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Abstract: In this work, a class of virtual control systems associated to mechanical systems in
the Euler-Lagrange (EL) and port-Hamiltonian (pH) energy-based frameworks is introduced,
where the behavior of the original system is embedded into the dynamics of the virtual one. The
construction of the virtual mechanical systems is based on the notion of virtual forces which are
mathematical objects that behave like true forces. Remarkably, the virtual mechanical systems
preserve the energy conservation properties of the original mechanical systems, e.g., passivity.
Moreover, the aforementioned virtual forces exhibit coordinate-free properties.
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1. INTRODUCTION

In this work, motivated by the recent applications of
virtual systems in analysis and control, a unified approach
for the construction of virtual control systems associated
to mechanical systems is presented. A virtual control
systems can produce all the solutions of the original one.
Virtual systems have been extensively used in the field of
systems and control. These are commonly found in state
estimation and tracking problems. For instance, in state
estimation, the original system is the reference system
and the virtual system is the observer itself.

The virtual systems point of view in mechanical EL
systems is introduced in the celebrated work of Slotine
and Li (1987) within the context of sliding control (SC),
where a structure preserving virtual mechanical system
was employed to design a trajectory tracking controller.
This idea is later revisited in Ortega et al. (2013) from
a passivity-based control (PBC) perspective, where the
virtual system is interpreted as the target closed-loop dy-
namics in the design process. A free-coordinate interpre-
tation of this scheme without gravity effects is presented
in van der Schaft (2017). In the work Reyes-Báez et al.
(2018b), virtual systems in the EL framework are used for
distributed PBC design of mechanical network dynamics.
Another control design method for mechanical EL sys-
tems also using virtual systems is briefly discussed in

Jouffroy and Fossen (2010); Manchester et al. (2018),
where the controller synthesis is performed on directly on
the virtual system. Such controller is then used to close
the loop of the original mechanical system.

Similar to the EL framework, a class of virtual sys-
tems have been used in control design of mechanical
pH systems. Specifically, the structure preserving con-
trol techniques propose virtual systems as target behav-
iors. For instance, partial linearizion Venkatraman et al.
(2010); Dirksz and Scherpen (2010), interconnection and
Damping assignment passivity-Based Control (IDA-PBC)
Ortega et al. (2002), control by interconnection (CbI)
method Ortega et al. (2008), among others. When these
methods are applied to mechanical systems, it is a com-
mon practice to construct the virtual systems after an
intermediate canonical generalized transformation that
lets them to rewrite the system as a system whose inertia
matrix is constant, see Fujimoto et al. (2003); Venkatra-
man et al. (2010). In the recent work of Reyes-Báez et al.
(2017), a passivity-based sliding control is developed 1 for
mechanical pH systems also using the virtual systems.
A different point of attack for the control of mechanical
pH using virtual systems is adopted also by the authors
in Reyes-Báez et al. (2018c, 2019); Reyes Báez (2019),

1 This can be seen as a Hamiltonian counterpart of the one in
Slotine and Li (1987) in the case where all parameters are known.
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where the control design goal is to impose contractive
behavior for the closed-loop virtual system, see Lohmiller
and Slotine (1998).

The paper is organized as follows: In Section 2 the notion
of virtual (control) systems is introduced. In Section 3 a
class of virtual mechanical systems in the EL framework
is presented, together with a energy-based interpretation.
The pH counterpart of for mechanical systems and prop-
erties is is presented in Section 4. But due to space lim-
itations, the free-coordinate interpretation of pH system
is not worked in this work.

2. PRELIMINARIES ON VIRTUAL SYSTEMS

Let Σu be a nonlinear control system, affine in the input
u, with state space manifold X of dimension N , which in
local coordinates (x1, . . . , xN ) is given by

Σu :











ẋ = f(x, t) +

n
∑

i=1

gi(x, t)ui,

y = h(x, t),

(1)

where x ∈ X is the state, input u ∈ U ⊂ Rn, output y ∈
Y ⊂ Rn, time-dependent vector fields f, gi ∈ X

∞(X ×R)
and the scalar function h ∈ C∞(X ×R). The input space
U and output space Y are open subsets ofRn. Solutions to
Σu are given by trajectories t ∈ [t0, T ] 7→ x(t) = ψu

t0
(x0, t)

resulting from the initial condition x0 ∈ X , for a fixed
input function u : [t0, T ] → U , with ψu0

t0
(x0, t0) = x0.

Consider a forward invariant and connected neighborhood
C of X such that ψu

t0
(t, x0) is forward complete for every

x0 ∈ C, i.e., ψu
t0
(x0, t) ∈ C for each t0, each function u and

each t ≥ t0. By connectedness, any pair of points in C can
be connected by a smooth curve γ : (−ε, ε) → C.

In the following definition the different notions of virtual
(control) system introduced in Wang and Slotine (2005);
Jouffroy and Fossen (2010); Forni and Sepulchre (2014)
are unified and generalized.

Definition 1. Consider systems Σu in (1). Suppose that
Cv ⊆ X and Cx ⊆ X are connected and forward invariant
for these systems. A virtual control system associated to
Σu is defined as

Σv
u :

{

ẋv = Γv(xv, x, uv, t),
yv = hv(xv, x, t), ∀t ≥ t0,

(2)

with state xv ∈ X and is parametrized by the trajectory
x ∈ X of Σu, where hv : Cv × Cx × R≥0 → Y and
Γv : Cv × Cx × U ×R≥0 → TX are such that

Γ(x, x, u, t) = f(x, t) +

n
∑

i=1

gi(x, t)ui,

hv(x, x, t) = h(x, t), ∀x, ∀u, ∀t ≥ t0.

(3)

It follows that any solution x(t) = ψt0(t, xo) of the
original control system Σu in (1), starting at x0 ∈ Cx
for a certain input u, generates the solution xv(t) =
ψt0(t, x0) to the virtual system Σv

u in (2), starting at

xv0 = x0 ∈ Cv with uv = u, for all t > t0. However, not
every virtual system’s solution xv(t) corresponds to an
original system’s solution. Thus, for any trajectory x(t)
of the original system, we may consider (2) as a time-
varying system with state xv.

3. VIRTUAL MECHANICAL SYSTEMS IN THE
EULER-LAGRANGE FRAMEWORK

Let Q be the configuration manifold of a mechanical sys-
tem of n degrees of freedom (dof) with a local coordinates
q = (q1, . . . , qn) at q. Consider function L : TQ → R

called the Lagrangian with coordinates (q, v) of TQ.

In this work only simple mechanical systems are con-
sidered. For this class of systems simply the Lagrangian
function is the difference between the kinetic (co)-energy
and the potential energy, in local coordinates, given as

L(q, q̇) =
1

2
q̇⊤M(q)q̇ − P (q), (4)

and the Euler-Lagrange equations are given by

M(q)q̇ + C(q, q̇)q̇ + g(q) = B(q)τ, (5)

with g(q) the differential of P (q) and C(q, q̇) any matrix
satisfying the relation (see relation

C(q, q̇)q̇ = Ṁ(q)q̇ −
∂

∂q

(

1

2
q̇⊤M(q)q̇

)

. (6)

The forces C(q, q̇)q̇ correspond to the centrifugal (i = j)
and Coriolis (i 6= j) effects, respectively.

The covector B(q)τ , with inputs τ ∈ U , represents the
vector of external forces. Matrix B(q) indicates how the
inputs τ influences the system. If rank B(q) = m < n
then we say that system (5) is underactuated.

For system (5) the n × n matrix with (i, j)-th element
∂2L
∂q̇iq̇j

(q, q̇) is equal to M(q) and thus nonsingular. Hence

equation (5) define the affine system

d

dt

[

q
v

]

=

[

v
−M−1 (C(q, v)v + g(q))

]

+

[

0n
M−1B

]

τ. (7)

of the form (1) with state space X = TQ.

It is well known that the EL equations (5) exhibit several
important dynamic properties; see Ortega et al. (2013)
and references therein. Among those properties, the skew-
symmetry of the matrix N(q, q̇) := Ṁ(q) − 2C(q, q̇)
receives special attention since it is close related to the
energy conservation of the EL system (5). To see this
consider the total (co-)energy

E(q, q̇) =
1

2
q̇⊤M(q)q̇ + P (q), (8)

Then, the (co-)energy balance reads as follows

Ė(q, q̇) = q̇⊤B(q)τ +
1

2
q̇⊤N(q, q̇)q̇ = q̇⊤B(q)τ. (9)

This shows that the energy is conserved. In the dissipa-
tivity theory Willems (1972); van der Schaft (2017), the
system (5) is called lossless if condition (9) is satisfied.
The scalar function (8) is called a storage function.
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From a Riemannian geometry point of view, the skew-
symmetry of N(q, q̇) is a clear expression in local co-
ordinates of the torsion-free property and compatibility

condition of the Levi-Civita affine connection
M

∇ with the
metric M〈v, v〉 := v⊤M(q)v (see Appendix A for more
details). This is shown in the following corollary.

Corollary 1. Consider the Levi-Civita connection
M

∇ asso-
ciated to the inertia matrix M(q), and let q̇ = X(q) and
q̇v = Y (q) in TqQ. Then, the compatibility condition 2

LX (M〈Y, Y 〉) =M〈
M

∇XY, Y 〉+M〈Y,
M

∇XY 〉 (10)

is expressed in local coordinates as

Y ⊤N(q,X)Y = Y ⊤
[

Ṁ(q)− 2C(q,X)
]

Y = 0. (11)

where
M

∇XY is covariant derivative of Y (q) along X(q).

Remark 1. The energy conservation condition (9) re-
quires that (10) (or in coordinates (11)) to hold only along
q̇v = q̇, instead of for every tangent vector q̇v ∈ TqQ.

Notice that the induced maps by N(q, q̇) defined as

FN (q, q̇) := N(q, q̇)q̇, FNv
(q, q̇, q̇v) := N(q, q̇)q̇v (12)

have units of force, and their corresponding ”power” is
given by q̇⊤F (q, q̇) = 0 and q̇⊤v FNv

(q, q̇, q̇v) = 0. The first
is a consequence of the energy conservation (see (9)) and
the later is a consequence of the compatibility condition
(see (11)). Nevertheless, FNv

(q, q̇, q̇v) not necessarily de-
fines a true force since the tangent vector q̇v ∈ TqQ may
not correspond to the velocity of q. This would be the
case only if q̇v = q̇, implying that the following holds

FNv
(q, q̇, q̇) = FN (q, q̇) (13)

Such FNv
(q, q̇, q̇v) is referred as a virtual force.

Exploiting the above introduced notion of virtual forces,
in the next proposition a class of virtual control system
associated to the (original) EL system (5) are introduced.

Proposition 1. Consider the EL system in(5). Consider
also the system defined by

q̇v = vv,

M(q)v̇v + C(q, v)vv + gv(qv) = B(q)τv,

yv = B⊤(q)vv,

(14)

with state (qv, vv) ∈ Q × R
n and parametrized by

(q, q̇) ∈ TQ, where gv(qv) is such that gv(q) = g(q),
B(q)τv ∈ T ∗Q is a co-vector with inputs τv, and yv is
an output. Then, system (14) defines a virtual control
system for the original system (5).

Remark 2. The virtual system (14) can be seen as the
second-order version of the one introduced in (van der
Schaft, 2017, Definition 4.6.2). Here we have also consid-
ered the virtual potential energy function Pv(qv).

3.1 Losslessness property preserving

Remarkably, not only the EL system (5) is lossless (i.e.,
preserves the energy) with respect to the output y =

2 LX(·) denotes the operator Lie derivative along the vector X(q).

B⊤(q)v, but also the virtual system (14) turns out to
be lossless with respect to the output yv = B⊤(q)vv,
for every time-functions (q(·), v(·)). As we will see in the
following proposition, the skews-symmetry of N(q, q̇) is
crucially used in the proof’s computations. To this end,
consider the storage function of the virtual system (14)
as the function of (qv, vv) given by

Ev(qv, vv, q, v) :=
1

2
v⊤v M(q)vv + Pv(qv), (15)

parametrized by (q, v), where Pv(qv) is such that gv(qv) =
∂Pv/∂qv(qv).

Proposition 2. For any curve (q(·), v(·)), the virtual sys-
tem (14) with input τv and output yv is lossless, with the
(q, v)-parametrized storage function (15).

Proposition 2 can be easily extended to the case when
the original EL system (5) contains dissipative forces.
In particular, if the dissipation is modeled by Rayleigh
function R(q̇) satisfying q̇⊤ ∂R

∂q̇
(q̇) ≥ 0, then the virtual

system (14) is passive with input-output pair (τv, yv) and
storage function (15). Indeed,

Ėv(qv, vv, q, v) ≤ −q̇⊤v
∂R

∂q̇
(q̇v)q̇v + y⊤v τv. (16)

Moreover, with Proposition 2 the standard lossless (or
passivity) preserving interconnection properties of the EL
system (5) can be extended to the virtual system (14).

Remark 3. The virtual system (14) possesses the contrac-
tivity property Lohmiller and Slotine (1998); Jouffroy and
Fossen (2010). However, this is not treated in this work.

3.2 Coordinate-free description

For q̇ = X(q),
M

∇XX is locally given by
M

∇q̇ q̇ = q̈ +M−1(q)C(q, q̇)q̇(t). (17)

It follows that (5) is expressed in a free-coordinate manner
in the context of Riemannian geometry as follows:

q̇ = X(q),
M

∇X(q)X(q) + grad(P (q)) =M−1(q)B(q)τ,
(18)

where grad(P (q)) ∈ TqQ is the gradient of the potential
energy function P (q) which in local coordinates is given
by grad(P (q)) =M−1(q)∂P

∂q
. For the external input term

M−1(q)B(q)τ , from a geometric point of view, the force
B(q)τ is an element of the cotangent space T ∗

q Q. In this

case,M−1(q) defines a map from the cotangent space and
to tangent space; this yields M−1(q)B(q)τ ∈ TqQ.

Remark 4. If τ = 0, then the (18) reduces to the geodesic

equation
M

∇q̇ q̇ = 0n and q is the geodesic curve, see (A.7).

Proposition 3. The coordinate-free description of the vir-
tual system (14) is given by

q̇v(t) = Y (qv),
M

∇X(q)Y (qv) + grad(P (q)) =M−1(q)B(q)τv.
(19)
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4. VIRTUAL MECHANICAL SYSTEMS IN THE
PORT-HAMILTONIAN FRAMEWORK

As an alternative to the Euler-Lagrange framework for
mechanical systems, the (port-)Hamiltonian formulation
can be adopted van der Schaft and Maschke (1995).

In this setting the state space is given by the cotangent
bundle X = T ∗Q with natural coordinates x = (q, p).
For simple mechanical systems the Hamiltonian function
corresponds to the total energy defined by

H(q, p) =
1

2
p⊤M−1(q)p+ P (q), (20)

where p :=M(q)q̇ is the generalized momentum, and the
port-Hamiltonian dynamics is

[

q̇
ṗ

]

= (J(q, p)−R(q, p))







∂H

∂q
(q, p)

∂H

∂p
(q, p)






+

[

0n
B(q)

]

τ,

y = B⊤(q)
∂H

∂p
(q, p),

(21)

The interconnection and dissipation matrices given by

J(x) =

[

0n In
−In 0n

]

, R(x) =

[

0n 0n
0n D(q)

]

(22)

respectively. The n × n matrix D(q) = D⊤(q) ≥ 0n is a
dissipation term. Similar to the EL framework, the energy
balance for system (21) is given by the time derivative of
the Hamiltonian (20) along the system’s trajectories, i.e.,

Ḣ(q, p) = −
∂H⊤

∂p
(q, p)D(q)

∂H

∂p
(q, p) + τ ≤ y⊤τ. (23)

It follows that the map τ 7→ y is passive with storage
function (20). Furthermore, the system is lossless for if
D(q) = 0n (energy conservation).
System in (21) can be equivalently rewritten as follows
(see Reyes-Báez et al. (2018a) for details)

[

q̇
ṗ

]

=

[

0n In
−In −(E(q, p) +D(q))

]







∂P

∂q
∂H

∂p






+

[

0
B

]

τ,

yE =
[

0n B⊤(q)
]







∂P

∂q
(q)

∂H

∂p
(q, p)






,

(24)

where E(q, p) := SH(q, p)− 1
2Ṁ(q), with SH(q, p) a skew-

symmetric matrix 3 , and the output satisfies yE = y.
The main characteristic of this alternative form is that
the forces associated to the inertia matrix of (21), i.e.
∂
∂q (

1

2
p⊤M−1(q)p), are decoupled from the force ∂H

∂q
(q,p) by

means of the physical identity
∂
∂q

(

1
2p

⊤M−1(q)p
)

= E(q, p)M−1(q)p. (25)

Notice that this is possible without any change of coor-
dinates or feedback, which is a common practice in the

3 This matrix is related to the compatibility condition (11) as
follows: −2SH(q, p)M−1(q)p = N(q,M−1(q)p)M−1(q)p.

literature; e.g. Venkatraman et al. (2010) and Romero
et al. (2015). Moreover, it can be shown that the force
E(q, p)M−1(q)p is the Hamiltonian counterpart 4 of the
force C(q, q̇)q̇ in the Lagrangian framework.

As expected, the input-output pair (u, yE) defines a
passive map with the same storage function (20) as the
storage function as well. Indeed, the time derivative of
H(q, p) a long the trajectories of (24) is given by

Ḣ =







∂H

∂q
∂H

∂p







⊤





[

0n In
−In −(E +D)

]







∂P

∂q
∂H

∂p







+

[

0
B

]

τ







≤ y⊤Eτ.

(26)

Notice that the first term inside the bracket can be
conveniently rewritten as







∂H

∂q
∂H

∂p







⊤

F







∂P

∂q
∂H

∂p






=















∂P

∂q
∂H

∂p
∂

∂q
( 1

2
p⊤M−1p)















⊤

F











∂P

∂q
∂H

∂p
M−1p











= 0.

(27)

where F(q, p) and F(q, p) are respectively given by

F(q, p) :=

[

0n In
−In −E

]

; F(q, p) =

[

0n In 0n
−In −E 0n
0n 0n In

]

. (28)

With the above observations let us define the map F(q, p) :
C∞(T ∗Q) → R

2 in coordinates as

F(q, p)[H(q, p)] := F(q, p)







∂P

∂q
(q)

∂H

∂p
(q, p)






, (29)

with 5 H(q, p) ∈ C∞(T ∗Q) given in (20). From the energy
balance identity in (27), it follows that

∂H⊤

∂x
(q, p)F(q, p)[H(q, p)] = 0. (30)

This suggests that the quantity F(q, p)[H(q, p)] can be
interpreted as the Hamiltonian counterpart of the work-
less force FN (q, q̇) in (12). Similarly, consider a smooth
function Hv(qv, pv, q) ∈ C∞(T ∗Q×Q) of the form

Hv(qv, pv, q) =
1

2
p⊤v M

−1(q)pv + Pv(qv), (31)

and parametrized by q(·) from (24), where function Pv(qv)
is such that Pv(q) = P (q). Consider also the map defined
as F(q, p) : C∞(T ∗Q×Q) → R

3 with

F(q, p)[Hv(qv, pv, q)] := F(q, p)











∂Pv

∂qv
(qv)

∂Hv

∂pv
(qv, pv, q)

M−1(q)p











. (32)

4 Similar results were obtained the works of Sarras et al. (2012)
and Stadlmayr and Schlacher (2008).
5 C∞(T ∗Q) is the set of smooth scalar functions H : T ∗Q → R.
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By construction, it straightforward to verify that

∂H⊤
v

∂xv
(qv, pv, q)F(q, p)[H(qv, pv, q)] = 0, (33)

where xv = (xv, q), xv = (qv, pv) and q is the solution
to q̇ = M−1(q)p. This in turn implies that whenever
(qv, pv) = (q, p) we have that

∂H⊤
v

∂xv
(q, p, q)F(q, p)[H(q, p, q)] =

∂H⊤

∂x
(q, p)F(q, p)[H(q, p)].

(34)
Hence, similar (29), F(q, p)[Hv(qv, pv, q)] can be under-
stood as the Hamiltonian counterpart of the workless
virtual force FNv

(q, q̇, qv) in (12).

Proposition 4. Consider system (21) and its alternative
coordinate formulation (24). Consider also the input-
state-output system given by

[

q̇v
ṗv

]

=

[

0n In
−In −(E(q, p) +D)

]







∂Hv

∂qv
∂Hv

∂pv
1






+

[

0n
B

]

τv

yv =
[

0n B⊤(q)
]







∂Hv

∂qv
(qv, pv, q)

∂Hv

∂pv
(qv, pv, q)






,

(35)

in the state (qv, pv) ∈ Q × R
n and parametrized by

(q, p) ∈ T ∗Q, where Hv(qv, pv, q) is given as in (31),
B(q)τv ∈ T ∗Q is a covector with inputs τv, and yv is
an output. Then, system (35) defines a virtual control
system for the original system (21).

4.1 Structure preserving property

As its EL counterpart, not only the pH system (21)
(respectively the alternative form (24)) is passive with
input-output pair (τ, y) (respectively (τ, yE)) and storage
function (20), but also the virtual system (35) with input-
output pair (τv, yv) and storage function given by (31). In
the following proposition it is shown that the passivity
preserving property relies explicitly in the ”workless”
property of the map F(q, p) in (33).

Proposition 5. For any curve (q(·), p(·)) the virtual sys-
tem (35) with input τv and output yv is passive, with
q-parametrized storage function (31).

5. CONCLUSION

In this work, virtual systems associated to simple me-
chanical systems have been presented. It was shown how
the concept of virtual forces can be used to construct
such virtual mechanical systems in both, the EL and
pH frameworks. These virtual systems, besides having all
the original system’s solution embedded, preserve some
structural properties such as the lossless property, which
is associated to energy conservation. Moreover, using the
geometry structure of the original system’s state space,
it was shown that the virtual systems preserve also some
coordinate-free properties.

Appendix A. THE LEVI-CIVITA CONNECTION AND
COVARIANT DERIVATIVE IN COORDINATES

The matrix M(q) defines a Riemannian metric given by

M〈v, w〉 := v⊤M(q)w, for u,w ∈ TqQ. (A.1)

Thus, a geometric interpretation of the EL equations (5)
can be given within the context of Riemannian manifolds
(van der Schaft, 2017, Section 4.6).

Let Γ(qa, qb) = {γ : C2[0, 1] → Q|γ(0) = qa, γ(1) = qb} be
the collection of twice continuously differentiable curves
on [0, 1] connecting qa ∈ Q and qb ∈ Q, with local
representative given by t 7→ q(t) = [q1(t), . . . , qn(t)]

⊤.

Definition 2. For any vector fields X,Y ∈ X
∞(TQ) and

any real function f ∈ C∞(Q), an affine connection ∇ is a
map (X,Y ) 7→ ∇XY ∈ X

∞(TQ) such that

(a)∇XY is bilinear in X and Y ,

(b)∇fXY = f∇XY ,

(c)∇XfY = f∇XY + (LXf)Y.

The vector ∇XY is called the covariant derivative of Y
with respect to X. Property (b) implies that ∇XY at
q ∈ Q depends on X only through its value X(q).

The torsion of an affine connection ∇ is defined as

T (X,Y ) := ∇XY −∇YX − [X,Y ]. (A.2)

with [X,Y ] the Lie bracket of X,Y . If T (X,Y ) = 0, we
say the connection is torsion-free. An affine connection ∇
on Q is said metric or compatible with the Riemannian
metric in (A.1) if

LX (M〈Y, Z〉) =M〈∇XY, Z〉+M〈X,∇XZ〉 (A.3)

for all vector fields X,Y, Z ∈ X
∞(Q). In a chart (Q, ϕ) at

q and corresponding basis { ∂
∂q1

, . . . , ∂
∂qn

} of TqQ, the ℓ-th

component of ∇ ∂
∂qi

∂
∂qj

∈ X
∞(W) is locally written as

(

∇ ∂
∂qi

∂

∂qj

)

ℓ

=
n
∑

i,j=1

Γℓ
ij(q)

∂

∂xℓ
, ℓ ∈ {1, . . . , n}, (A.4)

where the n3 smooth functions Γℓ
ij(q) are uniquely de-

fined. With these functions, called the Christoffel symbols
of second kind, the ℓ-th component of ∇XY is

(∇XY )ℓ =

n
∑

j=1

∂Yℓ
∂qj

Xj +

n
∑

i,j=1

Γℓ
ijXiYj , (A.5)

for all ℓ ∈ {1, . . . , n}. This in turn implies that the ℓ-
th component of the covariant derivative of Y ∈ X

∞(Q)
along a curve γ ∈ Γ(qa, qb) is given by

(∇γ′(t)Y (γ(t)))ℓ = Ẏℓ(γ(t)) +

n
∑

i,j=1

Γℓ
ij(γ(t))γ

′
i(t)Yj(γ(t)),

(A.6)
A curve γ is called a geodesic of the affine connection if

∇γ′(t)γ
′(t) = 0n. (A.7)

The metric (A.1) defines a unique affine connection
M

∇ on
Q, called the Levi-Civita connection, which is torsion-free
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and compatible, see Bullo and Lewis (2004) for details. In
this case the so-called Christoffel symbols are given by

Γℓ
ij(q) :=

n
∑

k=1

M−1
ℓk (q)cijk(q), (A.8)

where M−1
ℓk (q) is the (ℓ, k)-th element of matrix M−1(q),

and the functions cijk(q) are the Christoffel symbols of
first kind defined as

cijk(q) :=
1

2

[

∂Mkj

∂qi
(q) +

∂Mki

∂qj
(q)−

∂Mij

∂qk
(q)

]

. (A.9)

In this setting the forces to be functions from TQ
to T ∗Q (Bullo and Lewis, 2004, Section 4.4). Then,
the map is X ∈ TqQ 7→ M(q)X ∈ T ∗

q Q, then

M−1(q)g(q),M−1(q)B(q)τ ∈ TqQ. Recall from (4) that
g(q) is a potential force, and g(q) = dP (q) (differential of
P (q)); when passing the differential of P (q) through the
mapping M−1(q), we get M−1(q)(dP (q)) = grad(P (q)),
the gradient of P (q). Therefore, equation (5) can be
rewritten in a coordinate-free manner as (19).
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Reyes-Báez, R., van der Schaft, A., and Jayaward-
hana, B. (2018b). Passivity based distributed
tracking control of networked euler-lagrange sys-
tems. IFAC-PapersOnLine, 51(23), 136 – 141. doi:
https://doi.org/10.1016/j.ifacol.2018.12.024. 7th IFAC
Workshop on Distributed Estimation and Control in
Networked Systems NECSYS 2018.
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