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Abstract: This work presents a novel algorithm to trajectory tracking control of robot
manipulators with uncertain parameters and without joint velocity measurements. To cover
these lack of joint velocity measurements, a free-model observer is employed. To test the
usefulness of this proposed adaptive control, a comparison is made with two other adaptive
controls. It is presented simulation results together with an index performance on tracking and
speed errors to show the best behavior.
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1. INTRODUCTION

The robot manipulators are a field of great interest
and have been explored for the purpose of achieving
the execution of tasks in a perfectly and precisely way
through which the tracking errors decrease exponentially
and requires little effort from the robot joint motors.
Based on all the research carried out over the years, many
problems have been solved, from modelling to control to
achieving the objectives in an acceptable way.

Peisen et al. (1992) presents a simple adaptive learn-
ing control scheme for multi-joint robotic manipulators.
Their control objective was to achieve accurate tracking
to the desired motion trajectory by trails where joint
position and velocity were available.

Some papers have worked with the trajectories tracking
problem with absence of joint speed measurements even
with the partial-knowledge of the robot dynamic model
had been treated in conjunction. This is the case of
Kaneko and Horowitz (1997), where through repeated
learning trials achieves the objective of tracking. They
only unknown the inertial parameters and use a velocity
observer to estimate the manipulator joint velocities,
which is formulated based on the desired input/output
relation of the manipulator.

Also, in Villani et al. (1999) is presented an adaptive con-
trol with properties of exponentially stable that is derived
starting from a passivity-based position control algorithm
and achieves force tracking capabilities by using time-
varying PID force feedback, for that task they use the
adaptive control to compensate the stiffness coefficient,
but count with the joint velocity measurements.

In Quan et al. (2007) an iterative adaptive controller
is used assuming that the robots manipulators in the
industry repeat a task continuously. They based their pro-
posed scheme on a PD control and achieved convergence
with an appropriate set of coefficients in the higher-order

adaptive iterative control law to ensure it, worked with
an unknown robot dynamic model but had joint velocity
measurements available.

As we can see, there are a wide variety of controllers re-
lated to the tracking control of robots manipulators with
parametric uncertainty, have joint velocity measurements
available. Others works deal this problem with the lack
of joint velocity measurements and the partial parameters
uncertainty, since they are able to compensate the terms
of gravity and friction by the partial knowledge of the
robot dynamic model.

In Yoo and Ham (2000), it is proposed a robust adaptive
control based on Lyapunov stability theory, they use
a fuzzy compensator that needs too many fuzzy rules
because uncertainties depend on all state variables. They
do this because when the control algorithm is only based
on the robot dynamic model, it is very difficult to achieve
the desired control performance.

In this paper is proposed a solution for the issue of
tracking control with parametric uncertainty and absence
of joint velocity measurements using an adaptive control
in conjunction with a joint velocity observer. With this
novel algorithm, we ensure that tracking and observer
errors were ultimated bounded. This is very important
because it does not need any excitation conditions, but
if the trajectory count with persistent excitation (PE ),
exponential stability is guaranteed.

This paper is organized as follows: Section 2 presents the
robot manipulator model employed. Section 3 contains
an explanation of the proposed control along with the
adaptive schemes whose performance will be compared.
In Section 4, the simulation results are shown with two
index performance tables to support the importance of
the algorithm developed. Finally, Section 5 lays out the
conclusions and future work.
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Fig. 1. Robot Arm A465 of CSR Robotics.

2. PRELIMINARIES

In this section, the dynamic model of the robot employed
is presented, also some properties that robots with rota-
tional joints preserve. The robot whose dynamical model
was used can be seen in Figure 1.

2.1 Robot dynamic model

The robot model used in this work is the Robot Arm A465
of CSR Robotics. This system has 6 degree of freedom
(DOF ) but only the first three DOF are considered be-
cause the orientation of the end effector is not controlled.
Furthermore, the dynamics motors was considered due to
the actuators are DC motors.

Then, the robot dynamic model is

H(q)q̈ +C(q, q̇)q̇ +Dq̇ + f c(q̇)

+ g(q) = D−1
n Dkv (1)

where q ∈ ℜ3 is the vector of generalized joint coordi-
nates, H(q) ∈ ℜ3×3 is the symmetric positive inertia
matrix, C(q, q̇)q̇ ∈ ℜ3 is the vector of Coriolis and cen-
trifugal torques, D ∈ ℜ3×3 is the positive semidefinite di-
agonal matrix that accounts with the joint viscous friction
coefficients, f c(q̇) ∈ ℜ3 is the vector of Coulomb friction
terms, g(q) ∈ ℜ3 is the gravitational forces vector, Dn

and Dk ∈ ℜ3×3 define the motor dynamics and v ∈ ℜ3 is
the input voltage vector.

The motor dynamics data are defined in Dn and Dk ∈
ℜ3×3, they are D−1

n = block diag{r21 r22 r23} and Dk =
block diag{ Ka1

Ra1r1

Ka2

Ra2r2

Ka3

Ra3r3
}. Where r stands for the

gear ratio, Ka is the torque constant and Ra the ar-
mature resistance, whose values are ri = 100, Kai =
0.1424 [Nm/A] and Rai = 0.84 [Ω] for i = 1, 2, 3.

The values of every matrix component is taken from
Gudino-Lau and Arteaga (2005).

2.2 Robot properties

Before to present the properties from Arteaga-Pérez
(1998), it must to establish that the largest (smallest)
eigenvalue of a matrix is denoted by λmax(·) (λmin(·)).
Revolute joints are considered so the following properties
can be established:

Property 2.1. It holds λh||x||
2 ≤ xTH(q)x ≤ λH||x||

2

∀q,x ∈ ℜn, and 0 < λh ≤ λH < ∞, with λh
△
=

min
∀q∈ℜn

λmin(H(q)), λH
△
= max

∀q∈ℜn

λmin(H(q)).

△

Property 2.2. By using the Christoffel symbols (of the

first kind) to compute C(q, q̇), Ḣ(q)− 2C(q, q̇) is skew
symmetric.

△

Property 2.3. With a proper definition of the robot model
parameters, it holds

H(q)q̈+C(q, q̇)q̇+Dq̇+g(q)+f c(q̇) = τ = Y (q, q̇, q̈)θ,
(2)

where Y (q, q̇, q̈) ∈ ℜn×p is the regressor and θ ∈ ℜp is a
constant vector of parameters.

△

3. ADAPTIVE SCHEMES

A succinct description of the adaptive controllers used is
presented in this section, also the proposed scheme with
a brief explanation of their stability properties.

3.1 Adaptive Control Slotine and Li (1987)

The control scheme used of this work is

τ =−Kss+ Y (q, q̇, q̇r, q̈r)θ̂ (3)

˙̂
θ=ΓsY

T(q, q̇, q̇r, q̈r)s, (4)

with the variable q̇r and the sliding variable are defined
as

q̇r = q̇d −Λee (5)

s= q̇ − q̇r (6)

e= q − qd, (7)

where e ∈ ℜn is the tracking error and qd ∈ ℜn is the
desired trajectory. As is well known, this scheme attains
the tracking convergence to zero when t → ∞, this means
that the algorithm assures that the system in closed loop
is global asymptotic stable (GAS ). Also, if the persistent

excitation is not met, just ensures that θ̃ < ∞.

3.2 Adaptive Control Tang and Arteaga-Pérez (1994)

The adaptive control worked is

τ =Kss− Y (q, q̇,a, ȧ)θ̂ (8)

˙̂
θ=−δg − Γ1Y

T(q, q̇,a, ȧ)s, (9)

with
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a= q̇d −Λqe

ġ =−λgg − δZg + γ2Y
T
f (q, q̇)ǫ

−Γ1ZY T(q, q̇,a, ȧ)s, g(0) = 0

Ż =−λgZ + γ2Y
T
f (q, q̇)Y f (q, q̇), Z(0) = O

ǫ=Y f (q, q̇)θ̂ − τ f ,

where the sliding variable s is the same defined in (6),
the tracking error e is (7) and

τ f =W (s)τ (10)

Y f =W (s)Y (q, q̇, q̈) (11)

W (s) =
λf

s+ λf

, (12)

where W (s) is a kind of low pass filter.

This algorithm achieves exponential stability without
persistent excitation (PE ).

3.3 Proposed Scheme

The proposed algorithm is able to reach the tracking
control without joint velocity measurements, its stability
analysis is not treated here due to dearth of space.

This enhanced adaptive control works with a joint veloc-
ity observer that does not depend on the dynamic model
of the system and assures ultimate bounded stability of
the observer errors.

The proposed control scheme is

τ =−Kvso + Y oθ̂o (13)

˙̂
θo =−Γ

(

βw(t) + Y T
o so + fb

)

, (14)

where Γ ∈ ℜ18×18 is a positive definite matrix. The sliding
variable is defined as

so = q̇o − q̇r (15)

with

q̇r = q̇d −Λe

¨̂qr = q̈d −Λ (q̇o − q̇d)

q̇o =
˙̂q −Λzz,

where z ∈ ℜ3 is the observer error, Kv,Λ,Λz ∈ ℜ3×3 are
positive definite matrices and

Y oθ̂o = Ĥ(q)¨̂qr + Ĉ(q, q̇r)q̇r + D̂q̇r + ĝ(q)

=Y o

(

q, q̇r,
¨̂qr

)

θ̂o.

For the adaptive law (14)

ẇ=−λw + γŶ
T

f ǫ+Z
˙̂
θo, w(0) = 0 (16)

Ż =−λZ + γŶ
T

f Ŷ f , Z(0) = O (17)

ǫ= Ŷ f θ̂o − Y fθ, (18)

with λ, γ > 0 and the regressors Y f(q, q̇), Ŷ f (q, q̇o) ∈
ℜ3×18 are established using Property 2.3 as

Y f(q, q̇)θ=W (s)Y (q, q̇, q̈)θ = τ f

Ŷ f (q, q̇o) =Y f (q, q̇o) ,

where λf > 0 and W (s) is stipulated in (12).

Besides, the term fbi set in (14) is

fbi = sign(θ̃i)ρiδi|βwi + yT
aiso| (19)

with β > 0, ρi > 1 and δi is used for achieving bounded-
ness of estimated parameters employing projections, this
variable is computed as

δi =























θ2i − θ̂i
θ2i − θ1i

, if θ1i ≤ θ̂i < θ2i

0, if θ2i ≤ θ̂i ≤ θ3i
θ̂i − θ3i
θ4i − θ3i

, if θ3i < θ̂i < θ4i.

(20)

A simplified version of Arteaga-Pérez (2003) is treated
and is assumed that for every element of parameters
vector θi with i = 1, ..., 18, exist an upper and lower
bound known so that θmi ≤ θi ≤ θMi holds. For that
reason, θji with j = 1, ..., 4 must to be set as θ1i < θ2i ≤
θmi < θMi ≤ θ3i < θ4i. Lower bounds can be considered
zero and the upper bounds can be set large if necessary.

The deployed observer Arteaga-Pérez et al. (2017) is
defined as

ξ̇= z (21)

ζ = q̇d −Λxq̃ +KdΛzξ (22)

˙̂q = ζ +Λzz +Kdz (23)

where Λx,Kd,Λz ∈ ℜ3×3 are diagonal positive matrices.

4. SIMULATIONS RESULTS

Here, the real parameters vector and the values of con-
troller gains for each control scheme are presented. More-
over, the resulting comparison is depict through graphics
and performance index tables.

4.1 Parameters vector

The robot model employed for simulation can be found
in Gudino-Lau and Arteaga (2005). For comparison pur-
poses the elements of the parameter vector are:

θo1 = 0.0055 [Kg m2], θo2 = 0.008 [Kg m2],

θo3 = 0.0024 [Kg m2], θo4 = 0.0118 [Kg m2],

θo5 = 0.0041 [Kg m2], θo6 = 9× 10−4 [Kg m2],

θo7 = 7× 10−4 [Kg m2], θo8 = 2.0007 [Kg m2],

θo9 = 11.80 [Kg m2], θo10 = 2.80 [Kg m2],

θo11 = 25.0 [N m s], θo12 = 35.0 [N m s],

θo13 = 36.0 [N m s], θo14 = 0.20 [N m],

θo15 = 2.50 [N m], θo16 = 2.50 [N m],

θo17 = 22.0 [N m], θo18 = 11.0 [N m].
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Fig. 2. Joint tracking errors. Proposed control-observer (-
-), adaptive control (Tang and Arteaga-Pérez) (- -),
adaptive control (Slotine and Li) (- -).

4.2 Gains values

Proposed scheme. The gains for the developed control-
observer have been chosen as:Kv = block diag{40 80 75},
Λz = block diag{100 50 110},Λ = block diag{60 80 70},
γ = 0.1, ρ = 2.5, β = 5.5, λ = 125, λf =
70 and Γ = block diag{21 × 10−6, 17 × 10−6, 85 ×
10−7, 0.0011, 0.001, 0.0012, 0.0017, 2.5, 0.7, 0.9, 47, 4.9, 25,
0.21, 0.089, 1.45, 50, 5.5}

For the adaptive scheme, the upper and lower bounds
were chosen as

θ1i =−0.0001

θ2i = 0.0

θ3i = 10.0 θoi

θ4i = 10.1 θoi

using the idea that the minimum value θmi = θ2i that
a parameter can reach is 0 and the maximum θMi = θ3i
can be 10 times the nominal value θoi.

Adaptive control Slotine and Li (1987). The gains
for adaptive control given in this paper were cho-
sen such as: Ks = block diag{95 115 110}, Λe =
block diag{10 6.5 8} and Γs = block diag{21×10−6, 17×
10−6, 85 × 10−7, 0011, 0.001, 0.0012, 0.0017, 4.3, 0.7, 3, 47,
5.5, 42, 0.21, 0.69, 0.845, 40, 22.5}.

Adaptive control Tang and Arteaga-Pérez (1994). In or-
der to fulfil all the conditions that this work indicates, the
gains have been chosen as: Ks = block diag{60 15 40},
Λq = block diag{190 230 220}, δ = 0.1, γ2 = 0.05, λg =
20, λf = 15 and Γ1 = block diag{0.017, 0.017, 0.01, 0.017,
0.07, 0.002, 0.01, 0.08, 0.3, 0.17, 2.8, 0.12, 30.83, 0.0001, 0.09,
0.35, 12.75, 1.02}.

4.3 Results

The desired trajectories are given in articular coordinates,
the objective is follow the variable signal

qd =

[

5 sin(t) + 5 sin(2t) + 2.5 sin(3t)
15 sin(t) + 2.5 sin(3t) + 3 sin(2t) + 90
10 sin(t) + 2 sin(2t) + 3 sin(3t)− 90

]

[◦].(24)

since the initial position qo = [0 90 − 90]T [o].

With the aim of numerically comparing simulated algo-

rithms, the performance index I(·) =
√

1
k

∑k−1

0 ‖ · ‖2

has been employed with k = 3000, where k is the number
of samples. The results of the performance comparison
are stipulated in Table 1 and 2.

Figure 2 displays the joint errors that each controller
algorithm exposed, the demeanour between them is very
similar, so the Table 1 presents the performance index,
in which it is shown that the adaptive control Slotine
and Li has a worse result in compare with the other two.
In addition, it is conspicuous that the proposed scheme
presents a resembling value to the adaptive controller
Tang and Arteaga-Pérez, despite the lack of joint velocity
measurements.

Velocity joint errors are depict in Figure 3, where the
behaviour of Slotine and Li is clearly inferior in compar-
ison with the other two, because the settling time is the
biggest and in the third joint converges to a bounded
limit. Table 2 contains the index performance of the joint
velocity errors and it confirms that the observer used in
the proposed scheme to estimate joint velocities, performs
very well.

Figure 4 shows the observer errors, where for the first joint
z1 stays upper bounded by z1max = 0.023 [◦], the error
for second articulation stays under z2max = 0.027 [◦] and
the last error remains under z3max = 0.019 [◦].

Figures 5 - 7 exhibit the behaviour of the vector of
estimated parameters. Just the algorithms of Tang and
Arteaga-Pérez and the proposed make that the estimated
signal converge at a constant value but only the proposed
scheme attains a closer convergence to the real in some
cases.

Finally, through the index performance tables can be no-
ticed also that the control algorithm of Tang and Arteaga-
Pérez delivers similar results to the proposed scheme,
but the first one counts with the velocity measurements.

Table 1. Performance index of the joint space
errors

Algorithm I(e1) [o] I(e2) [o] I(e3) [o]

Proposed scheme 0.0004 0.0351 0.00004
Adaptive controller

(Tang and Arteaga-Pérez) 0.0011 0.0334 0.0033
Adaptive controller
(Slotine and Li) 0.0016 0.0180 0.0086

Table 2. Performance index of the joint veloc-
ity errors

Algorithm I(ė1) [ o
s
] I(ė2) [ o

s
] I(ė3) [ o

s
]

Proposed scheme 0.0037 0.3350 0.0023
Adaptive controller

(Tang and Arteaga-Pérez) 0.0504 0.3228 0.0222
Adaptive controller
(Slotine and Li) 0.0174 0.1501 0.0244

Puebla, Puebla, México, 23-25 de octubre de 2019 428 Copyright©AMCA. Todos los Derechos Reservados www.amca.mx



t[s]
0 2 4 6 8 10

ė
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Fig. 3. Joint velocity errors. Proposed scheme (- -),
adaptive control (Tang and Arteaga-Pérez) (- -),
adaptive control (Slotine and Li) (- -).
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Fig. 4. Observation errors, (21)-(23).

Just as it is expected, the adaptive control of Slotine and
Li presents the worst performance, although it has the
known speed, this is because it does not have the variables
that help in the adaptation part.

5. CONCLUSION

A novel scheme was proposed with an observer to pro-
vides the joint velocity measurements due to absence of
sensors to bring that information. Also was presented a
comparison with two adaptive controllers that have the
joint velocity knowledge in order to demonstrate the best
performance of the novel proposed scheme.

The objective had been accomplished with the proposed
scheme and the convergence to the real parameters was
reached in some cases, a situation that was not attained
with the other two schemes.

To obtain a better reference for comparing the simulation
results, the performance index had been calculated and,
as was expected, the outcomes establish that the proposed
scheme had an outstanding performance.
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Fig. 5. Inertia parameters estimated with the adap-
tive law proposed (- -), adaptive control (Tang and
Arteaga-Pérez) (- -), adaptive control (Slotine and
Li) (-·-) and the real value of parameter (-·-).
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Fig. 6. Estimated parameters with the adaptive law
proposed (- -), adaptive control (Tang and Arteaga-
Pérez) (- -), adaptive control (Slotine and Li) (-
·-) and the real value of parameter (-·-). Inertia
parameters θ7−θ10, viscous friction parameters θ11−
θ12.

Finally, this scheme will be implemented in the real
system and a similar comparison will be made with
variable joint trajectories to demonstrate the advantages
offered by the developed control.
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