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∗∗ Instituto de Ingenieŕıa, UNAM (e-mail: ftorreso@iingen.unam.mx)

Abstract: This article introduces an energy-based approach for modeling water distribution
networks with faults. The flow in each network pipeline is described by the rigid water column
model (RWC), which can be obtained by assuming that the walls of the pipelines are rigid
and the flow is incompressible. The key feature of the proposed approach is the modeling
of the interactions of the network components (pipelines, faults, and sources), which is done
through the use of the graph theory and from an energy point of view. Three examples are
given: a pipeline with a partial blockage, a pipeline with a leak, and a pipeline with both
faults. The models resulting from this approach can be used for the implementation of real-
time applications, for example, for fault diagnosis or for control of valves and pumps in case
of faults.
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1. INTRODUCTION

Most of the models used for managing water distribution
networks (WDN) are in steady state (Rossman et al.,
2000), which can limit both the implementation of real-
time applications and the exploitation of new technologies
for the good management of water resources, such as the
Internet of Things (IoT). For this reason, WDN models
must involve unsteady state conditions in their formu-
lation. Moreover, for implementing real-time diagnosis
tools, models should include the effects of possible faults.

For modeling faulty networks some approaches have been
proposed such as the impedance, the matrix and the
admittance methods. The frequency-domain models that
result from the application of these approaches have been
employed for the conception of fault diagnosis algorithms
based on optimization methods (Capponi et al., 2017;
Duan, 2017). Their limitation is due to the linearization
of both the quasi-steady friction and the faults (leaks in
particular). Furthermore, such models cannot be used for
real-time algorithms because of their nature. Regarding
this constraint, an alternative was proposed by Torres
and Besançon (2019): the modeling of faulty WDN by
assuming that the walls of the pipelines are rigid and
the flow is incompressible (Wood et al., 1990; Ivanov
and Bournaski, 1996; Axworthy, 1998; De Persis and
Kallesoe, 2011; Nault and Karney, 2016; Kaltenbacher
et al., 2017; Scholten et al., 2017). Concretely, Torres
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and Besançon (2019) presented models for single pipelines
with two classes of faults: leaks and blockages. The
novelty of the proposed models is their formulation via
the port-Hamiltonian formalism, which underlines the
physics of systems by highlighting the relation between
energy storage, dissipation, and interconnection structure
(Van der Schaft, 2004; Van Der Schaft and Maschke, 2013;
Van der Schaft et al., 2014).

This contribution complements the work of Torres and
Besançon by involving the graph theory for the systemic
modeling of large water distribution networks. For show-
ing the applicability of the proposed approach, three
examples are presented at the end of this paper, which
indeed is organized as follows: Section 2 presents the
considered elements of a WDN and their constitutive rela-
tions. Based on graph theory, Section 3 presents the main
result of the paper which is the energy-based modeling,
while in Section 4 some examples are presented. Finally,
in Section 5 some concluding remarks are included.

2. PRELIMINARIES

In order to describe the flow in a pressurized pipeline in
terms of lumped elements, it is necessary to make the next
assumptions:

(A1) The flow is one-dimensional.
(A2) The cross-sectional area is constant along the pipeline.
(A3) The conduit walls are rigid and the flow is incom-

pressible.
(A4) Convective changes in velocity are negligible.
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Throughout the paper, the terms fluid and water are used
interchangeably to refer to the content of the pipelines.

2.1 Storing and Resistive Elements

In a pipeline, there is a set of parameters that together
process the energy. This process is related to the dissipa-
tion, storage, and generation of energy. Regardless of the
elements’ nature, each element has associated the pressure
drop ∆P across its terminals and the flow rate Q that
flows through it.

Energy Dissipation The hydraulic resistance can be
characterized by the steady loss along the pipeline, which
can be expressed as a function of the flow rate and the hy-
draulic resistance (Adamkowski and Lewandowski, 2006).
This later gathers two main class of losses: major losses
(or friction resistance), which are caused by the effect
of the fluid’s viscosity near the wall of the pipeline, and
minor losses (or local resistance), which are caused by the
dissipation of mechanical energy when the configuration
or the direction of flow is sharply changed because of the
presence of bends, fittings, and valves. This steady loss
can be then expressed as follows (White, 1999):

∆PR = ∆P f +∆Pm = LxΩ̄Q
γ
R

︸ ︷︷ ︸

R(QR)

|QR|, (1)

where Lx is the length of the pipeline, ∆P f denotes
the pressure drop due to the friction resistance, ∆Pm

represents the pressure drop due to the local resistance,
R(QR) denotes the hydraulic resistance, whereas Ω̄ and
γ ≤ 1 are parameters that can be associated to physical
parameters of both the pipeline and water by means of
the formula employed to describe the steady head loss. If
the Darcy-Weisbach (DW) equation is used for a pipeline
with length Lx, then γ = 1 and

Ω̄ = ρf(Re)/2φA2
r, (2)

where Ar is the cross-sectional area of the pipeline, φ its
diameter, ρ is the mass density of the water, and f(Re) is
the friction factor that depends on the Reynolds number
Re defined as

Re =
QRφ

Arν
, (3)

where ν is the kinematic viscosity that depends on tem-
perature. Note then that if the DW equation is used, Ω̄
is a function of both the flow rate, through Re, and the
temperature, via ν.

In this paper, it is considered that f(Re) can be computed
by using the Swamee-Jain equation given as follows

f(Re) =
0.25

(

log
( κ

φ

3.7 + 5.74
Re0.9

))2 , (4)

with κ as the material roughness.

To simplify the notation, the following variables are
defined:

α :=
0.25Lxρ

2φA2
r

, a :=

κ
φ

3.7
, b := 5.74

(
φ

Arν

)−0.9

, (5)

such that the hydraulic resistance R(QR) takes the form

R(QR) = α
(
log

(
a+ bQ−0.9

R

))−2
Qγ

R, (6)

and the pressure drop across the resistance ∆PR can be
defined by

∆PR = α
(
log

(
a+ bQ−0.9

R

))−2
Qγ

R|QR|, (7)

Flow Store In a fluid flow store, as the hydraulic capaci-
tor, the form to store energy is the potential energy V(

A

),
with

A

denoting water volume. According to Wellstead
(1979), the port variables of the hydraulic capacitor can
be obtained as

∆PC =
∂V(

A

)

∂

A, QC =
d

A

dt
. (8)

In the linear case, the energy function can be written as

V(

A

) =
ρg

2Ar

A2, (9)

with g as the acceleration due to gravity, such that (8)
takes the following particular form

∆PC = C−1 A

. (10)

with the constant C := Ar/ρg. The substitution of the
time derivative of (10) into (8) gives the constitutive
relation for the fluid flow store:

QC = C∆ṖC . (11)

Effort Store A fluid effort store or hydraulic inductor,
stores kinetic energy T (ϕp), with momentum ϕp. The
port variables of the inductor can be obtained as

QL =
∂T (ϕp)

∂ϕp
, ∆PL =

dϕp

dt
. (12)

For a linear hydraulic inductance, T (ϕp) takes the form

T (ϕp) =
Ar

2ρLx
ϕ2
p, (13)

which means that 1

QL = L−1ϕp, (14)

with L := ρLx/Ar. Finally, substitution of the time
derivative of (14) into (12) gives the constitutive relation
for the fluid effort store:

∆PL = LQ̇L. (15)

The latter equation characterizes the pressure drop that
is required to accelerate the water between the pipeline
ends when the flow varies at the rate Q̇L; see Maré (2016).

Energy dissipation due to a leak A leak behaves like
a fixed orifice with free discharge to the atmosphere,
and it can be modeled as a variable resistance Rℓ that
depends on the leak flow rate. The pressure drop across
the resistance (∆Pℓ) represents the loss of pressure in the
position of the leak (zℓ) due to the water coming out.
The hydraulic resistance associated with a leak can be
deduced from the Torricelli’s equation given as follows

Qℓ = CdAℓ(2Pℓ/ρ)
−1/2, (16)

1 In a pipeline without extractions, there is a unique flow rate
flowing along the pipeline.
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where ∆Pℓ is the pressure drop at the leak, Aℓ is the
leak area and Cd is the dimensionless discharge coefficient.
From Eq. (16), the following expression for the pressure
at the leak position (zℓ) is obtained

∆Pℓ = Rℓ(Qℓ)Qℓ, (17)

where Rℓ(Qℓ) =
(
ρQℓ/2C

2
dA

2
ℓ

)
is the leak resistance.

3. WATER DISTRIBUTION NETWORK MODEL

In this paper, it is assumed that a water distribution
network is composed of p pipelines that under assump-
tionsA1-A4 can be represented by the interconnection of
lumped elements. In addition, it is assumed the following.

(A5) A pipeline is analogous to a series R−L circuit with a
hydraulic capacitor parallel-connected as shown Fig.
1. R(QR) (or R(QL) since QR = QL) is an energy
dissipator and L is a hydraulic inductor.

(A6) A leak is modeled by a variable resistance Rℓ(Qℓ)
that depends on the leak flow rate Qℓ expressed by
Eq.(16).

(A7) A blockage is modeled as three pipelines connected in
series, where the in-between pipeline has a reduced
cross-sectional area and different roughness.

(A8) At the inlet of a pipeline there is a water source
(e.g. a reservoir), with pressure ∆Pin and flow rate
Qin, and at the outlet there is a water extraction,
with pressure ∆Pout and flow rate Qout, which can
represent a water demand by users 2 .

Remark 1. Fig. 1 shows a circuit that under assumptions
A1-A8 is analogous to the behavior of the flow in a
pressurized pipeline. Since the pressure drop along the
pipe is equal to the pressure drop associated with the
hydraulic capacitance, the capacitor is in parallel to
the potential. The ground represents the atmospheric
pressure.

−

+ Pin

Qin

R(QL)
QL

+
−

∆P

+

−

Pout
Qout

Fig. 1. Nonlinear RLC circuit analogous to a pipeline.

Remark 2. Fig. 2 shows a nonlinear RLC circuit that
under assumptions A1-A8 is analogous to the flow in a
pressurized pipeline with a leak. The first loop represents
the flow dynamics in the pipeline section before the
leak and the second loop, the flow dynamics in the
pipeline section after the leak, while Qin and Qout denote,
respectively, the flow rate across the first and second
sections of the pipeline. Qℓ is the leak discharge.
2 For a pipeline with an open output the pressure Pout is the
atmospheric, such that in Fig. 1 the output Pout is short-circuited
with the ground.

−

+ Pin

Qin

R1(QL1)
QL1

+
−

∆P1

R(QL2)
QL2

+
−

∆P2

Rℓ(Qℓ)

+

−

PoutQout

Fig. 2. Nonlinear RLC circuit analogous to a pipeline with
a leak. The pressure drop across the resistance ∆Pℓ

represents the loss of pressure in zℓ.

Remark 3. Since the area of the pipeline is constant, the
pipeline’s capacitance is not modified by the leak, i.e.

C1 = C2 = Ar/ρg. (18)

Remark 4. Because of the leak, hydraulic resistance in the
first and second sections change and can be expressed as
follows, respectively:

R1(QL1) = zℓΩ̄Q
γ
L1, R2(QL2) = (Lx − zℓ)Ω̄Q

γ
L2. (19)

Remark 5. Because of the leak, the inertance for both
sections of the pipeline also change and can be defined as
follows, respectively:

L1 =
ρzℓ
Ar

, L2 =
ρ(Lx − zℓ)

Ar
.

According to Avila-Becerril et al. (2016), the effort com-
patibility and flow continuity constraints, given by the
pressure drop balance and flow-rate balance, respectively,
are systematically obtained applying graph theory con-
cepts (Bollobás, 2013).

3.1 Graph Theory

A water distribution network can be defined as an
oriented graph G consisting of a finite set of nodes
V(G) = {v1, v2, . . . , vn} and a finite set of edges E(G) =
{e1, e2, . . . , eb} such that E is a subset of pairs of V
where no self-loops are allowed. The set of nodes are the
interconnection points of the elements 3 whereas the set
of edges are associated directly to elements.

The interconnection of the elements of the WDN must
satisfy the n−1 flow balance constraints and the b−(n−1)
pressure drop balance, which in this paper are given in
terms of basic cutsets and loopsets for a given tree and
co-tree (Wellstead, 1979; Bollobás, 2013). A basic cutset
is a set of edges whose elements are one branch and some
or all the chords. A basic loopset is a set conformed by
one chord and some or all the branches such that a closed
loop is formed.

Let Qt ∈ R
n−1 be the flows associated to the tree,

Qς ∈ R
b−(n−1) the associated to the co-tree, and ∆Pt ∈

R
n−1, ∆Pς ∈ R

b−(n−1) the branch and chord drop

3 The storage, dissipator or sources elements are considered lumped
one-port (two-terminal) elements.
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pressures, respectively; then the flow and pressure balance
constraints can be expressed as

[
I H

]
[
Qt

Qς

]

= 0;
[
−HT I

]
[
∆P t

∆P ς

]

= 0, (20)

with I a generic identity matrix of proper dimensions. The
matrix H ∈ R

(n−1)×b−(n−1), known as the Fundamental
loop matrix, completely characterizes the topology of the
network. Their entries are equal to 1 if a co–tree current
points out a given basic ambit, −1 if points into the basic
ambit and 0 if does not belong to the basic cutset.

In the graph, it is now selected the pressure source, the
p capacitors, and the p resistances in series with the
inductors as tree elements, while the p inductors, the ℓ
leaks and the flow source in the co-tree of the graph, i.e.

Qt =

[
Qin

QC

QR

]

, Qς =

[
Qℓ

QL

Qout

]

,

∆Pt =

[
−∆Pin

∆PC

∆PR

]

,∆Pς =

[
∆Pℓ

∆PL

∆Pout

]

,

where Qin,−∆P in ∈ R, QC ,∆PC ∈ R
p, QR,∆PR ∈ R

p

are the pressure source’s, capacitors’ and resistances’
flows and pressures respectively, while Qℓ,∆P ℓ ∈ R

ℓ,
QL,∆PL ∈ R

p, Qout,∆P out ∈ R are the leaks’, induc-
tors’ and flow source’s flow rates and pressures, respec-
tively.

3.2 Water Distribution Network Dynamic

The main contribution of the paper is presented in the
next proposition.

Proposition 1. Consider a network composed of p pipelines
and ℓ leaks, such that assumptions A1-A8 are fulfilled.
Define the state vector

x :=

[
∆PC

QL

]

∈ R
2p×1, (21)

then the model of the network is given by the Hamiltonian
system

Pẋ =
[
J − R̄(x)

]
x+G(x)E, (22)

subject to the algebraic constraints

Qin = 1⊤

ℓ Qℓ +Qout, (23a)

∆P out = ∆P in +H⊤

CO∆PC , (23b)

with the parameter matrix P = diag{C,L} ∈ R
2p×2p,

C = diag{Ci}, L = diag{Li}, i = 1, . . . , p, and the
matrices

J =

[
0 −Ip
Ip 0

]

= −JT , G(x) =

[

HCℓR
−1
ℓ 1ℓ −HCO

0p×1 0p×1

]

,

R̄(x) =

[

HCℓR
−1
ℓ H⊤

Cℓ 0
0 Rt

]

= R̄⊤(x) ≥ 0, E =

[
−∆P in

Qout

]

,

where Rℓ(Qℓ) = diag{Rℓj(Qℓj)}, for j = 1, . . . , ℓ, rep-
resents the leaks, while Rt(QL) = diag{Ri(QLi)} for
i = 1, . . . , p, are the hydraulic resistances of the pipelines
(tree resistances) which have non-linear constitutive rela-
tions given by (1).

Proof. On the one hand, with assumptions A5-A8 at
hand, the fundamental loop matrix can be partitioned
as

H =





−1⊤

ℓ 01×p −1
HCℓ Ip HCO

0p×ℓ −Ip 0p×1



 , (24)

where I, 0, 1ℓ represent an identity matrix, a matrix
filled with zeros, and a vector filled of ones, respectively.
The structure of HCℓ ∈ R

p×ℓ and HCO ∈ R
p×1 depends

on the topology of a particular network, showing the
relation between the leaks and the flow source with each
of the capacitors; see Avila-Becerril et al. (2016). Now, a
direct substitution of (11) and (15) in (20) leads to the
dynamical model of the system (22). �

4. EXAMPLES

In this section some examples are presented. The ex-
amples illustrate the simplicity in the modeling when
blockages and faults are included along the pipeline.

4.1 Example 1: a pipeline with a blockage

A pipeline with a blockage can be treated as three
pipelines connected in series (p = 3), where the in-
between pipeline has a reduced cross-sectional area and
different roughness. Fig. 3 shows an analogous circuit that
under assumptions A1-A8 represents a partially blocked
pipeline.

−

+ Pin

Qin

R1(QL1)
QL1

+
−

∆P1

R2(QL2)
QL2

+
−

∆P2

R3(QL3)
QL3

+
−

∆P3

+

−

PoutQout

Fig. 3. Nonlinear RLC circuit representing the case of a
pipeline with a partial blockage.

The related graph is shown in Fig. 4. Here, the graph has
associated a fundamental loop matrix given by

H =












0 0 0 −1
1 0 0 −1
0 1 0 −1
0 0 1 −1
−1 0 0 0
0 −1 0 0
0 0 −1 0












, s.t. HCO =





−1
−1
−1



 . (25)

Puebla, Puebla, México, 23-25 de octubre de 2019 504 Copyright©AMCA. Todos los Derechos Reservados www.amca.mx



1 2 3 4 5 6 7

8

R1 R2 R3

∆Pin

L1 L1 L3

Qout

C1 C2 C3

Fig. 4. Graph associated with the pipeline with a partial
blockage illustrated in Fig. 3

Notice that, since there is no leak ℓ = 0, the first column
of matrix H in (24) does not appear. To obtain the model,
define the state vector

x = [∆PC1 ∆PC2 ∆PC3 QL1 QL2 QL3]
⊤
∈ R

6,

the matrix P = diag{C1, C2, C3, L1, L2, L3} and E =

[∆P in Qout]
⊤

∈ R
2. The resulting dynamical model has

the form given by (22) with matrix R̄(x) and the product
G(x)E given by

R̄(x) =










0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 R1 0 0
0 0 0 0 R2 0
0 0 0 0 0 R3










, G(x)E =










Qout

Qout

Qout

0
0
0










,

where Ri(QLi), for i = 1, 2, 3, have a non-linear constitu-
tive relations given by (1), and is subject to

Qin = Qout,

∆P out = −1⊤

3 ∆PC = −(∆PC1 +∆PC2 +∆PC3).

4.2 Example 2: a pipeline with a leak

In this example, a pipeline with a leak is modeled. The
analogous circuit to this case is shown in Fig. 2, where
p = 2. This case can also be represented by the graph in
Fig. 5, which has a fundamental loop matrix given by

H =









−1 0 0 −1
−1 1 0 −1
0 0 1 −1
0 −1 0 0
0 0 −1 0









, (26)

with HCO =

[
−1
−1

]

and HCℓ =

[
−1
0

]

.

In this case, the state vector is defined as follows

x = [∆PC1 ∆PC2 QL1 QL2]
⊤
∈ R

4,

the parameters matrix is defined as

P = diag{C1, C2, L1, L2}

and E = [∆P in Qout]
⊤
∈ R

2. Thus, the dynamical model
of a pipeline with a leak has the form expressed by (22)
with a matrix R̄(x) and the product G(x)E given by

R̄(x) =






R−1
ℓ 0 0 0
0 0 0 0
0 0 R1 0
0 0 0 R2




 , G(x)E =






R−1
ℓ ∆P in +Qout

Qout

0
0




 ,

1 2 3 4 5

6

R1 R2

∆Pin

L1 L2

Qout

C1 C2

Rℓ

Fig. 5. Graph associated with a pipeline with a leak. See
Fig. 2

where Ri(QLi), for i = 1, 2, have nonlinear constitutive
relations given by (1). The constraints in this case are

Qin = Qℓ +Qout,

∆P out = ∆P in − (∆PC1 +∆PC2).

4.3 Example 3: a pipeline with a blockage and a leak

Fig. 6 shows an analogous circuit for illustrating the case
of this example. The graph associated to this case is shown
in Fig. 7.

−

+ Pin

Qin

R1(QL1)
QL1

+
−

∆P1

R2(QL2)
QL2

+
−

∆P2

Rℓ(Qℓ)

R3(QL3)
QL3

+
−

∆P3

+

−

PoutQout

Fig. 6. Non linear RLC circuit representing a pipeline with
a reduced cross-sectional area and a leak Rℓ. Notice
that in this case p = 3

1 2 3 4 5 6 7

8

R1 R2 R3

∆Pin

L1 L1 L3

Qout

C1 C2 C3

Rℓ

Fig. 7. Graph associated with the case in Example 3. See
Fig. 6.

Here, the graph involves a fundamental loop matrix given
by

H =












−1 0 0 0 −1
−1 1 0 0 −1
−1 0 1 0 −1
0 0 0 1 −1
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0












, (27)

and in this case,

HCℓ =

[
−1
−1
0

]

, HCO =

[
−1
−1
−1

]

.
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Since the order of the model is six, it is defined the same
state vector of the Example 1:

x = [∆PC1 ∆PC2 ∆PC3 QL1 QL2 QL3]
⊤
∈ R

6.

The dynamical model for this case has the form given by
(22) with matrices R̄(x) and G(x) given by

R̄(x) =










R−1
ℓ R−1

ℓ 0 0 0 0
R−1

ℓ R−1
ℓ 0 0 0 0

0 0 0 0 0 0
0 0 0 R1 0 0
0 0 0 0 R2 0
0 0 0 0 0 R3










,

G(x) =










−R−1
ℓ 1

−R−1
ℓ 1
0 1
0 0
0 0
0 0










,

where the leak has a constitutive relation given by
∆PRℓ

= Rℓ(Qℓ)Qℓ. To complete the model, according
to (22), the dynamic of this example is subject to the
following constraints:

Qin = Qℓ +Qout,

∆P out = ∆P in − 1⊤

3 ∆PC

= ∆P in − (∆PC1 +∆PC2 +∆PC3).

It is important to mention that the mathematical models
that were shown in this section fulfilled the rigid pipeline
dynamic characteristics.

5. CONCLUSION

This paper presented the modeling of faulty WDN within
an energy-based framework. The modeling is based on
graph theory concepts, and it is shown that, through the
fundamental loop matrix, faulty WDN models can be sys-
tematically obtained. The first advantage of the obtained
models is that, due to its structure, different faults can
be added along the WDN, preserving the structure, which
provides flexibility and modularity. Likewise, the form of
the models allows employing strategies such as control
by interconnection, passivity-based approaches, and the
design of state observers for parameter calibration and
fault diagnosis.
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