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Abstract: In this work, the stabilization problem of a possible open-loop unstable steady-
state for a class of semilinear parabolic partial differential equation models with an averaged
measurement and homogeneously distributed control action is addressed. Following notions of
passivity-based control for finite-dimensional systems, a feedback passive control is constructed.
The combination of Lyapunov and modal techniques gives sufficient conditions to ensure the
stability of the closed-loop system by characterizing the zero dynamics behavior in terms of
the sensor location and the controller gain. For implementation purposes, an estimator with
a pointwise innovation scheme is considered. The performance of the designed controller is
shown by numerical simulations.

Keywords: distributed parameter systems, passivity based control, sensor and actuator
placement

1. INTRODUCTION

Passivity based control for nonlinear finite-dimensional
systems has proven to be a useful tool for control syn-
thesis, it has been applied to stable and unstable plants,
from mechanical and electrical systems, see, e.g., [Ortega
et al., 2013], to chemical processes, see, e.g., [Doerfler
et al., 2009, Sira-Ramirez and Angulo-Nunez, 1997]. The
extension to infinite dimensional systems has been done
following the early- and late-lumping approaches. In the
early-lumping framework, the partial differential equation
(PDE) model is approximated using a finite-dimensional
model and then existing results on passivity based control
has been applied. On the other hand, in the late-lumping
approach the extension of passivity concepts has been
performed for some types of PDE models exploiting its
distributed structure and considering different input and
output configurations.

In the context of early-lumping approaches, in [Franco-

de los Reyes and Álvarez, 2017, Nájera et al., 2015]
finite differences are used to obtain a finite-dimensional
model of a tubular reactor and then a feedback passive
controller is designed. In [Christofides, 2012], Galerkin
and approximated inertial manifolds methods are used to
approximate parabolic PDE models and then geometric
control tools are used. Regarding late-lumping techniques,

in [Christofides, 2012] geometric control is used for the
stabilization of a plug flow tubular reactor with collo-
cated sensor and actuator setup. Passivity for linear PDE
models with collocated setup is analyzed in [Bondarko
and Fradkov, 2002], while semilinear parabolic systems
are considered in [Wang and Wu, 2014] where a feedback
passivity-based controller is built exploiting Lyapunov
theory. In the framework of thermodynamics in [Alonso
et al., 2000, Ruszkowski et al., 2005] passivity-based con-
trol is studied for semilinear PDEs models. In the more
general context of dissipativity-based control design, in
[Schaum and Meurer, 2019] stabilization through linear
output-feedback control of a semilinear heat equation
with collocated sensor-actuator setup and an output de-
pendent nonlinearity is considered.

In the present work, the ideas exploited in [Franco-de los

Reyes and Álvarez, 2017, Nájera et al., 2015] following the
early-lumping approach to design a passive controller for a
tubular reactor model are extended to a class of infinite-
dimensional systems. A passive controller is introduced
for a class of diffusion-convection-reaction semilinear sys-
tems with regional sensor and homogeneous actuator.
Conditions for the stability of the closed-loop system
are established based on the stability of the origin of
the related zero dynamics, which can be analyzed as a
Lur’e system, i.e., an interconnection of a linear dynamic
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system and an static nonlinearity and by applying modal
analysis. Stability conditions are established in terms of
the sensor location and the controller gain. In comparison
to [Franco-de los Reyes et al., 2019a,b], where a similar
approach has been followed, here different system struc-
ture, controller and sensor-actuator setup are considered.

The rest of the paper is organized as follows, in Section 2
the control problem is introduced, in Section 3 the passive
controller is built and closed-loop stability ensured. In
Section 4 the output-feedback version of the proposed
controller is presented. Simulation results are shown in
Section 5 and final conclusions are given in Section 6.

2. PROBLEM FORMULATION

Consider the diffusion-convection-reaction system with
multiple steady-states

∂tx̄1 = d∂2z x̄1 − ∂zx̄1 + φ(x̄1) + u, x̄1(0) = x̄10 (1a)

∂tx̄2 = d∂2z x̄2 − ∂zx̄2 + a21x̄1, x̄2(0) = x̄20 (1b)

ȳ =
∫ 1

0
γx̄1dz (1c)

subject to the boundary conditions

δ∂zx̄i(0, t)− x̄i(0, t) = 0, δ∂zx̄i(1, t) = 0, i = 1, 2, (1d)

Herein t ∈ R+ is time, z ∈ (0, 1) the spatial domain,
xi(z, t), i = 1, 2 are the state variables, u(t) ∈ R is the
(homogeneously distributed) control input and y(t) ∈ R

the control output. The function φ(x1(z, t)) is a smooth
nonlinearity, a21 > 0 is an interconnection gain, d is the
diffusion coefficient and γ(z) is the sensor function that
defines the output as an average of the first state in a
small region of space, and is given by

γ(z) =

{

1
2ǫ if z ∈ [z − ǫ, z + ǫ]

0 else
,

where ζ is the sensor location and ǫ > 0 is a small
fixed constant. In the following a transformation is used
to obtain an equivalent system to (1) with self-adjoint
operators. For this aim consider the change of variable
given by

xi = β(z)x̄i, i = 1, 2, β(z) = e−
z
2d , (2)

where β(z) is an integrating factor [Meurer and Andrej,
2018]. In this coordinates the system dynamics in abstract
form are given by

∂tx1 = A1x1 + ϕ(x1) + Bu, x1(0) = x10, (3a)

∂tx2 = A2x2 + a21x1, x2(0) = x20, (3b)

y = Cx1 (3c)

defined on the Hilbert spaceH2, whereH = L2(0, 1) (with

L2-norm ‖ · ‖ =
√

〈·, ·〉 where 〈·, ·〉 denotes the standard
inner product). Ai : D(Ai) ⊂ H → H, i = 1, 2 are linear
differential operators, B is the input operator and C the
output operator, which are defined as

Aixi = d∂2zxi −
1
4dxi, i = 1, 2,

D(Ai) =
{

v ∈ H | d∂zv(0)−
1
2v(0) = 0,

d∂zv(1) +
1
2v(1) = 0

}

,

B = β, C(·) = 〈γ̄, (·)〉, γ̄ = β̄γ

ϕ(x1) = βφ(β̄x1), β̄ = e
z
2d .

The existence of a local unique strong solution of (3) is
ensured for each x0 ∈ H1([0, 1]), where H1([0, 1]) is the
Sobolev space of function with first derivative (see e.g.
[Fridman and Orlov, 2009, Schaum et al., 2014]).

Motivated by practical situations, e.g. from chemical engi-
neering, where Ai, i = 1, 2 stand for diffusion-convection
operators and ϕ is a bounded, potentially destabilizing
term, the following assumptions are in order:

(A1) Let A1 be a self-adjoint Riesz spectral operator with
real eigenvalues λn, n ∈ N fulfilling 0 > λ1 ≥
λ2 ≥ . . . for which the algebraic and geometric
multiplicities are the same, and whose eigenfunctions
φn, given by the solution to the eigenvalue problem

Aφn(z)− λnψn(z) = 0, n ∈ N, (4)

form a Riesz basis, i.e., 〈ψn, ψk〉 = δn,k, where δn,k
is the Kronecker delta.

(A2) The operator A2 generates a C0-semigroup of con-
tractions S2(t) = eA2t which satisfy ‖S2(t)‖ ≤ e−ν2t

where ν2 is its growth bound [Curtain and Zwart,
2012].

(A3) The source term ϕ belongs to the sector [−κ, κ] and
satisfies ‖ϕ(z, x1)‖ ≤ κ‖x1‖ ∀x1 ∈ H uniformly in z
and ϕ(z, 0) = 0.

The control problem consists in selecting the sensor
location ζ and design an output feedback controller such
that the corresponding closed-loop system has the zero
profile as unique and exponentially stable steady-state.

3. FEEDBACK-PASSIVE CONTROL

Here, for system (3) a passive controller is constructed,
the closed-loop stability is ensured by means of the
stability of the zero dynamics and its dependency on the
sensor location.

3.1 Controller construction

Consider the output (3c) and take its first time derivative

ẏ = d
dtCx1 = C∂tx1 = C (A1x1 + ϕ(x1)) + CBu.

If CB 6= 0 then the characteristic order from y to u is
equal to one [Christofides, 2012]. Note that this concept
is the extension of the relative degree property for finite-
dimensional systems. Taking into account the considered
input and output operators it follows that

CB = 〈γ̄, β〉 = 1
2ǫ 6= 0, ∀z ∈ (0, 1), ∀t ∈ R+. (5)

Consequently the characteristic index is always one and
the existence of the state-feedback controller

u = 2ǫ [v − C (A1x1 + ϕ(x1))] , (6)
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is ensured and it can be used to stabilize the (possibly
open-loop unstable) zero profile of system (3), as it will
be established later.

Remark 1. Using S(x) = 1
2y

2 ≥ 0 as storage function

it follows that dS(x)
dt = yv, which shows the passivity

property introduced by the controller (6). In particular,
using v = −ky the exponentially stable output dynamics

ẏ = −ky, y(0) = y0

is enforced.

The corresponding closed-loop dynamics are given by

∂tx1 = Ac
1x1 +∆ϕ(x1)− 2ǫkBy, xz1(0) = xz10 (7a)

∂tx2 = A2x2 + a21x1, xz2(0) = xz20 (7b)

y = Cx1 (7c)

where Ac
1, with domain D(Ac

1) = D(A1), is the closed-
loop operator and ∆ϕ a modified nonlinear term, which
are defined as

Ac
1x1 = A1x1 − 2ǫBCA1x1, (7d)

∆ϕ(x1) = ϕ(x1)− 2ǫBCϕ(x1). (7e)

Note that in (7e) the nonlinear component of the con-
troller (6) takes the weighted (by 2ǫB) and averaged (by
C) nonlinear term ϕ and subtract it from the original
nonlinearity, potentially mitigating its destabilizing effect.
By assumption (A3) it follows that

‖∆ϕ(x1)‖ ≤ κ̄ ‖x1‖ ,

where κ̄(ζ) is sensor location dependent highlighting that
ζ is a key design degree of freedom in the stabilization
task. For the stability assessment the characterization of
the zero dynamics is addressed next.

3.2 Zero dynamics

The related zero dynamics associated to (7) are given by

∂tx
z
1 = Az

1x
z
1 +∆ϕ(xz1), xz1(0) = xz10, (8a)

∂tx2 = A2x2 + a21x
z
1, x2(0) = x20, (8b)

y = Cxz1 = 0, (8c)

with the zero dynamics operator Az
1 defined as

Az
1x1 = Ac

1x1, D(Az
1) = {x ∈ D(A1) | Cx = 0} . (8d)

In the following Lemma sufficient conditions for the
stability of the solution (xz1, x2) = (0, 0) are established.

Lemma 1. Let assumptions (A1)-(A3) hold and addition-
ally assume that the origin is the unique steady-state for
the zero dynamics. If the operator Az

1 defined in (8d)
generates a C0-semigroup of contractions Sz

1 (t) = eA
z
1t

with growth bound νz which satisfies

νz − κ̄ := υz > 0, (9)

then (xz1, x2) = (0, 0) is globally exponentially stable in
the L2-norm and input-to-state stable with respect to
additive disturbances.

Proof: Considering a bounded additive disturbance ς(t) ∈
L2 in the xz1 dynamics (8a), the formal solutions for (8)
are given by

xz1(t) = xz10S
z
1 (t) +

∫ t

0
Sz
1 (t− τ) [∆ϕ(xz1(τ)) + ς(τ)] dτ,

x2(t) = x20S2(t) +
∫ t

0
a21S2(t− τ)xz1(τ)dτ,

taking norms, using Assumption (3) and applying the
triangle inequality the following is obtained

‖xz1(t)‖ ≤ ‖xz10‖e
−νzt+

∫ t

0
e−νz(t−τ)

(

κ̄‖xz1(τ)‖+‖ς(τ)‖
)

dτ,

‖x2(t)‖ ≤ ‖x20‖e
−ν2t + |a21|

∫ t

0
e−ν2(t−τ)‖xz1(τ)‖dτ.

Denote the right-hand-side of the above inequalities as
ξi, i = 1, 2. It holds that ξi(0) = ‖xi(0)‖, i = 1, 2,
‖xz1(t)‖ ≤ ξ1(t), ‖x2(t)‖ ≤ ξ2(t) for al t ≥ 0 and

d
dt

[

ξ1
ξ2

]

≤

[

−υz 0
|a21| −ν2

] [

ξ1
ξ2

]

+

[

1
0

]

‖ς‖.

Due to the triangular matrix in the above and that
by Assumption (A2) ν2 > 0, the following holds: (i)
ς(t) = 0 implies that the zero solution ξi = 0, i = 1, 2 is
exponentially stable if (9) is fulfilled and as a consequence
the zero solution of the zero dynamics is exponentially
stable in the L2-norm, and (ii) when the disturbance ς(t)
is present the following is satisfied

‖xz1(t)‖ ≤ ‖xz10‖e
−υzt + 1

υz
|ς(τ)|∞,

‖x2(t)‖ ≤ ‖x20‖e
−ν2t + |a21|

ν2
‖xz1(t)‖.

where | · |∞ denotes the supremum-norm. This implies
input-to-state-stability [Karafyllis and Krstic, 2019, Son-
tag, 1995]. ✷

3.3 Closed-loop stability

The closed-loop dynamics (7) can be rewritten as the
following cascaded interconnection

ẏ = −ky, y(0) = y0 (10a)

∂tx1 = Ac
1x1 +∆ϕ(x1)− 2ǫkBy, x1(0) = x10 (10b)

∂tx2 = A2x2 + a21x1, x2(0) = x20. (10c)

Since the domain of the closed-loop dynamics differs from
the one of the zero dynamics, write

x1 = xz1 + x̃1, x̃1 = x1 − xz1 ∈ H.

Consequently, it holds that the output y converge to zero
together with x̃1 and there exists a positive constant M
such that

|y| ≤ |y0|e
−kt ⇒ ‖x̃1‖ ≤M‖x̃10‖e

−kt.

Considering the formal solutions of the closed-loop system
with ‖x1‖ ≤ ‖xz1‖+‖x̃1‖, applying the triangle inequality
and using the input-to-state stability property of the zero
dynamics with ς(t) = −2ǫkBy, the following holds

‖x1(t)‖ ≤ (‖xz10‖ − η|y0|) e
−υzt + (M‖x̃10‖+ η|y0|) e

−kt

‖x2(t)‖ ≤ ‖xz20‖e
−ν2t + a21

ν2
‖x1(t)‖,

where η = 2ǫ‖B‖k
υz−k

. Consequently (xz1, x2) converge expo-

nentially to zero, in the L2-norm, with rate min {υz, k}.
This result is stated in the following proposition.

Proposition 1. Let the assumptions of Lemma 1 hold.
Then, the controller (6) exponentially stabilizes the origin
of the system (3) in the L2-norm with convergence rate
given by min {υz, k}.
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3.4 Sensor placement

According to Proposition 1 and Lemma 1, the key prop-
erty for the functioning of the proposed control scheme
is the exponential stability of the origin of the zero dy-
namics in the L2-norm. In the following this property
is characterized in terms of the sensor location using
Lyapunov techniques and modal representation. For this
aim, consider the following Lyapunov functional

V = 1
2 〈x

z
1, x

z
1〉 > 0. (11)

Its time derivative along the trajectories of (8a) reads
dV
dt = 1

2 〈∂tx
z
1, x

z
1〉+

1
2 〈x

z
1, ∂tx

z
1〉

= 1
2 〈A

z
1x

z
1 +∆ϕ(xz1), x

z
1〉+

1
2 〈x

z
1,A

z
1x

z
1 +∆ϕ(xz1)〉

= 〈A1x
z
1, x

z
1〉 − 2ǫCA1x

z
1〈B, x

z
1〉+ 〈∆ϕ(xz1), x

z
1〉

In the following the notation
∑

=
∑∞

n=1 and
∑

′ =
∑∞

n=2
is used. From Assumption (A1), the first state has the
modal representation x1 =

∑

anψn and the output can
be written as y =

∑

ancn, where an = 〈x1, ψn〉 and
cn = 〈γ̄, ψn〉. Furthermore, the action of the operator
Az

1 can be expressed as Az
1x1 =

∑

λnanψn, thus it
follows that CA1x

z
1 =

∑

λnancn and 〈B, x1〉 =
∑

anbn
where bn = 〈β, ψn〉. Considering all the introduced modal
representations, the time derivative of V reads

dV
dt =

∑

λnan 〈ψn,
∑

ajψj〉 − 2ǫ
∑

λnancn
∑

ajbj

+ 〈∆ϕ(xz1), x
z
1〉,

=
∑

λna
2
n − 2ǫ

∑

λnancn
∑

ajbj + 〈∆ϕ(xz1), x
z
1〉,

= λ1a
2
1 +

∑′λna
2
n + 〈∆ϕ(xz1), x

z
1〉−

− 2ǫ (λ1a1c1 +
∑′λnancn) (a1b1 +

∑′ajbj) .

Since y = 0 it holds that a1 = − 1
c1

∑

′ancn and thus

dV
dt =

∑′
(

λn + λ1

c2
1

cn

)

a2n + λ1

c2
1

∑

′ancn
∑

′
n 6=jajcj

− 2ǫ
∑′(λn − λ1)ancn

∑′
(

bj −
b1
c1
cj

)

aj+

+ 〈∆ϕ(xz1), x
z
1〉.

Writing the summations above in a quadratic form yields
dV
dt = a

T
Za+ 〈∆ϕ(xz1), x

z
1〉

where a = [an]n=2,... is an infinite-dimensional vector and
Z = [zn,j ], n, j = 2, . . . an infinite-dimensional matrix
with entries defined as follows

zn,j =







λn + λ1

c2
1

c2n − 2ǫcn(λn − λ1)
(

bn − b1
c̄1
cn

)

n = j

λ1

c2
1

cncj − 2ǫcn(λn − λ1)
(

bj −
b1
c1
cj

)

n 6= j
.

(12)
Thus it holds that

dV
dt ≤ −νz‖x

z
1‖

2 + 〈κ̄‖xz1‖, x
z
1〉 ≤ −(νz − κ̄)‖xz1‖

2,

≤ −(νz − κ̄)V (xz),

where νz = supn≥2 λ(Z). To ensure that the time deriva-
tive of V (xz1) is negative definite, the matrix Z must
be Hurwitz. This can be established by applying the
Geršgorin theorem for infinite-dimensional matrices (see
[Theorem (16c) in Aleksić et al. [2014]], c.p. [Franco-de los
Reyes et al., 2019a,b]). Adapting this result to the matrix
Z its maximum eigenvalue can be estimated as

νz = Re(supn≥2 {λ(Z)}) ≈ supn≥2 {zn,n} (13)

where zn,n is given in (12). The sensor location ζ should
be selected such that c1 6= 0 and νz is large enough to
satisfy (9). This is summarized in the following lemma.

Lemma 2. Consider the zero dynamics (8). Let the sensor
location ζ be such that c1 6= 0 and the matrix Z defined
in (12) is Hurwitz and νz in (13) is such that (9) holds
true. Then the solution (xz1, x2) = 0 of the zero dynamics
is exponentially stable in the L2-norm.

Remark 2. In order to ensure that the zero solution is
the unique steady-state profile for the zero dynamics a
bifurcation analysis with respect to the sensor location
ζ can be carried out, which in combination with the
previous Lemma can be used as sensor location criterion.

4. OUTPUT FEEDBACK CONTROLLER

The controller (6) requires knowledge of the first state but
since it is not available for implemmaentation purposes
the controller is build on the basis of a reduced order
point injection estimator [Schaum et al., 2017] as follows

∂tx̂1 = A1x̂1 + ϕ(x̂1) + Bu, x̂1(0) = x̂10 (14a)

x̂1(ζ, t) = y(t) (14b)

u = −2ǫ [ky + C (A1x1 + ϕ(x1))] . (14c)

With closed-loop dynamics

∂te = A1e+ ϑ(e), e(0) = e0 (15a)

e(ζ, t) = 0 (15b)

∂tx1 = Ac
1x1 +∆ϕ(x1) + θ(e), x1(0) = x10 (15c)

∂tx2 = A2x2 + a21x1, x2(0) = x20 (15d)

where e = x̂−x is the estimation error, ϑ(e) = ϕ(x+e)−
ϕ(x) and θ(e) is a Lipschitz bounded interconnection term
which satisfies θ(0) = 0. Due to the cascaded structure of
the resulting closed-loop dynamics and its input-to-state
stability property, the exponential stability of the origin
(e, xi) = 0, i = 1, 2 follows if Proposition 1 is fulfilled and
the estimation error converge exponentially. According to
[Schaum et al., 2017] exponential stability of e = 0 is
ensured if the sensor location is selected appropriately.
In particular, using the same sensor location as in the
controller the stability is ensured.

5. SIMULATION STUDY

Consider a system with given by the enthalpy balance in-
troduced in [Raymond and Amundson, 1964] coupled with
a linear convection-diffusion equation, which n the form
(1) is described by following parameters and nonlinearity

d = 0.2, a21 = 0.5, φ(x̄1) = 0.5× 107(1− x̄1)e
− 20

1+x̄1 .

In Fig. 1 (left) the three open-loop steady-state profile
pairs of the system are shown, note that two of them
are stable and the one in the middle, denoted as x̄∗1, x̄

∗
2,

is unstable and selected for closed-loop operation. The
open-loop dynamic response of the system initialized near
the unstable profile pair is shown in Fig. 1 (right) and
confirms its instability.
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Fig. 1. Open-loop system steady-states (left) and profile
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Fig. 2. Steady-states dependency on the sensor location:
triplicity for ζ ∈ [0, 0.87), uniqueness for ζ ∈ [0.87, 1].

The eigenvalues and eigenfunctions are given by

λn = −
(

1
2d

)2
− ω2

n, tan(ωn) =
ωn

ω2
n−( 1

2d
)2
, ωn 6= 0,

ψn = Bn (2dωn cos(ωnz) + sin(ωnz)) ,

where Bn are normalization constants. The series bn and
cn are given by

bn = 2Bn

ω2
n+( 1

2d )
2

(

ωn + e−
ζ

2d

(

d
(

ω2
n − 1

2d

)

sin(ωn)+

+ ωn cos(ωn)))

cn = Bne
ζ

2d (2dωn cos(ωnζ) + sin(ωnζ)) ,

Note that bn are constants, and that cn depends on the
sensor location ζ. According to the previous sections, ζ
must be selected to satisfy the conditions of Lemma 1
and Lemma 2. The first assumption is the uniqueness of
the steady-state solution for the zero dynamics, i.e., the
uniqueness of the zero profile pair for the boundary value
problem

0 = Az
1x1 + ϕ(xz1), x1 ∈ D(Az

1)

0 = A2x2 + a21x
z
1, x2 ∈ D(A2)

0 = Cx1 = y,

where the restriction y = xz1(ζ) = 0 for ζ ∈ [0, 1] is the
unique degree of freedom. The uniqueness of the solution
(xz1, x2) = 0 requires that for the first state x1 = 0 must
be a unique solution. The analysis of the above boundary
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Fig. 3. Closed-loop behavior. State profile evolution: state
(left) and output-feedback (right), control effort and
output responses (bottom).
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Fig. 4. Closed-loop behavior, L2-approximated norms of
the states for state and output-feedback cases and
the zero dynamics.

value problem is done by constructing a bifurcation dia-
gram (based on a finite differences approximation) using
the Matcont software package [Dhooge et al., 2003]. The
obtained result is shown in Fig. 2. It can be seen that the
zero solution is unique if ζ ∈ Iz = (0.87, 1). Accordingly
ζ = 0.9 is selected so that the conditions of Lemma 2 are
fulfilled, i.e., c1(ζ) 6= 0 and νz ≈ −4.13. The numerical
computation of κ can be done using a Lipschitz constant
that for this case gives κ = 3. Thus condition (9) is
fulfilled with υz = −1.13. This ensures the convergence
to zero of the zero dynamics (that determines the rate of
convergence of the closed-loop states) and for the closes-
loop system (15). The gain k is used to accelerate the rate
of convergence of the output.

In Fig. 3 the closed-loop behavior with controllers (6)
and (14) with k = 3 is shown in original coordinates.
The system is initialized at the lower steady-state. It can
be seen that for the state feedback case the output goes
to zero in about 1 time unit so the system in the zero
dynamics converge to the desired steady-state in 2 time
units. For the output-feedback case the convergence is
slower due to the estimation convergence time. In Fig.
4 the approximated L2-norms of the corresponding state
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profiles are shown. It can be seen that the zero dynamics
response is the best attainable behavior.

All simulation were carried out using finite differences
with 100 collocation points, approximating the integral
with the trapezoidal rule using the Matlab command
trapz and solving the obtained system of ordinary dif-
ferential equations with the method ode15s in Matlab.

6. CONCLUSIONS

The output-feedback stabilization problem of an unstable
profile of a class of semilinear PDE models with averaged
measurement and homogeneous control action has been
addressed. The controller scheme is constructed following
a similar notion to feedback passivity for nonlinear finite-
dimensional systems. The close-loop stability is ensured
by the characterization of the zero dynamics in terms of
the sensor location by using a combined approach with
Lyapunov and modal techniques. For implementation
purposes an observer scheme is added to the design.
Numerical simulations show the satisfactory performance
of the proposed approach.
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