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Abstract: This paper establishes a design and performance comparison between two different
estimation techniques in a Single Machine Infite Bus (SMIB) system, these techniques are
the Extended Kalman Filter which is a classic estimator that has been used in the power
systems for almost forty years and a nonlinear observer whose design is based on nonlinear
mathematical model.
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1. INTRODUCTION

The complexity of the electric power systems (EPS), its
fast grown as well as the incursion of new technologies
aimed at the generation of electrical energy, have caused
the emergence of new problems that conventional solu-
tions can not solve, for that reason the study of EPS takes
major relevance for power system community (Ziping
et al., 2018).

The state estimation problem is a topic that has gained
relevance in recent years, the emergence of new gener-
ation technologies in EPS have motivated that the tra-
ditional state estimators lose in some cases either some
their features advantages or performance properties, in
this way research have been focused on studying other
observation techniques based on a modified version of the
Kalman Filter,mainly due to their features, i.e., robust-
ness against the noise, versatility and recursive approach
(Bishop et al., 2001), most of them used in the chemi-
cal industry(Tebianian and Jeyasurya, 2013; Ghahremani
and Kamwa, 2015; Zhou et al., 2014).

The application of nonlinear observer techniques is a
novel solution in power system’s theory as is exposed
in Alhelou et al. (2018), also in Shoukry et al. (2018)
addresses a fault sensor problem considering ciber-attacks
in the measurement systems, it is clear that the estimation
problem needs a more robustness and reliable estimators,
thus the use of nonlinear observer techniques represent
a novel tool for solving in a better way these current
problems.

The main contribution of this paper is to design two differ-
ent estimation methodologies for a SMIB system, in order
to make a comparison between these observer techniques
so as to analyse the performance of this estimators and
their principal features to establish the advantages and
disadvantages for both of them. The estimators are based
on Extended Kalman Filter (EKF) methodology and a

nonlinear observer theory. The comparison is carried out
using a Single Machine Infinite Bus (SMIB) system be-
cause this is considered as a classical example in the power
system theory and it allows to show the principal features
of each estimator including its design.

This paper is organized in five sections, in the first
section the SMIB mathematical model and the principal
assumptions about it are presented, in the second section
is talked about the estimators methodology design, at first
an explanation about the EKF is given and the design
for a SMIB is considered, in the same way, the nonlinear
observer is explained in detail and its application for
a SMIB system is introduced, in the following section,
two study cases are presented, finally, some concluding
remarks are included.

2. SMIB MATHEMATICAL MODEL

The SMIB system is modeled by the three-dimensional
Ordinary Differential Equation (ODE) system, this model
is represented by Sauer and Pai (1998)

δ̇ = ω (1)

Mω̇ = Pm −Dω − λ1E
′q sin δ

τĖ′
q = −λ2E

′

q + λ3 cos δ + Efd (2)

where λ1, λ2 and λ3 are power system parameters, δ
is the rotor angle, ω is the angular velocity and E′

q is
the quadrature voltage, Pm is the mechanical power, D
is the factor damping, M is the inertia factor and τ is
the transitory time constant. In this case, the dynamic
associated with the electric system (2) is considered
faster than the mechanical’s system dynamic (1) Milano
(2010), so that it is possible to analyze (2) through a
singular perturbation analysis i.e., the dynamic of E′

q

is a nonlinear function of the rotor angle and it can be
expressed by
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E′

q =
λ3
λ2

cos δ +
1

λ2
Efd (3)

The substitution of the quasi-static state E′
q in (1) yields

δ̇ = ω

ω̇ =
1

M

[

Pm −Dω − λ1

(
λ3
λ2

cos δ +
1

λ2
Efd

)

sin δ

]

(4)

where the electric power is given by

Pe = λ1

(
λ3
λ2

cos δ +
1

λ2
Efd

)

sin δ (5)

The SMIB model is restricted to the next condition

• The mechanical power must satisfy

0 ≤ Pm ≤
λ1
λ2
Efd (6)

where the mechanical input power is considered
constant.

• It there must be an invariant and compact set D so
that

D = {[δ, ω] ∈ R
2 : 0 ≤ δ ≤

π

2
− ε} (7)

where ε > 0 and it is arbitrarily small.

In addition, in the power system theory it is well known
that the condition (6) and (7) must be accomplished
in order to guarantee that EPS operation point has
asymptotic stability proprieties Machowski et al. (2011).

The power system may be affected by different kind of
faults, one of them is when the generated electric power
by the SMIB is zero in a short lapse of time. This fault
is equivalent to have a three-phase short circuit on a
transmission line, it may induce a change in the power
system structure. For this case, the fault is treated as an
unknown input ι in (4) whose dynamic is represented by

d

dt
ι =

λ1
Mλ2

(λ3 cos 2δ + Efd cos δ)ω (8)

The augmented state comprises [x1, x2, x3] = [δ, ω, ι],
these are given by (4) and (8). The three state model
of SMIB in compact form is written as

ẋ1 = x2

ẋ2 = a1Pm − a2x2 − a3 (λ3 cosx1 + Efd) sinx1 + x3fa(t)

ẋ3 = a3(λ3 cos 2x1 + Efd cosx1)x2 (9)

where a1 = Pm

M
, a2 = D

M
, a3 = λ1

Mλ2

and fa is an auxiliary

function that represents the fault’s time (tf )

fa(t) =

{
1 if tf 6= 0
0 if tf = 0

(10)

In the next section the estimation methodologies are
explained in detail, the former corresponds a classic
Extended Kalman Filter and the latter is a nonlinear

observer methodology that works for a special class of
nonlinear systems.

3. ESTIMATORS METHODOLOGY DESIGN

3.1 Extended Kalman Filter design

The state estimation problem is focused on an Ordinary
Differential Equation (ODE) model and it is studied
within a global (non local) framework, including:

• The attainment of a comparatively (with respect
to previous approaches) of a better compromise
between state reconstruction speed, accuracy and
robustness as well as on-line computational burden
(determined by the number of equations and their ill
conditioning).

• The identification (with physical meaning) of the
underlying robust solvability condition in terms
of robust observability/detectability.

• A priori (before numerical implementation) guar-
antee of robust functioning in terms of control
gains and meaningful (parametric and input) error
bounds.

• Simple (conventional-like) and systematic con-
struction tuning procedure.

• Fair benchmark comparison through numerical
simulation of the proposed versus existing (mostly
EKF) approach.

Consider the mathematical model given by

ẋ = f(x, t) +Bw x(0) = x0; ∀t ≥ 0 (11)

where x ∈ R
n is the state variable of the system,

B ∈ R
n×m is the matrix that indicates which states are

affected by the incident noise and w ∈ R
m is a zero-

mean Gaussian white noise with constant intensityQ. The
measured output signal is defined by

y = g(x) + v (12)

where g(x) ∈ R
p is the output signal and v ∈ R

p is a zero-
mean Gaussian white noise with constant intesity matrix
r.

Following the proposed methodology of Álvarez and
Fernández (2009), the EKF is given by (13).

˙̂x = f(x̂, t) +K[y − g(x̂)] x̂(0) = x0,K = ϑH⊤(x̂, t)r−1

(13)

where K is a Kalman filter gain and ϑ is the solution of
the Riccati equation

ϑ̇ = F (x̂, t)ϑ+ ϑF
⊤
(x̂, t) +Q− ϑH

⊤
(x̂, t)r

−1
H(x̂, t)ϑ, ϑ(0) = ϑ0

(14)

where

F (x, t) =
∂f(x, t)

∂x
, H(x, t) =

∂g(x)

∂x
(15)
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The Kalman filter gain may be adjusted through standard
linear stochastic optimal filtering techniques Kwakernaak
and Sivan (1972). To simplify the filter design, (14) is
multiplied by r−1, it allows to have just one design
parameter

r
−1

(
ϑ̇ = F (x̂, t)ϑ+ ϑF

⊤
(x̂, t) +Q− ϑH

⊤
(x̂, t)r

−1
H(x̂, t)ϑ

)
(16)

Defining ϑr−1 = S and Q is a constant diagonal matrix
which may be rewritten as qI

˙̂x= f(x̂, t) + c(x̂, S)(y − g(x̂))

Ṡ = F (x̂, t)S + SF⊤(x̂, t) +
(q

r

)

I − SH⊤(x̂, t)H(x̂, t)S

where c(x̂, S) = SH⊤(x̂, t) is the gain vector of the EKF
and (q/r) is the only tuning parameter (motivated of
geometric control) w = (q/r) where w is defined as ten
times the frequency of the system.

EKF for a SMIB In the particular case of the SMIB
presented in this work, the design of the EKF is based on
the augmented state model (9) and considering the rotor
angle as the measured output:

˙̂x1 = x̂2 + c1(x̂, S)(y − x̂1) (17)

˙̂x2 = a1Pm − a2x̂2 − a3 (λ3 cos x̂1 + Efd) sin x̂1 + x̂3fa(t)

= +c2(x̂, S)(y − x̂1) (18)

˙̂x3 = a3(λ3 cos 2x̂1 + Efd cos x̂1)x̂2 + c3(x̂, S)(y − x̂1)
(19)

where c1(x̂, S), c2(x̂, S) and c3(x̂, S), are the i − th
component of the Kalman filter gain vector, considering

x̂ = [x̂1 x̂2 x̂3]
⊤
.

The Jacobian matrices are computed at each time step to
determine the local linearized model of the system.

F (x, t) =

[
0 1 0
ϕ1 −a2 fa(t)
∆1 a3(λ3 cos 2x1 + Efd cosx1) 0

]

(20)

H(x, t) = [1 0 0] (21)

where

ϕ1 = −a3(λ3 cos 2x1 + Efd cosx1) (22)

∆1 − a3(2λ3 sin 2x1 + Efd sinx1)x2 (23)

3.2 Nonlinear observer design

For explaining the methodology observer design, we will
consider systems whose mathematical model can be rep-
resented by the next equations

η̇ =A(y, u)η +B(y, u) (24)

ẏ = ψ0(y, u) + ψ1(y, u)η

where [η, y] ∈ R
n × R

p is the system state, η ∈ R
n−p

is the unmeasured state, y ∈ R
p is the measured output

and u ∈ R
m is the control input. The system (24) can be

represented as

η̇ =A(y, u)η +B(y, u) (25)

z = ψ1(y, u)η (26)

where z = ẏ − ψ0(y, u).

Notice that one possible observer is given by
˙̂η = A(y, u)η̂ +B(y, u) +K0(z − ẑ) (27)

where
ẑ = ψ1(y, u)η̂ (28)

Substitution of (27) into (28) leads to the equivalent
representation

ṡ= (A(y, u)−K0ψ1(y, u))η̂ +B(y, u)−K0ψ0(y, u)

η̂ = s+ β(y) (29)

If it is defined the observation error by

ε = s+ β(y)− η, (30)

then the error derivative follows that

ε̇ =

(

A(y, u)−
∂β(y)

∂y
ϕ1(y, u)

)

ε (31)

if Ae =
(

A(y, u)− ∂β(y)
∂y

ϕ1(y, u)
)

then the error dynamic

is given by the next expression

ε̇ = Aeε (32)

Proposition 1. There is a mapping β(y) : Rq → R
n−q so

that the matrix Ae is continuous, differentiable and non
singular�.

If Ae is continuous, bounded and non singular matrix,
there is an only equilibrium point that is ε = 0. In order to
prove Lyapunov stability it is proposed the next candidate
Lyapunov function

V (ε, t) = ε⊤P (t)ε (33)

where V (ε, t) : Rn−p×R → R also there is a matrix P (t) ∈
R
n−p that is a positive symmetric defined continuously

differentiable and bounded matrix. The derivative of
V (ε, t) along to the system trajectories is given by

V̇ (ε, t) = ε⊤(A⊤

e P (t) + Ṗ (t) + P (t)Ae)ε (34)

as Ae is continuous and bounded, the matrix P (t) meets
the following

Ṗ (t) +A⊤

e P + PAe = −Q(t)

where Q(t) is a positive symmetric continuous matrix,
therefore the Lyapunov derivative function along of the
system trajectories is presented by the next equation
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V̇ (ε, t) = −ε⊤Q(t)ε (35)

Theorem 2. Let ε = 0 an equilibrium ponit of the system
(32) and D ⊂ R

n−p a domain which contains ε = 0. Let
a function V : [0,∞) × D → R that is a continuously
differentiable function so that

k1||ε||
a ≤ V (t, ε) ≤ k2||ε||

a (36)
∂V

∂t
+
∂V

∂ε
f(t, ε) ≤ −k3||ε||

a (37)

∀t ≥ 0 and ∀ε ∈ D where k1, k2, k3 and a are
positive constants. Then ε = 0 is exponentially stable;
if the assumptions hold globally, then x = 0 is globally
exponentially stable.⋄

The purpose is to design the gain A(y, u)− ∂β(y)
∂y

ψ1(y, u)

in such a way that the time derivative of the function V
fulfills (36) and (37).

Observer design for a SMIB. The observer design for
the system which is represented by (9), it will be shown
in this section. At first if it considers that the measured
state is δ i.e. y = x1 and unmeasured state is ω and ι i.e.
η = [η1, η2] = [x2, x3] so the system representation at the
structure (24) is given by

[
ẋ2
ẋ3

]

=

[
−a3 fa(t)

a3(λ3 cos 2x1 + Efd cosx1) 0

]

︸ ︷︷ ︸

A(y,u)

[
x2
x3

]

+

[
a1 − a3(λ3 cosx1 + Efd) sinx1

0

]

︸ ︷︷ ︸

B(y,u)

(38)

ẋ1 = [1 0]
︸︷︷︸

ψ1(y,u)

[
x2
x3

]

Thus, the observer’s structure for the system (9) takes
the next form

ṡ1 =−

(

a3 +
∂β1(x1)

∂x1

)

x̂2 + fa(t)x̂3 + a1

− a3(λ3 cosx1 + Efd) sinx1 (39)

ṡ2 =

(

a3(λ3 cos 2x1 + Efd cosx1)−
∂β2(x1)

∂x1

)

x̂2

also

x̂2 = s1 + β1(x1)

x̂3 = s2 + β2(x1) (40)

For this specific system, the function β(y) is

β1(x1) = k1a2(x1 − x⋆1) (41)

β2(x1) = k2a3

(
1

2
λ3(sin 2x1 − sin 2x⋆1)

)

+Efd(sinx1 − sinx⋆1)

where k1 and k2 ∈ R and they are positive.

4. ADVANTAGES AND DISADVANTAGES OF
DESIGNED ESTIMATORS

It should be highlighted some aspects about each estima-
tion technique:

◦ The Extended Kalman Filter is optimal when the
system is affected by Gaussian white-noise, also is a
well studied state estimation methodology.

◦ The Kalman Filter gain is not parameterized, in this
sense its implementation is nontrivial.

◦ One of the main drawbacks, is that the EKF requires
an extra computational burden due to the computa-
tion of Jacobian expressions as well as by the Ric-
cati equations solution, whose dimension increases
quadratically with respect to the state dimension.

◦ The proposed nonlinear observer has a formal con-
vergence proof, so it is easy to tune.

◦ The nonlinear observer gain is parameterized, in this
sense its sintonization and implementation is easier
in comparison with the EKF.

◦ The nonlinear observer design needs a specialized
knowledge to be tuned.

5. SIMULATION RESULTS

The tests evaluate the performance between the observers
presented in the previous section. The experiment consists
in to disturb a SMIB to prove the observer robustness. In
order to get our target, two scenarios are established; in
the former the SMIB is disturbed in such a way that the
power system recovers its stability. In the second study
case, the SMIB is again affected by a three-phase fault,
but in this case the electric power system can not recover
its stability, so the generator unit loses synchrony. In
both cases it has been considered Gaussian white noise
affecting the states and measurements.

The considered SMIB system has the next parameters

Parameter Value[p.u.]
Mechanic Power (Pm) 0.815
Inertia constant M 0.0147

Power system parameter λ1 2
Power system parameter λ2 2.7
Power system parameter λ3 1.7

Field voltage 1.22
Damping factor 0.0588

Table 1: SMIB parameters

5.1 Three-phase fault liberation

Among the principal points that have been considered of
the observers performances are:

◦ The convergence time.
◦ The robustness observer to measurements with noise.
◦ The over impulse in the estimation state.
◦ The observer tuning to get the estimation gains and
its ease implementation.
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In this study case, it is assumed that the SMIB and the
observers start in a steady state condition; the three-
phase fault takes place at 5[s], where its fault liberation
time is 0.5[s], according to the noise affecting the states
and measurements, the variances related to the process
and measurement noise are set to 1.5×10−5 and 2×10−6.
For the EKF the tuning parameter is set to q/r = 800.
For the nonlinear observer the design parameters are the
functions β1(y) and β2(y).

Tiempo (s)
2 3 4 5 6 7 8 9 10 11 12

ω
(p
.u
)

-2

-1

0

1

2

ω

ω̂EKF

ω̂OBS

Tiempo (s)
2 3 4 5 6 7 8 9 10 11 12

ι
(p
.u
)

40

50

60

70

80
ι

ι̂EKF

ι̂OBS

Fig. 1. SMIB affected by a three-phase fault.

It is possible to appreciate in the Figure 1 that the
performance of the both estimators is very similar, both
are capable to estimate the transit state that is induced
by the three-phase fault disturbance. The estimation of ω
through the nonlinear observer is susceptible to the noise.
In this case the EKF shows a better performance than
the nonlinear observer because it reduces the incident
noise in the state; with respect to the estimation of the
disturbance ι both observers carried out a good transient
estimation, also both estimators can reduce in a great
manner the incident noise in the system.

5.2 Three-phase fault without liberation

In this study case the fault which use to disturb the
power system has a duration of more than five system
cycles i.e., the SMIB can not recover its stability, in other
words, the synchronous machine losses its synchronism.
The experiment in this section consists to study the
observers performance in the transient stability when the
synchronous machine can not return to a steady state,
additionally, it has been considered that the states and
measurements are affected by Gaussian white-noise whose
variances were established with the same values of the
previous section.

The Figure 2 shows the estimation of ω and ι, both
observers are capable to estimate the persistent transient
state present in both states. In the Figure 2 can be
appreciated that the noise incidence does not affect the
observers performances, they make that the noise in the
states would be imperceptible. It must refer to the right
tuning of the observer gains avoid apparition of overdrafts
in the estimation of the states and of the disturbances.

Tiempo (s)
2 3 4 5 6 7 8 9 10 11 12

ι
(p
.u
)
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-50

0

50
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ι
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ι̂OBS
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2 3 4 5 6 7 8 9 10 11 12

ω
(p
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ω

ω̂EKF

ω̂OBS

Fig. 2. SMIB against a three-phase fault without liberta-
tion

To complement the below explanation, in the Figure
3 shows that the estimation error in the synchronous
relative frequency, it can be said that the convergence
error of both estimators tends to zero in a short time
lapse but the convergence error of the nonlinear observer
tends approximately for a second faster than the EKF
estimator.

0 2 4 6 8 10 12 14 16 18 20
−0.5

0

0.5

1

Time (seconds)

e
p
.u
.

EKF

0 2 4 6 8 10 12 14 16 18 20
−5

−4

−3

−2

−1

0

1

Time (seconds)

e
p
.u
.

OBSV

Fig. 3. Error state estimation of ω.

In the same way, the error associated with the estimation
of the disturbance which is shown in the Figure 4, it is
possible to conclude that the convergence error of the
nonlinear observer is faster than the error obtained by
the EKF.

6. CONCLUSIONS

In this paper was contrasted two methodologies for solv-
ing the state estimation problem in EPS in order to show
the principal features of a EKF estimator and a nonlinear
observer, the principal results are cited below:

• The mathematical representation of the three-phase
fault allowed to reconstruct it with both estimators.

• The performance analysis may be divided in three
sections
◦ The nonlinear observer convergence time is less
than the EKF’s convergence time.
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Fig. 4. State estimation error of ι.

◦ The over impulse of the nonlinear observer is
bigger than the obtained by the EKF.

◦ Both estimators are robust against the noise
even though the EKF presents a better perfor-
mance due to in the tests the estimated states
by this technique show a lower noise incidence in
comparison to those obtained by the nonlinear
observer.

◦ The design methodology is easier in the case of
the EKF due to it is a recognized technique and
it has been thoroughly used it does not need
a especial knowledge contrary to the non linear
observer design that needs an especial knowledge
to design and tuning.

• The transient response is reconstructed by both
observer however the nonlinear observer presents a
better transient reconstruction in comparison to the
EKF estimator.
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