
Discrete Spatio-Temporal State Estimation

via Reduced Order Models of the Heat

Equation
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Abstract:
In this paper, we address the problem of estimating the value of a spatio-temporal signal
at locations where no information is available. The evolution of the signal is described by a
one-dimensional heat equation with a nonlinear source term. We use the Laplacian spectral
decomposition methodology to design an observer capable of estimating the value at both
discrete locations of the space and in discrete time. To show applicability of the methodology,
we consider the heat transfer in an injection mold represented by a homogeneous bar subject
to joule heating effect.
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1. INTRODUCTION

Injection molding has become a successful manufacturing
process for mass production due to the ability to scale
production of complex parts in large volume at a low
production cost. However, nowadays, injection molding
still has several limitations due to temperature, pressure,
injection speed, among others (Hwang, 2012; Goodship,
2004). The effect that the largest impact has on this
process is the mold temperature. Several characteristics
of the manufactured pieces depend on this variable, such
as the tensile modulus and the flexural modulus (Zheng
et al., 2017), the organization of the core layers during
crystallization (Jiang et al., 2015), particle orientation
and packing (Bianchi et al., 2019), and chemical foaming
of injection molded recycled polyethylene-terephthalate
and its porosity relation (Ronkay et al., 2017). Besides,
the polymer crystallinity increases at higher mold temper-
atures and, if the temperature is not controlled, crystal
growth can generate a defective piece (Renterghem et al.,
2018). Controlling and monitoring online the mold tem-
perature, which vary along both space and time, during
injection is therefore a very important issue.

To this end, (Mamoun and Tapan, 2015) propose a control
mold surface system where the temperature is controlled
by means of an automatic control algorithm and measured
by thermocouples. (Fan and Gao, 2006) present the design
and performance analysis of a sensor in which tempera-
ture and pressure are measured inside the mold cavity,

optimizing the mold temperature performance. (Demirel,
2017) propose the optimization of the mold surface in
order to control the injection and crystallization process
to improve the surface finish.

Progression of spatio-temporal signals in a homogeneous
media may be properly modeled via partial differential
equations (PDEs). The Laplacian spectral decomposition
(LSD) methodology is a Galerkin method that uses of
the properties of the Laplacian to represent the PDE as a
set of ODE’s of larger dimensions whose solution assists
on the approximation solutions of PDE driven by the
Laplacian operator (Courant and Hilbert, 1937; Garćıa,
2008; Christofides, 2012; Grebenkov and Nguyen, 2013).

On the other hand, when measurements of signals are not
available online (for controlling or monitoring purposes),
observers can be considered to online estimate them (the
temperature along the mold surface, for instance). The
main task of an observer is to estimate unmeasured infor-
mation provided a (partially) known dynamical system,
along with its inputs and some measured outputs. Within
the PDE context, an observer may be used to estimate
the value of a state at locations where no information is
available, given the availability of online measurements
at specific locations. In the following we adopt such a
perspective. Other observation problems in distributed
parameters systems are presented by (Llu and Lapldus,
1976; Zuazua, 2007; Wouwer and Zeitz, 2009; Hidayat
et al., 2011).
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In (Torres et al., 2010) the authors use the proper or-
thogonal decomposition method to estimate the value
of states at unknown locations. In turn, the authors of
(López-Caamal and Moreno, 2015) use the LSD method
to estimate unmeasured states, given the continuous mea-
surement of some states. The problem of determining the
location of sensors, to maximize the information recon-
structed by the measured information have been studied,
for instance, in (Garćıa et al., 2007).

In this paper we design an observer capable of estimating
the state at unmeasured locations of a unidimentional dy-
namic heat equation with a nonlinear source function. We
use a linear observer to obtain such measurements in dis-
crete time. To assess the performance of our observer, we
use the finite element method to approximate the solution
of the considered PDE, see for instance (Chandrupatla
et al., 2002; Vilas Fernández, 2008). Our case study is the
temperature distribution in an injection mold represented
by a homogeneous steel bar subject to heating due to an
electric current. We consider that the bar is isolated on
its boundaries and the only available measurements are
at the extreme points of the bar.

This paper is organized as follows: in Section 2 the con-
cepts around which the proposed observer is designed are
introduced. Section 3 depicts the design of the proposed
observer. In Section 4 the PDE-based model of a steel bar
(the study case) is introduced. In Section 5 a comparison
between model and observer simulations are presented
and discussed. Finally, Section 6 states some conclusions
about the feasibility of the proposed estimation strategy.

1.1 Notation

In what follows f [◦] denotes a function of a discrete
argument; whereas h(◦), a function of continuous one. In
turn, the continuous time is denoted by t; whereas the
discrete time is denoted by k. Thus h(t) is a function of
continuous time and f [k] is a discrete-time one.

2. BACKGROUND

In this section we introduce the concepts upon which we
build our observer.

2.1 Laplacian Spectral Decomposition

Consider a Hilbert space over the spatial domain Ω
endowed with the inner product

〈f(x), g(x)〉 :=
∫

Ω

g⊤(x)f(x) dx,

where x ∈ Ω. Also consider the set of functions
{φi(x)}∞j=1, where φi(x) : Ω → R. Let this set be complete
and thus a basis for the Hilbert space.

Furthermore, the LSD approach considers such φi(x)’s
that

(1) are eigenfunctions of the Laplacian operator

∇2φi (x) = λiφi (x) (1a)

subject to particular boundary conditions;

(2) and the eigenfunctions are orthonormal to each
other:

〈φi(x), φj(x)〉 = δi,j , (1b)

where δi,j is the Kronecker delta.

Now, the LSD method avails of such functions in order to
express a spatio-temporal signal as follows

z(t, x) =

∞
∑

i=1

wi(t)φi(x), (2)

where wi(t) are called the weights and are given by

wi(t) := 〈z(t, x), φi(x)〉 . (3)

By truncation of the infinite sum in (2), one may approx-
imate z(t, x) as

z(t, x) ≈ w⊤

z (t)φ(x), (4)

where φ(x) : Ω → R
ϑ is a vector composed of the first ϑ

elements of {φi(x)}∞j=1. Likewise, the ith entry of w
⊤

z (t)

is the weight of z(t, x) w.r.t. the ith basis element.

A hallmark of the approximation in (4) is its behavior
w.r.t. the Laplacian operator:

∇2z(t, x) ≈ ∇2
(

w⊤

z (t)φ(x)
)

= w⊤

z (t)∇2φ(x)

= w⊤

z (t)Λφ(x), (5)

where Λ ∈ R
ϑ×ϑ is a diagonal matrix composed of the

eigenvalues λi in (1a).

2.2 Observers of Discrete Time LTI Systems

Let us consider a discrete-time linear system of the form

x[k + 1] = Ex[k] +Bu[k] (6a)

y[k] = Fx[k], (6b)

where x[k] : N → R
n and y[k] : N → R

m denotes
the measured states. The rest of the matrices are of
appropriate dimensions. Furthermore, let us consider the
observability matrix:

O :=









F
FE
...

FEn−1









, (7)

where n is the order of the matrix E. A necessary and
sufficient condition to determine the vector x[k] via the
online knowledge of y[k] is

rank (O) = n.

Now, an observer is a dynamical system capable of esti-
mating x[k] given the online measurement of the input
and output to the observed system. A common approach
is to consider a copy of the system plus a properly de-
signed output error injection. That is to say, an observer
to (6) may have the form

x̂[k + 1] = Ex̂[k] +Bu[k]− L (ŷ[k]− y[k])

ŷ[k] = Fx̂[k].
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3. REDUCED ORDER DISCRETE OBSERVER

Let us consider the following PDE

∂

∂t
z(t, x) = α∇2z(t, x) + f(t, x). (8a)

subject to boundary and initial conditions. The spatial
domain that we consider is Ω = [0, 1], and z, f : R+ ×
Ω → R and α ∈ R+. In addition, let x be a vector which
represents discrete locations within the spatial domain;

likewise xm = (xi)
ℓ
i=1 is a column vector composed of the

locations where z(t, x) is known. The entries of x may be
regarded as the locations at which one requires to know
the signal z(t, x).

Now, let z[t,x] be a vector composed with the value of
z(t, x) at the locations that compose x. Thus, the system’s
output is given by

y[t,xm] = Cz[t,x]. (8b)

Here, the matrix C selects the locations at which z[t,x]
is known.

The following observer provides an estimation of z[t,x]
given y[t,xm]. We denote such an estimation with ẑ[t,x].

Proposition 1. Consider System (8). Let

Φ⊤[xm] := (φ[x1] . . . φ[xℓ])
⊤

(9)

A :=αΛ (10)

Ce :=CΦ⊤[xm], (11)

where the pair (A,Ce) is observable. Then ẑ[t,x] =

Φ⊤[x]ŵz (t), where ŵz(t) are the solutions of

d

dt
ŵz(t) = Aŵz(t) +wf (t)− L (ŷ[t,xm]− y[t,xm])

(12a)

ŷ[t,xm] = Ceŵz(t) (12b)

and Λ is as in (5). Furthermore, L is any matrix that
renders the matrix A− LCe stable.

Proof. See Appendix A.

When a time-continuous knowledge of y[t,xm] is unfea-
sible, one may also consider a discrete measurement in
time. For the sake of simplicity, we further assume that
the time-sampling period is constant and denoted by τ ;
thus t = kτ , where k is a discrete variable. By applying
Euler’s discretisation method, Equation (12) becomes

ŵz[k + 1] =Adŵz[k] + τwf [k]

− Ld (ŷ[k,xm]− y[k,xm]) (13a)

ŷ[k,xm] =Ceŵz[k] (13b)

ẑ[k + 1,x] =Φ⊤[x]ŵz (k + 1) , (13c)

where

Ad :=τA+ I (14a)

Ld :=τL (14b)

wf,i[k] := 〈f(kτ, x), φi(x)〉 . (14c)

Proposition 2. By appropriately designing the matrix Ld

System (13) is an observer for (8).

Proof. See Appendix B.

x−→ L
Fig. 1. Schematic representation of the system under

study.

4. CASE OF STUDY

If we assume that the injection mold is homogeneous in
both, composition and geometry, we may consider for the
analysis only a small part of it. Such a section can be
represented by a bar that is in contact with the injection
material at one end, allowing the heat transfer from the
material to the bar. The other surfaces can be considered
to be isolated due to the symmetry condition.

Figure 1 shows the simplified version of the system
under study. The system represents a square bar of
steel, with L = 1 m, which is initially at a uniform
temperature of T0 = 298 K. The boundaries of the steel
piece are thermally insulated. Then, an electric current
is introduced to the bar at x = L/2, which produces
an internal heat generation qgen(x). The block has a
conductivity k = 63.9 W/m K, a density ρ = 7832 kg/m3,
and a specific heat c = 434 J/kg K.

The law of conservation of thermal energy for differential
control volumes is given as

ρc
∂T

∂t
= −∇ · q + qgen(x) (15)

and Fourier’s law for a homogeneous isotropic solid with
constant properties, is given as

q = −k∇T. (16)

By using Fourier’s law in Equation (15), it becomes

ρc
∂T

∂t
= k∇2T + qgen(x). (17)

Since we consider a unidimensional spatial domain Equa-
tion (17) is written as

ρc
∂T

∂t
= k

∂2T

∂x2
+ qgen(x) (18)

or written in compact form, the governing equation is

∂T

∂t
=

k

ρc

∂2T

∂x2
+

1

ρc
qgen(x). (19)

The internal generation of energy is approximated by

qgen(x) = q0

[

1−
( x

L

)2
]

, (20)

where q0 = 5000 W/m3 is the local rate of energy
generation. The initial condition is

T (x, 0) = T0 (21)

and the boundary conditions are

dT

dx

∣

∣

∣

∣

x

= 0 (22)

at x = 0 and x = L, which represent an insulated surface.
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5. RESULTS AND DISCUSSION

In order to simulate the steel bar introduced in the
previous section, the PDE (19) was numerically solved by
the finite element method (FEM). The spatial domain was
discretized in 51 points, while a sample period τ = 1s was
considered. This way, the PDE (19) was approximated by
the system of ODEs

d

dt
Tx(t) = −MM−1

((

k

ρc
DM

)

+BM

)

Tx(t) +
1

ρc
qgen(x),

where Tx is a vector of temperatures along the space do-
main. Besides,MM ,DM and BM are the mass, diffusion
and boundary matrices, computed by using theMATFEM
library (Vilas Fernández, 2008). The precedent ODE sys-
tem was solved by the stiff solver ode15s for a time interval
of 1 hour. The results of such an approach are displayed
in Figure 2.

Fig. 2. Simulation results via FEM of the PDE in (19).

Now, in the following, we design the observer via the LSD
method. Considering a finite, one-dimensional spatial
domain and the boundary conditions, the basis φi(x) are

φi(x) =

{

1, i = 1√
2 cos ([i− 1]πx) , i ≥ 2.

In turn the respective eigenvalues are

λi = −[(i− 1)π]2,

and the weights of the source term are given by

wi =
q0
ρc











2

3
, i = 1

(−1)
i 23/2

[(i− 1)π]2
, i ≥ 2.

Now, in the following, we design a discrete-time observer
based on Equation (13). Please recall that ẑ[t,x] =

Φ⊤[x]ŵz (t), where Φ⊤[x] is as in (9). In addition, the

spatial discretisation we consider is x =

(

L
i

51

)51

i=1

and

avail of the first 4 elements in the basis φi(x) of the spatial
domain. Hence ϑ = 4.

Furthermore, we assume that the measurements we have

available are at the extreme of the bar; thus, xm = (0 1)
⊤
.

Accordingly, the matrix C is a 2 × 51 matrix, whose
elements are all zeroes, except the 1, 1 and the 2, 51.

In turn, our sampling period is τ = 1. This value along
with the previously defined eigenvalues λi lead to

Ad = diag

(

{

1− k

ρc
[(i− 1)π]2

}4

i=1

)

.

The LMIs (B.3a) and (B.4) where solved using the solver
SEDUMI over the Yalmip toolbox (Löfberg, 2004). The
observer gain computed was

Ld =







0.2149 0.2149
0.1958 −0.1958
0.2004 0.2004
0.1525 −0.1525






.

In this light, the estimated values of the temperature at
the locations x, given the measurements at the locations
xm are depicted in Figure 3. In turn, the difference
between the FEM solution and the estimation arising
from our observer may be found in Figure 4. Please notice
that the error of the estimate and the actual temperature
is rather small in comparison to the signal’s value.

Fig. 3. Estimated temperatures using the discrete ob-
server in Equation (13).

6. CONCLUSIONS

We considered a continuous-time, continuous-space, uni-
dimensional heat equation, and assumed that we avail of
measurements at particular locations within the spatial
domain. Our task was to estimate the field value at
unmeasured locations. To this end, we approximated the
solution of the PDE by means of a discrete space and
discrete-time model. An observer was then proposed as a
copy of this reduced model plus a linear correction term.
We provide the rigorous convergence proof to the actual
states, provided the observability of the pair (Ad,Ce).

Results showed that the reduced model-based observer is
able to correctly estimate the temperature profile along
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Fig. 4. Estimation error.

the bar with a maximum error of 0.1K by using only
measurements at the extreme locations of the steel bar. It
must be highlighted that the error was propagated along
the space domain according to the truncation of the basis
used. That is to say, the smaller the number of basis
element used, the larger the estimation error, given that
one neglects the input of the disregarded basis elements.
This suggests that the number of basis functions must
be selected carefully in order to reach a small estimation
error.

On the other hand, since the observer proposed is a low
order difference equation system, it can be embedded
in a digital system (microcontroller, FPGA, etc.). The
estimation strategy proposed is therefore a promising
method for real applications in industry.
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Löfberg, J. (2004). Yalmip : A toolbox for
modeling and optimization in MATLAB. In
Proc CACSD Conference. Taipei, Taiwan. URL
http://users.isy.liu.se/johanl/yalmip.
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Appendix A. PROOF OF PROPOSITION 1

Here we provide the convergence proof of observer (12).
To this end, let us consider Equation (8) and express it
in the approximation (4) to obtain:

d

dt

(

w⊤

z (t)φ(x)
)

= α∇2
(

w⊤

z (t)φ(x)
)

+ f(t, x).

By availing of the properties of the elements of φ(x) and
applying the inner product with the vector φ(x), one
obtains

d

dt
wz (t) = Awz (t) +wf (t) , (A.1)

where A is as in (10) and the elements of wf (t) are as in
(3). Likewise,

y(t, x) ≈ φ (x)
⊤
wz (t) (A.2)

Thus by defining e(t) := ŵz(t) − ŵz(t) and accounting
for System (12), the observation error dynamics become

d

dt
e(t) = (A− LCe)e(t),

which might be rendered stable via a suitable L, given
the observability of the pair (A,Ce).

Appendix B. PROOF OF PROPOSITION 2

As described in Appendix A, the dynamics of the plant
may be approximated via

d

dt
wz (t) = Awz (t) +wf (t) , (A.1)

which we discretize by Euler approximation, leading to
the following difference equation

ŵz[k + 1] = Adŵz[k] + τwf [k], (B.1)

where Ad is as in (14a). By considering (13) and defining
the observation error as

e [k] := ŵz[k]−wz [k] ,

one may see that the discrete-time error dynamics are
given by

e[k + 1] = Ade[k]− Ld (ŷ[k,xm]− y[k,xm]) ,

= Ade[k]− LdCe (ŵz [k]−wz [k]) ,

= (Ad − LdCe) e[k].

The stability of the observation error origin’s may be
attained by choosing an appropriate Ld, provided that
the pair (Ad,Ce) is observable.

In order to compute the observer gain Ld, let us now
consider the following candidate Lyapunov function

V (e) = e⊤Pe , (B.2)

withP = P⊤ (Scherer and Weiland, 2004). The derivative
of V (e) with respect to time is given by

V̇ (e) = lim
τ→0

∆V

τ
= lim

τ→0

V (e[k + 1])− V (e[k])

τ
= lim

τ→0

e⊤[k]
[

(Ad − LdCe)
⊤
P (Ad − LdCe)−P

]

e[k]

τ
.

Clearly, (B.2) is a Lyapunov function if and only if

P > 0 (B.3a)

(Ad − LdCe)
⊤
P (Ad − LdCe)−P < 0, (B.3b)

This way the asymptotic stability of the estimation error
is assured and therefore, the estimated weight ŵz asymp-
totically will converge to the true weight wz. By consid-
ering the change of variable Q = PLd and by applying
the Schur complement to the matrix inequality (B.3b)
the following linear matrix inequality (LMI) is obtained

[

−P A
⊤

d
P−C⊤

e
Q⊤

PAd −QCe −P

]

< 0. (B.4)

By solving LMIs (B.3a) and (B.4) for P and Q, the
observer gain is computed as Ld = P−1Q.
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