than the IAE without the
model. The use of the model improved the mean of the
RMSE in 12.27% and the mean of the IAE in 19.35%.

7. CONCLUSIONS

In this paper, we presented an effective multirate inte-
gration method for quadrotor simulation. To find it, we
proposed a partitioning scheme for the original model.
Furthermore, we explored three strategies to approximate
the values of the slow subsystem that are not in the
mesh: interpolation, backward information, and forward
information. In this exploration, we found evidence that
the forward information strategy had larger stability re-
gion than the other two strategies. In comparison to the
fourth-order Runge-Kutta method, the multirate method
was able to execute 82% faster with relative errors of the
position vector below 5%.

We deployed the multirate integration method with for-
wards information in a control application for quadrotors.
We tested the application in a simulated environment
and evaluated its performance in terms of the RMSE and
the IAE. Our system was able to reduce the first error
measure in 12.27% and the second in 19.35%.

Further research is needed. We plan to evaluate our sys-
tem in more complicated missions, for example, tracking
large references, waypoint following, and flying figures.
Besides, the interaction with other than proportional
action needs to be examined. Alternatively, the estima-
tion of derivatives can be enhanced by applying proper
filtering. Finally, our system needs to be evaluated in
experiments with a real quadcopter platform.
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