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Abstract:
This paper deals with the solution of achieving finite-time stabilization for a Leslie-Gower prey-
predator system through a bounded control input. Simulation results show the effectiveness of
the proposed control methodology.

1. INTRODUCTION

An interesting system exhibiting oscillations and chaotic
behavior is the prey-predator model Collings (1997); Li
and Xiao (2007); Jiang and Song (2013), which because of
its complex dynamic characteristics results in a challeng-
ing system to be controlled Gakkhar and Singh (2012).
This model has been used to study biological phenomena
and the equilibrium of the species. The earliest ratio-
dependent model was given by Leslie. In this model, the
predator is also assumed to be growing logistically with
a carrying capacity that depends on the availability of a
variable resource (prey). This formulation is based on the
assumption that a reduction in a predator population has
a reciprocal relationship with the per capita availability
of its preferred food. This interesting formulation for
the predator dynamics has been discussed by Leslie and
Gower in Leslie and Gower (1960) and by Pielou in Pielou
(1969).
From a control view point, it is desirable to reach an
equilibrium point for the system, particularly in finite
time and by a bounded control input, as considered in
this work.

1.1 Notations

Let R denote the set of real numbers. Let S be an m× n
matrix. By S⊺, we denote the transpose matrix of S.
Let x ∈ R

n. By ||x|| we denote the euclidian norm of
x := (x1, . . . , xn), i.e., ||x|| := (x21, . . . x

2
n)

1

2 . The norm of
an n× n matrix S is defined by ||S|| := max

1≤j≤n

∑m
i=1 |sij |.

⋆ The research of the first author is supported by CONACyT
Project A1-S-31524 and CIC-UMSNH, México. The third author
is supported by CONACyT Project CB-222760, México.

2. THE PREY-PREDATOR MODEL

Consider the nonlinear control system

ẋ1 = x1(1− x1)−
x1x2
x21 + α

ẋ2 = γ

(
1−

x2
βx1

)
x2 + u, |u| ≤ u1

(1)

defined in set D := {(x1, x2) ∈ R
2 : x1 ≥ 0, x2 ≥ 0}

with initial condition (x01, x
0
2) and x01 > 0, x02 > 0,

with u being a control input for achieving stabilization
of the system at the equilibrium point. Let (ξ, η) ∈ D
the equilibrium point of the system (1) with u = 0.
In system (1), x1 = X/K, x2 = mY/rK2, t = r T ,
α = a/K2, β = mn/K r and γ = s/r, where X and Y
represent the prey and predator population, respectively.
The parameter r is the intrinsic growth of prey species
with carrying capacity K, T is a scaled time variable, m
denotes the per capita consumption rate of the predator,
parameter a denotes the number of prey required to make
maximum rate just half, while s is the growth rate of
the logistically growing population Y , and finally n is
the magnitude of food quality of prey for reproduction in
the predator population Singh (2016); Gakkhar and Singh
(2012). All the parameters are assumed to be positive.
The statement of the problem we consider is the following:
find a bounded positional u = u(x) with |u(x)| ≤ u1 and
such that the trajectory x(t) = (x1(t), x2(t)) starting at
the initial point x0 := (x01, x

0
2) and belonging to a certain

neighborhood of the point x̄ := (ξ, η) terminates at x̄ at
finite time T (x, x̄). This problem is called the synthesis
problem.
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2.1 System (1) translated to the origin

We first rewrite system (1). By translating the equilibrium
point (ξ, η) to the origin, we have

ẏ = Ay + bu+ g(y), (2)
where

A :=




2ξ(1− ξ)2

β
− ξ −

1− ξ

β
βγ −γ


 , b :=

(
0
1

)
(3)

g1(y1, y2) := −
d24y

4
1 + d3y

3
1 + d2y

2
1 + d1y2y1

d24 (2y1ξ + y21 + α+ ξ2)
,

g2(y1, y2) := −
γ (y2 − βy1)

2

β (ξ + y1)
.

g(y) :=

(
g1(y1, y2)
g2(y2, y2)

)
(4)

and
d1 :=

(
α− ξ2

) (
α+ ξ2

)
,

d2 :=
(
α+ ξ2

) (
−wξ + α2 + α(5ξ − 3)ξ + ξ3

)
,

d3 :=
(
α+ ξ2

) (
3αξ − α+ ξ3 + ξ2

)
, d4 := α+ ξ2.

We assume that the parameters α and β are positive.
Consequently, the function g appearing in (4) and the
system (2) is well-defined in the region:

D1 := {(y1, y2) ∈ R
2 : y1 + ξ > 0, y2 + η > 0}. (5)

The linear part of (2) is completely controllable if and
only if rank(b, Ab) = 2, i.e., if and only if

γ
(
β − 2(ξ − 1)2ξ

)

β
̸= 0. (6)

Note that if ξ = 1 the linear part of (2) is not completely
controllable. In the sequel, we will study the control
system in a certain neighborhood of the origin V0 such
that ξ ̸= 1 and the inequality

||g(y)|| ≤ C1||y|| (7)
is satisfied, for some C1 > 0.

2.2 Local feedback stabilization of system (1)

The feedback stabilization of the system (1) was consid-
ered in Singh (2016). A positional control u(x) of the form

u = k1(x1 − ξ) + k2(x2 − η) (8)
was proposed. In terms of our notations and taking
into account that (ξ, η) is an equilibrium point of (1),
we obtain that constants k1 and k2 should satisfy the
following inequalities:

k2 + γ + ξ − 1 > 0,

(ξ − 1) (k2β + k1) > 0.

Note that the feedback stabilization of the linear part of
(2) via control (8) is not possible if ξ − 1 = 0.

3. FINITE TIME STABILIZATION

It seems to be that Kamenkov (1953) was the first who
used the term finite-time stability (FTS). Further devel-
opments in FTS were made by a number of researchers:

Weiss and Infante (1967), Lasalle and Lefschetz (1961),
Dorato (1967), Dorato (2006) and references therein. See
also Bath (1995) and Poznyak et al. (2011).
In this work, we employ the theorem appearing in (Ko-
robov , 1979, Page 552), where the synthesis of bounded
controls in the first approximation of a certain general
nonlinear system is treated. Our work differs from Ko-
robov (1979) mainly because we construct a specific
control that depends on the equilibrium point x̄, which in
turn depends on the parameters of the system α, β and γ.
We also describe a certain ellipse “centered” at the equi-
librium point x̄, so from every inner point x0 of this ellipse
it is possible to arrive to x̄ at finite time T (x, x̄). Another
important novelty is the fact that in the construction of
the bounded control u(x) we use the method proposed in
Choque1 et al. (2004). See also Choque2 et al. (2004)
and Choque3 (2008). The controls appearing in Choque1
et al. (2004) depend on a parameter (as (14)) that in turn
enables having a family of controls that could solve the
synthesis problem.

In the sequel, we assume that ξ − 1 ̸= 0. Let

F :=




β

ξ − 1
0

(
2(ξ − 1)2 − β

)
ξ

ξ − 1
1


 . (9)

Clearly, we see that detF ̸= 0.
Remark 3.1. The matrix F can be written as F =(

c⊺

c⊺A,

)
where c is a vector satisfying (c, b) = 0 and

(c, Ab) = 1.

Furthermore, we use the transformation
z = Fy (10)

to rewrite equation (2) in the canonical form
ż = A0z + bw + Fg(F−1z) |w| ≤ w1, (11)

where
p = (p1, p2)

⊺ (12)

with p1 := −
γ(η−2(ξ−1)2ξ2)

η
and p2 :=

ξ(2(ξ−1)2ξ−η)
η

− γ

and A0 :=

(
0 1
0 0

)
. The new control w has the following

form:
w := p⊺z + u. (13)

with the restriction w ≤ w1 where

w1 := u1 − u2

2∑

j=1

|pj |. (14)

We assume that u2 < u1∑
2

j=1
|pj |

. As in Korobov (1979), we

require that system (11) is considered in the neighborhood
Q := {z : |zj | ≤ u2}. (15)

Our next step is to construct a positional control w(z)
such that |w| ≤ w1 and that the trajectory of any initial
point z0 := (z01 , z

0
2) belonging to a certain neighborhood
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of the origin arrives to the origin at finite time T (z0).
To this end, we will use V.I. Korobov’s method, which
consists of a Lyapunov type function θ(z), which is the
only positive solution of the following equation:

2a0θ = (K(θ)z, z), (16)
where

K(θ) :=
1

4 + a1




a1
θ3

−
2

θ2

−
2

θ2
−
1

θ


 (17)

is a positive matrix for θ > 0. The number a1 is a negative
number such that the matrices K and 1

θ
K− d

dθ
K are both

positive definite matrices. In terms of the parameter a1,
this condition is equivalent to the following inequality:

a1 < −
9

2
. (18)

The number a0 satisfies the inequality

a0 ≤
w2

1

2a1(a1 + 3)
. (19)

In the frame of Korobov’s method, the positional control
w(z) has the form

w(z) :=
a1z1

θ2(z1, z2)
−

3z2
θ(z1, z2)

(20)

Recall that in Choque1 et al. (2004), for the linear system
ż = A0z + bw, a family of bounded positional controls
was proposed which exactly stabilized this system at time
T (z0) = θ0, where θ0 is the root of equation (16) for z0.

Let us now rewrite the matrices K and 1
θ
K − d

dθ
K in a

more convenient form.

Let D(θ) :=

(
θ−

3

2 0

0 θ−
1

2

)
. Thus, the matrices K = K(θ)

and 1
θ
K − d

dθ
K can be written as follows:

D(θ)K1D(θ) = K,
1

θ
D(θ)K2D(θ) =

1

θ
K −

d

dθ
K, (21)

where

K1 :=
1

4 + a1

(
a1 −2
−2 −1

)
, K2 :=

1

4 + a1

(
4a1 −6
−6 −2

)
.

(22)
In the sequel, we assume that θ satisfies the inequality
θ ≤ 1.
Lemma 3.2. Let λmin,K2

be the minimal eigenvalue of the
matrix K2 and C1 the constant appearing in (7). Thus,
the following is valid:

(Kz, Fg(F−1z))

(( 1
θ
K − d

dθ
K)z, z)

≤ θ
C1||K1||

λmin,K2

. (23)

Proof. Denote
q := D(θ)z. (24)

By using (22) and (24), we then have

(Kz, Fg(F−1z))

(( 1
θ
K − d

dθ
K)z, z)

=
(DK1Dz, Fg(F

−1z))
1
θ
(DK2Dz, z)

=
(K1q,DFg(F

−1D−1q))
1
θ
(K2q, q)

≤ θC1
||K1||||q||||D||||F ||||F−1||||D−1||||q||

λmin,K2
||q||2

= θ
C1||K1||

λmin,K2

.

�

The following result gives an estimation of the derivative
of the controllability function θ with respect to the system
(11).
Theorem 3.3. The following inequality is valid

θ̇ ≤ −1 + θ
C1||K1||

λmin,K2

. (25)

Proof. Let a := (a1, a2)
⊺. We take the derivative of

equality (16) with respect to system (11), we have

θ̇ =
((KA0 +A⊺

0K + ab⊺K +Kba⊺)z, z)

(( 1
θ
K − d

dθ
K)z, z)

(26)

+ 2
(Kz, Fg(F−1z))

(( 1
θ
K − d

dθ
K)z, z)

=− 1 + 2
(Kz, Fg(F−1z))

(( 1
θ
K − d

dθ
K)z, z)

. (27)

The right-hand side of (26) is equal to −1 because of
(Choque1 et al. , 2004, Equation (2.9)). Finally, inequality
(25) readily follows from (27) and Lemma 3.2.
Remark 3.4. Let θ̂ > 0, C2 > 0 such that for θ ≤ θ̂

−1 + θ
C1||K1||

λmin,K2

≤ −C2. (28)

By taking into account (25) and (28), we have that

θ̇ ≤ −C2. (29)
By integrating (29) on the trajectory z = z(t), we attain
θ(z(t))−θ0 ≤ −C2t. By using (Korobov , 1979, Page 552),
we have that z(T ) = 0, which implies θ(z(T )) = 0. Thus,
we obtain the following inequality:

T (z) ≤
θ0
C2
. (30)

Now we present the main result of our work.
Theorem 3.5. Let c := ( η

(ξ−1)ξ , 0)
⊺, a := ( a1, a2 )

⊺ with
a2 = −3 and p be defined as in (12). Let x̄ := (ξ, η) be the
equilibrium point of (1). Furthermore, let (kj,ℓ)

2
j,ℓ=1 :=

K1, and the parameter a0 satisfies (19). Let θ(x − x̄) be
the unique positive solution of

E(x, θ, x̄) = 0 (31)
with
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E(x, θ, x̄) := 2a0θ
4

−

2∑

j,ℓ=1

kj,ℓθ
j+ℓ−2(c, Aj−1(x− x̄))(c, Aℓ−1(x− x̄)). (32)

In addition, let

u(x, x̄) =

2∑

j=1

ajθ
j−3(x− x̄)(c, Aj−1(x− x̄))

−

2∑

j=1

pj(x− x̄)(c, Aj−1(x− x̄)). (33)

Suppose that (x01, x
0
2) belongs to the region

D2 := {E(x, θ̂, x̄) ≥ 0} ∩ {x1 > 0, x2 > 0}. (34)
Thus, the control (33) satisfies the condition |u(x)| ≤ u1
and solves the synthesis problem.

c) The time of motion from x0 = (x01, x
0
2) to the origin

satisfies the following inequality

T (x0, x̄) ≤
θ0
C2
. (35)

Proof. The proof of this theorem readily follows from
Theorem 3.3 and Remark 3.4. �

Remark 3.6. For fixed θ, equation E(x, θ, x̄) = 0 repre-
sents an ellipse. Since the control (33) stabilizes the the
system (1), its trajectory of the will not leave the ellipse
(31) calculated at θ = θ0. In turn, θ0 is the solution of
(31) for x = x0.
The large of the neighborhood of the equilibrium point
where we can apply the proposed position control (33)
can be determined by the fact that the ellipse (31) shall
be included in the domain D1 ∩D2; see (5) and (34).
Remark 3.7. Note that for all initial points belonging to
the region D1∩D2, we guarantee that there is a family of
positional controls u(x, x̄) determined by the parameter
a1 (18).
Remark 3.8. We emphasize that the trajectory x(t) under
the influence of control u(x, x̄) approaches the equilibrium
point x̄ for t → T = T (x0, x̄). For the t > T , the
trajectory stays at the equilibrium point x̄.

4. GRAPH OF THE TRAJECTORY AND CONTROL

To plot the graph of the trajectory x(t) from a given initial
point (x01, x

0
2), the control u(x(t)) and the controllability

function θ(x(t)), we add a differential equation on θ:
ẋ1 = x1(1− x1)−

x1x2
x21 + α

,

ẋ2 = γ

(
1−

x2
βx1

x2

)
+ u(x1, x2),

θ̇ = −1 + 2ψ(x, θ, x̄),

(36)

with initial conditions x1(0) = x01, x2(0) = x02 and
θ(0) = θ0. Here θ0 is the root equation (32). Moreover,

ψ(x, θ, x̄) :=
(D(θ)K1D(θ)(x− x̄), Fg(F−1(x− x̄)))

1
θ
(D(θ)K2D(θ)(x− x̄), (x− x̄))

.

(37)

Let us remark that the initial point (x01, x02) should belong
to the neighborhood E(x, θ̂, x̄) ≥ 0, for a fixed θ̂.

4.1 Example 1

Let α = 1
5 , β = 1513

1200 , γ = 1
50 and a1 = −6. The

equilibrium point is equal to x̄ = ( 3
20 ,

1513
8000 ). Let u1 = 1.

The positional control has the form u(x, x̄) = num(x,x̄)
den(x,x̄)

where

num(x, x̄) :=
(
−523418θ2 + 2082600θ + 190104000

)
x1

− 3
(
θ2 (13600x2 − 28743) + 5340θ (4000x2 − 737)

+9505200) , den(x, x̄) := 21360000θ2

with θ = θ(x− x̄).
The function ψ(x, θ, x̄) is given by

ψ(x, θ, x̄) =

θ(a1+a2+a3)a4

− 1780

3 (x1−
3

20 )−89
− 1346570

3

(
x1 −

3
20

)
a5a6

b1

with

a1 :=−

123407713822900

3

(
x1 −

3

20

)5

+
365192907781007

9

(
x1 −

3

20

)4

−

62742241

60

×

(
20648000

(
−

13

400

(
x1 −

3

20

)
+ x2 −

1513

8000

)

−14296369)

(
x1 −

3

20

)3

,

a2 :=
62742241 (a21 − a22 + 415944793)

(
x1 −

3

20

)2

3600
,

a21 :=1152000000

(
−

13

400

(
x1 −

3

20

)
+ x2 −

1513

8000

)2

,

a22 :=2493264000

(
−

13

400

(
x1 −

3

20

)
+ x2 −

1513

8000

)
,

a31 :=288000

(
−

13

400

(
x1 −

3

20

)
+ x2 −

1513

8000

)

a3 :=
62742241

3

(
−

13

400

(
x1 −

3

20

)
+ x2 −

1513

8000

)

(a31 − 760109)

(
x1 −

3

20

)
+ a31,

a32 :=4467247559200

(
−

13

400

(
x1 −

3

20

)
+ x2 −

1513

8000

)2

,

a4 :=θ

(
−

13

400

(
x1 −

3

20

)
+ x2 −

1513

8000

)
−

89

30

(
x1 −

3

20

)
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a5 :=− 14099380

(
x1 −

3

20

)3

+ 5639752

(
x1 −

3

20

)2

+
23763

20
(a51 + 979)

(
x1 −

3

20

)
− 11247820

×

(
−

13

400

(
x1 −

3

20

)
+ x2 −

1513

8000

)

a51 :=8000

(
−

13

400

(
x1 −

3

20

)
+ x2 −

1513

8000

)
,

a6 :=θ

(
−

13

400

(
x1 −

3

20

)
+ x2 −

1513

8000

)
−

89

20

(
x1 −

3

20

)

b1 :=1346570θ3 (b11 + 704969)

×

(
b12b13 −

89

60

(
x1 −

3

20

)(
b14

θ3
−

89
(
x1 −

3

20

)

5θ4

))
,

b11 :=3168400

(
x1 −

3

20

)2

+ 950520

(
x1 −

3

20

)
,

b12 :=−

13

400

(
x1 −

3

20

)
+ x2 −

1513

8000
,

b13 :=
−

13

400

(
x1 −

3

20

)
+ x2 −

1513

8000

θ2
−

89
(
x1 −

3

20

)

20θ3
,

b14 :=3

(
−

13

400

(
x1 −

3

20

)
+ x2 −

1513

8000

)
.

With the initial conditions x01 = 0.143258426 and x02 =
0.19890589, the graph in Fig. 1 shows the trajectories of
x1(t) and x2(t). Fig. 2 shows the controllability function

x1

x2

0.00 0.05 0.10 0.15 0.20 0.25
0.12

0.14

0.16

0.18

0.20

Time (s)

S
ta
te
s

Fig. 1. Trajectories of x1(t) and x2(t)

θ(x(t) − x̄) on the trajectory x(t). The graph of the

θ (x(t))

0.00 0.05 0.10 0.15 0.20 0.25

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Time (s)

V
a
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a
b
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θ

Fig. 2. The controllability function θ(x(t)− x̄)

position control u(x(t) − x̄) on the trajectory x(t) is as
shown in Fig. 3.
By using Wolfram Mathematica, we have calculated that
the time of arriving from x0 to x̄ is T (x0, x̄) = 0.283881

u(x(t))

0.00 0.05 0.10 0.15 0.20 0.25

-1.0

-0.5

0.0

0.5

1.0

Time (s)

C
o
n
tr
o
l
In
p
u
t

Fig. 3. The positional control θ(x(t)− x̄)

and that |x1(T ) − ξ| ≤ 1.05618 ∗ 10−11 and |x2(T ) −
η| ≤ 7.15817 ∗ 10−6.

To the best of the authors’ knowledge, no control method-
ologies have been applied to this system, which considers
two main features: achieving finite-time convergence with
a bounded control input

5. CONCLUSION

We have presented a family of explicit bounded controls
which stabilizes the predator-prey system (1) in finite
time. An ellipse depending on the parameters of the
system (1) and a number θ̂ is given. The translation of
any initial point x0 = (x01, x

0
2) to the equilibrium point x̄

is guaranteed if x0 belongs to this ellipse and satisfies the
conditions x01 > 0 and x02 > 0
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