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Abstract: This paper presents a reformulation of the power factor compensation problem
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1. INTRODUCTION

Generally, nonlinear loads have been represented as cur-
rent sources because their current waveforms are dis-
torted from pure sinusoidal at fundamental frequency.
However, there is another common type of harmonic
source which can be characterized as harmonic voltage
sources, as shown in Fig. 1. A typical example of this
kind of harmonic source is diode rectifier with smooth-
ing dc capacitors which is used in electronic equipment,
household appliances, and AC drivers, see Peng (2001).
Moreover, in Peng et al. (1999) it has been shown that
shunt-compensation is not effective for compensating such
voltage-source types of nonlinear loads and a series-
compensation has been used to compensate such nonlin-
ear loads instead.
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Fig. 1. (a) Power delivery system with (possibly) non-
linear and time varying load and n-phase AC ideal
generator. (b) Per-phase equivalent circuit of voltage-
source nonlinear load.

Series compensation modifies the transmission of dis-
tribution systems parameters, namely, the voltage and
impedance of the source, while shunt compensation

changes the equivalent impedance load. For instance, in
power systems, series capacitance is used mainly to reduce
the series inductance between two points and thereby
to improve the voltage regulation with inductive load
Shepherd and Zand (1979).

Regarding shunt compensation, in Garcia-Canseco et al.
(2007) a novel framework for analysis and design of (pos-
sibly nonlinear) power factor (PF) compensators for elec-
trical systems operating in non-sinusoidal (but periodic)
regimes with nonlinear time-varying loads was presented.
This framework proceeds from the definition of PF and
does not rely on any axiomatic definition of reactive
power. It has been shown that the PF is improved if
and only if the compensated system satisfies a certain
cyclodissipativity property, Hill and Moylan (1990). Using
this framework the classical capacitor or inductor com-
pensators are interpreted in terms of energy equalization.
In addition, this energy-equalization approach, which un-
derlies the phase-shifting action of power factor compen-
sation, begins to permeate through electrical engineering
textbook, Mahdavi Tabatabaei et al. (2017).

This approach has been applied in Ortega et al. (2008)
to analyze passive compensation of a classical half-bridge
controlled rectifier with non-sinusoidal source voltage. Af-
terwards, in del Puerto-Flores et al. (2011) was presented
the extension of the cyclodissipative framework for PF
compensation to consider arbitrary LTI lossless filters,
and demonstrated that for general lossless LTI filters
the PF is improved if and only if a certain equalization
condition between the weighted powers of inductors and
capacitors of the load is ensured. Next, in del Puerto-
Flores et al. (2012) we have presented the proof that
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PF improvement can also be characterized in terms of
a new cyclodissipativity property where the supply rate
is independent of the load and is solely determined by the
compensator—paving the road for compensator design
applications. Finally, in del Puerto-Flores et al. (2010)
we have also formulated the PF compensation problem
in a way that explicitly accounts for the effects of a
non-negligible source impedance on the load voltage and
current. We have demonstrated that cyclodissipativity
provides a rigorous mathematical framework useful to
analyze and design power factor compensators for general
nonlinear loads operating in nonsinusoidal regimes with
significant source impedance 1 .

In this work, our task is to formulate the power factor
compensation problem by means of series compensation.
Based on the results presented in del Puerto-Flores et al.
(2010), we prove that cyclodissipativity provides a math-
ematical framework useful to analyze and design power
factor compensators for general nonlinear loads operating
in nonsinusoidal regimes with ideal sources.

First, we briefly review the main result on shunt com-
pensation from Garcia-Canseco et al. (2007) in Section 2.
Then, in Section 3 we give a cyclodissipativity character-
ization of Series Compensation problem under nonsinu-
soidal regimes, where we provide a geometric interpreta-
tion and we end with an example in Section 4.

2. PROBLEM FORMULATION AND BACKGROUND

We consider the energy transfer from an n-phase AC
generator to a load, as in Fig. 1a, where we assume vs
is ideal. In particular, we make the following assumptions
throughout this work.

Assumption 1. The source is ideal, in the sense that vs
remains unchanged for all loads.

Assumption 2. All signals are assumed to be periodic,
with fundamental period T , and have finite power, that
is, they belong to

Ln
2 =

{

x : [0, T ) → R
n : ‖x‖2 :=

1

T

∫ T

0

|x(τ)|2dτ < ∞
}

where | · | is the Euclidean norm. We also define the inner
product in Ln

2 as

〈x, y〉 := 1

T

∫ T

0

x⊤(t)y(t)dt.

Under Assumption 2, the waveforms can be represented
by a complex exponential Fourier series, viz.,

x(t) =

∞
∑

k=−∞

X̂k exp(jkω0t)

1 An AC power system with significant impedance is also often
referred to as “weak grid”. This kind of grids are usually found in
more remote places where the feeders are long and operated at a
medium voltage level, e.g. Bindner (1999).

where ω0 := 2π/T is the fundamental frequency and, for

integers k, the vector Fourier coefficients X̂k are given by

X̂k =
1

T

∫

T

x(t) exp(−jkω0t)dt.

If x(t) is real, then its Fourier coefficients satisfy X̂k =

X̂∗
k , where X̂∗

k denotes the conjugate of X̂k.

The process of power factor correction is an attempt to
reduce the apparent power of a load to the value of the
active power consumed. The accepted definition of PF is
given as IEEE Standard-1459 (2010):

Definition 3. (Power factor) Consider the power delivery
systems of the Fig. 1a. The PF of an AC electric power
system is defined by

PF :=
P

S
, (1)

where P := 〈v, i〉 is the active (real) power, also called
average power, and S := ‖v‖‖i‖ is the apparent power.

From (1), it follows that P ≤ S. Hence PF ∈ [−1, 1] is
a dimensionless measure of the energy-transmission effi-
ciency 2 . Cauchy–Schwartz also tells us that a necessary
and sufficient condition for the apparent power to equal
the active power is that v and i are collinear—see Lemma
3.1 in Luenberger (1969). If this is not the case, P < S
and compensation schemes are introduced to maximize
the PF. The condition for unity power factor is that the
input current to a systems is proportional at all times to
the instantaneous supplied voltage.

2.1 On power factor improvement by shunt lossless
compensation
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Fig. 2. (a) Parallel load compensation and (b) Series
compensation schemes in a power delivery system
with ideal source, where the load and compensator
are represented by their admittances Yℓ and Yc,
and/or impedance Zc, resp.

The PF compensation configuration considered in this
subsection is depicted in Fig. 2a, where Yc, Yℓ : Ln

2 → Ln
2

are the admittance operators of the compensator and the
load N, respectively. That is,

ic = Yc(vs), iℓ = Yℓ(vs), (2)

2 For a passive load the measure is defined as PF ∈ [0, 1], for
the current lagging or leading the voltage, since P > 0. However,
for an active load, or under nonsinusoidal or unbalanced conditions
the active power may take negative values, more details in IEEE
Standard-1459 (2010), therefore PF ∈ [−1, 1] is a general measure.
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where ic, iℓ ∈ Ln
2 are the compensator and load currents,

respectively. In the simplest LTI case the operators Yc, Yℓ

can be described by their admittance transfer matrices,
which we denote respectively by Ŷc(s), Ŷℓ(s) ∈ C

n×n,
where s represents the complex frequency variable s = jω.

Following standard practice, we consider only shunt loss-
less compensators, that is,

〈Yc(vs), vs〉 = 0, ∀vs ∈ Ln
2 . (3)

2.2 On PF improvement by series lossless compensation

The PF compensation configuration considered in this
subsection is depicted in Fig. 2b, where Zc, Yℓ : Ln

2 →
Ln
2 are the impedance and admitance operators of the

compensator and the load N, respectively. That is,

vc = Zc(is), is = Yℓ(vℓc), (4)

where vc, vℓc ∈ Ln
2 , are the compensator and load volt-

ages, respectively. In the simplest LTI case the oper-
ators Zc, Yℓ can be described by their impedance and
admittance transfer matrices, which we denote by Ẑc(s),

Ŷℓ(s) ∈ C
n×n, respectively.

Following standard practice, we consider only series loss-
less compensators, that is,

〈Zc(is), is〉 = 0, ∀is ∈ Ln
2 . (5)

For the shunt and series compensation schemes, the
uncompensated PF, i.e., the value of PF is given by

PFu :=
〈vs, iℓ〉

‖vs‖ ‖iℓ‖
, (6)

that is, the value of PF with Yc = 0 or Zc = 0 and
where, by Kirchhoff’s Current and Voltage Laws (KCL
and KVL), the uncompensated current and voltage are
is = iℓ and vs = vℓ, respectively.

Definition 4. (Power factor improvement). Given a n-
phase source voltage vs(t) with a fixed load Yℓ : Ln

2 → Ln
2 ,

as in Fig. 1a, power-factor improvement is achieved with
the lossless compensator Yc, Zc : Ln

2 → Ln
2 if and only if

PF > PFu (7)

where PFu denotes the uncompensated power factor.

2.3 A cyclodissipativity characterization of power factor
compensation

In this work, the framework for analysis of PF compensa-
tion for non-sinusoidal nonlinear networks is based on a
cyclodissipativity condition introduced in Garcia-Canseco
et al. (2007), which is recalled to contextualize the results.
Then, we first present the definition of cyclodissipativity
in the context of electrical networks.

Definition 5. Given a mapping w : Ln
2 × Ln

2 → R. The
n-port system of Fig. 1a is cyclodissipative with respect
to the supply rate w(v, i) if and only if

∫ T

0

w(v(t), i(t))dt > 0. (8)

for all (v, i) ∈ Ln
2 × Ln

2 .

Notice that for cyclopassivity the supply rate function
w(v, i) is of a specific form, namely w(v, i) := v⊤(t)i(t).
By this concept, the next results from Garcia-Canseco
et al. (2007) were introduced for the shunt compensation.

Proposition 6. Consider the system of Fig. 2a with fixed
Yℓ. The compensator Yc improves the PF if and only if
the system is cyclodissipative with respect to the supply
rate

w(vs, is) := (Yℓ(vs) + is)
⊤(Yℓ(vs)− is). (9)

The proof follows from (7) and the fact the compensator
is lossless.
From Proposition 6, the next corollary characterizes the
set of all compensators Yc that improve the power-factor
for a given Yℓ.

Corollary 7. Consider the system of Fig. 2. Then Yc

improves the PF for a given Yℓ if and only if Yc satisfies

2〈Yℓ(vs), Yc(vs)〉+ ‖Yc(vs)‖2 < 0, ∀vs ∈ Ln
2 . (10)

Dually, given Yc, the PF is improved for all Yℓ that satisfy
(10).

3. MAIN RESULT

In this section we present a cyclodissipativity characteri-
zation of the series compensation, where we also provide
a feedback configuration and a geometric interpretation.

Firstly, although the problem at hand is posed as a
problem in networks, it can be equally well interpreted as
a feedback problem; the circuit of Fig. 2b is represented
by the system of Fig. 3, which consists of two systems in
a feedback loop. Specifically, the input is vs, since i′ℓ = 0,
the outputs are iℓc and vc, and the (error) outputs are ic
and vℓc . The products are related with the instantaneous
delivered power by the source i⊤s vs and the instantaneous
input power into the load i⊤ℓcvℓc , where is = iℓc .

c

vc

vs

ic

i

i l

v

l

lclc

Fig. 3. Feedback configuration of the series compensation
scheme in a power delivery system with ideal source.

We are in position to formulate the series PF improve-
ment problem in terms of cyclodissipativity.

Proposition 8. Consider the system of Fig. 2b. Given a
n-phase source voltage vs(t) with a fixed load Yℓ. The
compensator Zc improves the PF if and only if the system
has finite gain and is cyclodissipative with respect to the
supply rate

w(vs, is) := δ2(Yℓvs)
⊤Yℓvs − i⊤s is. (11)

for all (vs, is) ∈ Ln
2×Ln

2 , where δ is the upper gain bound 3

and is given by
3 See Table 1 of Hill and Moylan (1977), Definition 2.1 of Dower
and James (1998), and Definition 2 of Polushin and Marquez (2004).

Puebla, Puebla, México, 23-25 de octubre de 2019 461 Copyright©AMCA. Todos los Derechos Reservados www.amca.mx



δ =
〈vℓc , is〉
‖vs‖

‖(I + ZcYℓ)vℓc‖
〈(I + ZcYℓ)vℓc , iℓ〉

, (12)

with 1 < δ < ∞.

Proof. From KCL and KVL, we have for the uncompen-
sated case,

is = iℓ (13)

vs = vℓ, (14)

and, with series compensation, i.e., Zc 6= 0,

is = ic = iℓc (15)

vs = vℓc + Zcic. (16)

Substituting (14) and (15) into (16), we obtain

vℓ = (I + ZcYℓ)vℓc , (17)

where, we use iℓc = Yℓvℓc .

From the definition of power factor (1) and the lossless
condition of the series compensator (5), we have

PF =
〈vℓc , is〉
‖vs‖‖is‖

, (18)

and, we define
α =

〈vℓc , is〉
‖vs‖

. (19)

The uncompensated power factor (6) is given by

PFu :=
〈vℓ, iℓ〉
‖vℓ‖‖iℓ‖

,

and by using (17), then

PFu =
〈(I + ZcYℓ)vℓc , iℓ〉
‖(I + ZcYℓ)vℓc‖‖iℓ‖

, (20)

and we define

αu :=
〈(I + ZcYℓ)vℓc , iℓ〉
‖(I + ZcYℓ)vℓc‖

. (21)

From Definition (7), we conclude that PF > PFu if and
only if

〈vℓc , is〉
‖vs‖‖is‖

>
〈(I + ZcYℓ)vℓc , iℓ〉
‖(I + ZcYℓ)vℓc‖‖iℓ‖

,

or, by (19) and (21), the inequality becomes

‖is‖2 < δ2‖Yℓvs‖2, (22)

where we use iℓ = Yℓvs and δ := α
αu

. Consequently,

note that (8) with (11) is equivalent to (22), which
yields the desired result. Moreover, if Zc = 0, i.e., the
uncompensated case, from (12) and (17) we have that
δ = 1, and if Zc → ∞, then δ → 0, since vℓc = (I +
ZcYℓ)

−1vs. Finally, because the fact that δ depends only
on bounded signals, iℓ, vℓc , vs and the operators |Zc|,
|Yℓ| ∈ Ln

2 , we can conclude that 0 ≤ δ < ∞ for Zc 6= 0
and 1 < δ < ∞ for Zc 6= 0 that improves the power factor.

The next corollary of this result is the characterization of
all compensators that improve the power factor.

Corollary 9. Consider the system of Fig. 2b. Then Zc

improves the PF for a given Yℓ if and only if Zc satisfies

‖YℓZcis‖2−2〈iℓ, YℓZcis〉<(δ2−1)‖iℓ‖2, ∀is, iℓ ∈ Ln
2 . (23)

Proof. From (22), using the facts is = Yℓvℓc , vc = Zcis,
and vs = vc + vℓc ,

‖Yℓvℓc‖2 < δ2‖iℓ‖2,
‖Yℓ(vs − vc)‖2 < δ2‖iℓ‖2,

‖Yℓvs‖2 − 2〈Yℓvs, YℓZcis〉+ ‖YℓZcis‖2 < δ2‖iℓ‖2.
and, from iℓ = Yℓvs, then we have

‖YℓZcis‖2 − 2〈iℓ, YℓZcis〉 < (δ2 − 1)‖iℓ‖2. (24)

3.1 Geometrical interpretation of the PF compensation

Referring to Fig. 4 we have a geometric interpretation of
power factor compensation. Fig. 4 depicts the vector vs,
vℓc , vc, is, and iℓ. The angles β and βu are defined as

β := cos−1 PF, βu := cos−1 PFu,

or, β = ∠(vℓc , is) and βu = ∠(vℓc , iℓ). Then, it is clear
from Fig. 4 that PF > PFu if only if β < βu.
From (12), by assuming that 〈vℓc , is〉 > 0 and 〈(I +
ZcYℓ)vℓc , iℓ〉 > 0, then we have that 1 < δ < ∞.

vc

il

u

li

Zc v lYl c

v lvs

c is

u

v lc

Fig. 4. Geometric interpretation of the PF compensation.

Remark 10. The projection of is = iℓc onto vs is the
vector denoted and defined by

proj(is, vs) :=
〈vs, is〉
‖vs‖2

vs,

with magnitude

α :=
〈vs, is〉
‖vs‖

=
〈vℓc , is〉
‖vs‖

Remark 11. Consider the projection of iℓ onto vs = vℓ is
the vector denoted and defined by

proj(iℓ, vs) :=
〈vs, iℓ〉
‖vs‖2

vs,

with magnitude

αu :=
〈vs, iℓ〉
‖vs‖

=
〈(I + ZcYℓ)vℓc , iℓ〉
‖(I + ZcYℓ)vℓc‖

.

where we use vℓ = (I + ZcYℓ)vℓc .
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4. EXAMPLE: LINEAR CIRCUIT WITH
NONSINUSOIDAL SUPPLY VOLTAGE

In this section we present an example that illustrate some
of the points discussed in the paper.

is ic

i l

v cvs

C

R

L

c

l

l

l

Fig. 5. Capacitive series compensation of a RL-series
circuit.

Consider the circuits of Fig 5, namely, a linear R-L loads,
with admittance Yℓ, and with a capacitive compensator
Ŷc(s) = sC, where vs(t) is the supply instantaneous
voltages with the following harmonics:

Fundamental voltage:
√
2 V

3-th harmonic: 50% of fundamental voltage
5-th harmonic: 25% of fundamental voltage

Let V sk denote the k-th harmonic component of the
source voltage,

Yℓk = Gℓk − jBℓk

the load admittance for the k-harmonic. The network
equations yield to the following relations:

V 2
ℓc,k

=
V 2

sk

|I+Zck
Yℓk

|2 , I2ℓc,k = |Yℓk |2V 2
ℓc,k

=
|Yℓk

|2V 2

sk

|I+Zck
Yℓk

|2

Zck = 1/jk2πfC.

and, the rms values of the source current and (compen-
sated) load voltage and the power delivered to the load
are given by, respectively,

‖is‖ =
√

∑

k I
2
sk
, ‖vℓc‖ =

√

∑

k V
2
ℓc,k

, Pℓc =
∑

k GℓkV
2
ℓc,k

.

The R-L load is assumed to be lumped resistance R = 0.65
10

Ω in series with lumped, pure inductance L = 0.76
10

H, with
0.65 PF lagging at 50 Hz.

Condition (22) helps us to obtain the parameters for
a given compensator Zc, i.e., the capacitance for this
example, such that the power factor is improved. Where,
the bounded gain is

δ(C) =

∑

k GℓkV
2
ℓc,k

√

∑

k V
2
sk

√

∑

k |I + ZckYℓk |2V 2
ℓc,k

∑

k Gℓk |I + ZckYℓk |2V 2
ℓc,k

, (25)

the rms value of the input and uncompensated load
current are, respectively,

‖is(C)‖ =

√

∑

k

|Yℓk
|2V 2

sk

|I+Zck
Yℓk

|2 , and ‖iℓ‖ =
√

∑

k |Yℓk |2V 2
sk
.

Variation of the power factor, load voltage, source current
and load power against capacitance is shown in Fig. 6,
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Fig. 6. Plots of power factor, source current, load voltage
and load power. For the upper plot, blue solid line is
plotted the power-factor under the distorted voltage
source and red dashed line for the fundamental
component only

where it also shows, in the upper plot, that the optimal
compensation is achieved at the capacitance Copt =
41.8mF and a lower bound on the capacitance Cmin =
20.7mF is obtained as a consequence of the condition
(24) for power-factor improvement (22) for this example.
Moreover, the power factor has several corresponding
local minima, but for this example the global maximum of
the power factor under distorted and fundamental voltage
sources does correspond to the same mode. In Fig. 6 the
plots of the compensated voltage across the load and
the power delivered to the load are also shown. Theses
show considerable peaks of load voltage at the capacitor
values of approximately 1.667 mF and 4.703 mF. These
values are corresponde to the resonant conditions between
the compensating capacitance and the load inductance
for the 3-th and 5-th harmonic. This yields a current
peak for each harmonic. However, because the small
load conductance at such frequencies, the average power
delivered by these current components is small such that
almost non-effect on the delivered power at the resonant
conditions.

From Fig. 7, for a fixed LTI capacitor compensator
with admittance Ẑc(s) = 1/sC, the power factor is
improved for all C > Cmin. Through this example we
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Fig. 7. The plots of the power factor and the inequality
δ(C) > ‖is‖ / ‖iℓ‖ against capacitance. Blue δ(C)
and red ‖is‖ / ‖iℓ‖.

illustrate that the result reported in this work can be
used for the formulation of a problem of optimization
of the compensator. However, the major drawback for
power factor compensation by means of a series connected
capacitor for an equivalent load, as a series RLC circuit,
is observed when ωL ≫ R and this approach may not be
feasible since V̂c ≫ V̂s.

5. CONCLUSIONS AND FUTURE WORK

In this paper, a cyclodissipativity characterization of
power factor improvement by means of series compen-
sation for ideal non-sinusoidal networks was presented.
Our main goal is to point out that the cyclodissipative
framework benefits the design by giving additional physi-
cal insights: namely, we show that the series compensation
can be interpreted as feedback interconnection between
the series compensator and the uncompensated system.
Based on this, the obtained results with the dissipativ-
ity framework can be used in order to increase system
efficiency.

While we just concentrated in this work on series compen-
sation problem, we are aware that there are side effects,
namely, some important issues regarding to minimize
oscillatory interactions with transformers and motors in
practical applications, Miske (2001), and voltage stability
in transmission and distribution lines, Manchowski et al.
(2008), need to be addressed.
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