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Abstract: Consensus is the most basic synchronization behavior in multiagent systems. For
networks of Euler-Lagrange (EL) agents different controllers have been proposed to achieve
consensus, requiring in all cases, either the cancellation or the estimation of the gravity
forces. In the latter case, it is necessary to estimate, not just the gravity forces, but the
parameters of the whole dynamics. This requires the computation of a complicated regressor
matrix, that grows in complexity as the degrees-of-freedom of the EL-agents increase. In this
paper, we propose an adaptive controllers to solve the leaderless consensus problem by only
estimating the gravitational term of the agents and hence without requiring the complete
regressor matrix. To the best of our knowledge, this is the first work that achieves such an
objective. The controller is a simple Proportional plus damping (P+d) scheme that does not
require to exchange velocity information between the agents. Simulation results demonstrate
the performance of the proposed controllers.

Keywords: Euler-Lagrange Agents; Multiagent Systems; Leaderless Consensus; Adaptive
Control

1. INTRODUCTION

The objective in cooperative control is to design a dis-
tributed controller so that the aggregate system achieves
specified behaviors, such as flocking (Lee and Spong,
2007; Gu and Wang, 2009), synchronization (Rodriguez-
Angeles and Nijmeijer, 2004; Abdessameud et al., 2012),
coordination (Wang et al., 2012; Qin et al., 2012), ren-
dezvous and formation control. The fundamental cooper-
ative behavior is consensus, where all agents in a network
reach an agreement in some coordinates of interest. Con-
sensus control can be split into two classes, namely, the
leader-follower, where a network of agents agree at a given
leader reference; and the leaderless, where in the absence
of a leader, the agents converge to a certain common value
(Arcak, 2007; Ren and Cao, 2011; Liu et al., 2014; Aldana
et al., 2015; Klotz et al., 2015).

Consensus control of dynamical systems presents signifi-
cant theoretical and practical challenges, specially when
dealing with networks of nonlinear systems, as Euler-
Lagrange (EL) agents (Ren and Cao, 2011; Hatanaka
et al., 2015). The control of EL-agents is of practical
interest because these systems describe the behavior of
several physical systems—including mechanical, electrical
and electromechanical systems (Ortega et al., 1998). The
first results on consensus (synchronization) of a particular
class of EL-agents has been reported in (Chopra and

Spong, 2005) and the case of general, nonidentical, EL-
systems has been reported in (Nuño et al., 2011). Since
then, a plethora of different controllers have been pro-
posed to solve both consensus problems. See (Wang, 2014)
for a unified treatment of different consensus controllers
for EL-systems and (Hatanaka et al., 2015) for a survey
of recent developments on this topic.

As is well-known (Ortega et al., 1998) the Coriolis and
centrifugal forces that appear in EL-systems are work-
less, therefore they don’t play any role on the regulation
of the position of the system—a feature that is encrypted
in the well-known “Skew symmetry property” of EL-
systems. On the other hand, the presence of the gravity
forces has to be taken into account when solving this
task, because they affect the equilibrium point. For fully
actuated EL-systems it is possible to propose the exact
cancellation of these forces and then solve the regulation
task with a simple Proportional plus damping (P+d)
controller (Takegaki and Arimoto, 1981). Since these
forces are usually uncertain it is necessary to appeal to
an adaptive version of the controller. Within the context
of robotics, this problem was first solved in (Tomei, 1991)
adding an ingenious gravity estimation feature.

In the context of multiagent systems P+d schemes with
gravity cancellation have been proposed in (Ren, 2009;
Nuño et al., 2013b; Nuño and Ortega, 2018; Ye et al.,
2017). Besides having the advantage of a simple imple-
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mentation they do not require the agents to exchange
their velocities with their neighbours. However, their
disadvantage is that they are not robust to parameter
uncertainty—refer to (Nuño et al., 2013a) where the un-
certainty problem has been analyzed. To deal with para-
metric uncertainty adaptive schemes have been proposed
in (Chung and Slotine, 2009; Nuño et al., 2011; Meng
et al., 2014; Chen et al., 2015a; Abdessameud et al.,
2017; Chen et al., 2015b; Wang, 2017). The fundamental
paper (Hernández-Guzmán and Orrante-Sakanassi, 2019)
reports a model independent PID scheme that solves the
consensus problem provided that sufficiently large gains
are chosen.

Unlike the single EL-system case of Tomei (1991)—see
also (Kelly, 1993)—the adaptive multiagent schemes es-
timate, not just the gravity forces, but the parameters of
the whole dynamics. There are two important drawbacks
of estimating all dynamical parameters. First, to ensure a
successful parameter search in a bigger dimensional space
requires higher excitation levels and longer convergence
times—both factors stymying the achievement of good
transient performances. Second, it requires the compu-
tation of a complicated regressor matrix, that grows in
complexity as the degrees-of-freedom of the EL-agents
increase, rendering the controllers of limited practical
interest.

In this paper, we propose an adaptive controller that
solves the leaderless consensus problem by only estimat-
ing the gravitational term of the agents, and hence with-
out requiring the complete regressor matrix. To the best
of our knowledge, along adaptive controllers this is the
first controller for multiagent systems with only adaptive
gravity compensation. The controller is a simple adaptive
P+d scheme that does not require velocity information
exchange between the agents. Since this scheme does not
estimate the whole EL-dynamics its complexity is signif-
icantly smaller than all the previously reported adaptive
controllers that require the computation of the regressor
matrix for the full dynamics.

2. BACKGROUND

Notation. R := (−∞,∞), R>0 := (0,∞), R≥0 :=
[0,∞) and N := {1, 2, 3, . . .}. In ∈ R

n×n is the n × n
identity matrix, 1n ∈ R

n is the vector of n elements
equal to one and 0n ∈ R

n is the all-zeros vector. For
any x ∈ R

n, |x| is its Euclidean norm and th(x) :=
[tanh(x1), . . . , tanh(xn)]

⊤, where tanh(x) is the standard
hyperbolic tangent. λm{A} and λM{A} are the minimum
and the maximum eigenvalues of the symmetric matrix
A ∈ R

n×n. N̄ := {1, 2, ..., N} for N ∈ N.

2.1 Euler-Lagrange Agents

We consider a network composed of N fully-actuated
and conservative EL-agents, with n-Degrees-of-Freedom
(DoF). The dynamics of the ith-agent is given by

Mi(qi)q̈i +Ci(qi, q̇i)q̇i + gi(qi) = τ i (1)

where qi, q̇i, q̈i ∈ R
n are the generalized position, velocity

and acceleration, respectively; Mi(qi) ∈ R
n×n is the

generalized inertia matrix, which is symmetric positive
definite and lower bounded for all qi ∈ R

n; Ci(qi, q̇i) ∈
R

n×n is the Coriolis and centrifugal forces matrix, defined

via the Christoffel symbols of the first kind; and τ i ∈ R
n

is the control input.

We restrict to EL-agents (1) that satisfy the following
assumption:

Assumption A1: There exists a known m2i ∈ R>0 such
that, for all qi ∈ R

n, Mi(qi) ≤ m2iIn. ⋄
Model (1) has the following properties (Kelly et al., 2005;
Spong et al., 2005):

Property P1: Matrix Ṁi(qi) − 2Ci(qi, q̇i) is skew-

symmetric. Further, Ṁi(qi) = Ci(qi, q̇i) + C⊤
i (qi, q̇i).

⊳

Property P2: There exists kci ∈ R>0 such that, for all
qi ∈ R

n, ‖Ci(qi, q̇i)q̇i‖ ≤ kci‖q̇i‖2. ⊳

Property P3: The gravity vector gi(qi) is linearly pa-
rameterizable. Thus gi(qi) = Yi(qi)θi, where Yi(qi) ∈
R

n×m is a matrix of known functions and θi ∈ R
m is a

constant vector of the manipulator physical parameters.
⊳

2.2 Interconnection Topology

As it is customary, we use graphs to represent the inter-
connection topology among the N EL-agents. In particu-
lar, we employ the graph Laplacian matrix L := {Lij} ∈
R

N×N that is defined as Lii =
∑

j∈Ni

aij and Lij = −aij ,

where aij > 0 if j ∈ Ni and aij = 0 otherwise. The set
Ni contains all the neighbours of the ith-EL-agent. Note
that, by construction, L has a zero row sum. Therefore
L1N = 0n.

We assume that the agents exchange information accord-
ing to the following assumption.

Assumption A2. The EL-agents interconnection graph
is undirected, static and connected. ⋄
From A2, the Laplacian L is symmetric; positive semi-
definite; it has a single zero-eigenvalue, with the asso-
ciated eigenvector 1N , and all of the other eigenvalues
are strictly positive; and rank(L) = N − 1. Further,
ker(L) = α1N , ∀α ∈ R.

2.3 Problem Definition

We say that leaderless consensus problem is solved if there
exists qc ∈ R

n such that

lim
t→∞

|q̇i(t)| = 0, lim
t→∞

qi(t) = qc (2)

for all i ∈ N̄ .

In order to achieve (2), let us define the position error of
the ith-agent as

ei :=
∑

j∈Ni

aij(qi − qj). (3)

Defining q := [q⊤
1 , . . . ,q

⊤
N ]⊤ and using the Laplacian

matrix, we can write e = (L⊗ In)q. Thus

lim
t→∞

|ei(t)| = 0 ⇔ lim
t→∞

|e(t)| = lim
t→∞

|(L⊗ In)q(t)| = 0.

Moreover, (L ⊗ In)q = 0 ⇔ q = 1N ⊗ qc. Therefore, (2)
holds if we can prove that

lim
t→∞

|q̇i(t)| = 0, lim
t→∞

|ei(t)| = 0.
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In what follows we propose an adaptive controller capable
of ensuring that velocities and position errors globally and
asymptotically converge to zero.

3. ADAPTIVE P+D CONTROLLER

Inspired in (Tomei, 1991), the proposed adaptive P+d
scheme is given by

τ i = −diq̇i − piei +Yi(qi)θ̂i, (4)

where pi, di ∈ R>0 are the proportional and damping
injection gains. The parameter estimation law is

˙̂
θi := −ΓiYi(qi)

⊤

(

1

pi
q̇i + ǫth(ei)

)

, (5)

where ǫ > 0, Γi is a positive definite diagonal matrix and
th(ei) is a vector defined with the standard hyperbolic
tangent as th(ei) := [tanh(ei1), . . . , tanh(ein)]

⊤.

Proposition 1. For each i ∈ N̄ , consider the system (1) in
closed-loop with (4) and (5). Then, under Assumptions
A1 and A2, there exists qc ∈ R

n such that (2) holds
provided that ǫ is set satisfying

ǫ < min
i∈N̄

{

√

1

2m2iLiipi
;

di

pi
(

mmax
2 λM{L}+√

nkci +
di

2µi

)

}

µi <
2pi
di

,

(6)
where mmax

2 := max
i∈N̄

{m2i}. △

Proof. Consider the following Lyapunov candidate func-
tion

W =
∑

i∈N̄

(Vi + ǫUi),

where Vi is a positive definite function and Ui is a cross
term between position error and velocity. These functions
are

Vi =
1

2

[

1

pi
q̇⊤
i Miq̇i +

1

2

∑

j∈Ni

aij |qi − qj |2 + θ̃
⊤

i Γ
−1

i θ̃i

]

,

(7)
and

Ui = th⊤(ei)Mi(qi)q̇i, (8)

respectively. Then, W can be written as

W =
1

2

∑

i∈N̄

[

1

pi
(q̇i + ǫpith(ei))

⊤Mi(q̇i + ǫpith(ei))

+ θ̃
⊤

i Γ
−1

i θ̃i − ǫ2pith
⊤(ei)Mith(ei)

+
1

2

∑

j∈Ni

aij |qi − qj |2
]

.

Further, using the fact that |th(ei)|2 ≤ |ei|2, the term

th⊤(ei)Mith(ei) can be bounded as

th⊤(ei)Mith(ei) ≤m2i|ei|2 ≤ m2iLii

∑

j∈Ni

aij |qi − qj |2.

Thus, W admits the following bound

W ≥1

2

∑

i∈N̄

[

1

pi
(q̇i + ǫpith(ei))

⊤Mi(q̇i + ǫpith(ei))

+

(

1

2
− ǫ2m2iLiipi

)

∑

j∈Ni

aij |qi − qj |2

+ θ̃
⊤

i Γ
−1

i θ̃i

]

.

Note that setting

ǫ < min
i∈N̄

{
√

1

2m2iLiipi

}

ensures that
(

1

2
− ǫ2m2iLiipi

)

> 0 and hence W is
positive definite and radially unbounded with regards to
q̇i,qi − qj and θ̃i.

Now, the resulting closed-loop system is

q̈i = −M−1

i (qi)
[

Ci(qi, q̇i)q̇i + diq̇i + piei +Yi(qi)θ̃i

]

(9)

where θ̃i := θi − θ̂i. Moreover, V̇i evaluated along (9),

using the fact that
˙̃
θi = − ˙̂

θi, yields

V̇i =− di

pi
|q̇i|2 − q̇⊤

i ei − θ̃
⊤

i

[

1

pi
Y⊤

i (qi)q̇i + Γ−1

i
˙̂
θi

]

+
1

2

∑

j∈Ni

aij(q̇i − q̇j)
⊤(qi − qj),

and using (5) it becomes

V̇i =− di

pi
|q̇i|2 − q̇⊤

i ei + ǫth⊤(ei)Yi(qi)θ̃i

+
1

2

∑

j∈Ni

aij(q̇i − q̇j)
⊤(qi − qj).

From the property that the Laplacian matrix is symmet-
ric, we have that

∑

i∈N̄

[

q̇⊤
i ei −

1

2

∑

j∈Ni

aij(q̇i − q̇j)
⊤(qi − qj)

]

= 0.

Hence, defining V =
∑

i∈N̄

Vi yields

V̇ = −
∑

i∈N̄

[

di

pi
|q̇i|2 − ǫth⊤(ei)Yi(qi)θ̃i

]

.

The time-derivative of Ui is

U̇i =
( d

dt
th⊤(ei)

)

Miq̇i + th⊤(ei)
[

Ṁiq̇i +Miq̈i

]

.

Using P1 and (9) yields

U̇i =
( d

dt
th⊤(ei)

)

Mi(qi)q̇i + th⊤(ei)C
⊤
i (qi, q̇i)q̇i

− th⊤(ei)
[

diq̇i + piei +Yi(qi)θ̃i

]

.

In what follows we find an upper bound of U̇i. For, note

that the term
(

d
dt
th⊤(ei)

)

Mi(qi)q̇i can be manipulated
as

∑

i∈N̄

( d

dt
th⊤(ei)

)

Mi(qi)q̇i =
( d

dt
th⊤(e)

)

M(q)q̇,

where q̇ is defined pilling-up their N elements and
M(q) := blockdiag{Mi(qi)}. The fact that

| d
dt

th(ei)| ≤ |ė| = |(L⊗ In)q̇| ≤ λM{L}|q̇|
Puebla, Puebla, México, 23-25 de octubre de 2019 566 Copyright©AMCA. Todos los Derechos Reservados www.amca.mx



is employed to obtain the following inequality
( d

dt
th⊤(e)

)

M(q)q̇ ≤ mmax
2 λM{L}|q̇|2.

Moreover, using P2 and |th(ei)|2 ≤ n, yields

th⊤(ei)C
⊤
i (qi, q̇i)q̇i ≤

√
nkci|q̇i|2.

For any µi > 0 it holds that

−th
⊤(ei)q̇i ≤

µi

2
|th(ei)|2 +

1

2µi

|q̇i|2.

Hence

U̇i ≤
(

mmax
2 λM{L}+√

nkci +
di

2µi

)

|q̇i|2

−
(

pi −
µidi

2

)

|th(ei)|2 − th⊤(ei)Yi(qi)θ̃i,

where we have also employed the fact that

th⊤(ei)ei ≥ |th(ei)|2.
Thus Ẇ can be bounded as

Ẇ ≤ −
∑

i∈N̄

[

c1i|q̇i|2 + c2iǫ|th(ei)|2
]

,

where

c1i :=
di

pi
− ǫ

(

mmax
2 λM{L}+√

nkci +
di

2µi

)

,

and

c2i := pi −
µidi

2
.

Clearly, setting ǫ and µi satisfying (6) ensures that Ẇ
is negative definite with regards to q̇i and ei. Invoking
the LaSalle-Krasovskii Invariance Theorem (Krasovskĭı,
1963), together with the properties of the Laplacian
matrix, we finish the proof. ⊳

The following remarks are in order:

Remark 1. The adaptive P+d controller is inspired in the
control law reported in (Nuño et al., 2013b), for networks
of EL-agents, and in the adaptive scheme reported in
(Tomei, 1991; Kelly, 1993). In fact, instead of the hy-
perbolic tangent function, other bounded functions of the
error can be employed in the adaptation law, e.g., the
function hi(ei) :=

1

1+|ei|2
ei that is used in (Tomei, 1991),

or function fi(ei) := 1

1+|ei|
ei, that is applied in (Kelly,

1993). Refer to (Ortega et al., 1998) for the generalization
of these bounded functions.

Remark 2. Controller (4)-(5) does not require the neigh-
bours velocities and the regressor matrix Yi(qi) is only
related to the gravity vector in (1).

Remark 3. Although the controller gains are chosen to be
positive scalars, the analysis can be extended to diagonal
matrix gains with strictly positive elements.

Remark 4. The bounds of the inertia matrices are re-
quired to satisfy the stability condition (6). Therefore,
some physical information about the agents is required.

4. SIMULATION

Consider a network of ten 2-DOF planar manipulators.
Physical parameters of each manipulator is determined
with a vector P i = [m1i,m2i, l1i, lc1i, l2i, lc2i, I1i, I2i],

where mki, lki, and lcki are the mass, the length and
the distance to the center of mass of link k. Also, I1i
and I2i are the diagonal elements of the inertia matrix.
Three different groups of manipulators are considered.
The physical parameters of these manipulators are given
in Table 1. The graph Laplacian matrix is given by
L = 0.1Lg, where

Lg =





























14 0 −3 0 0 0 0 −4 0 −7
0 9 0 −8 0 0 0 0 0 −1
−3 0 5 0 0 0 0 −2 0 0
0 −8 0 10 0 0 0 0 −2 0
0 0 0 0 8 0 −5 0 −3 0
0 0 0 0 0 6 0 −4 −2 0
0 0 0 0 −5 0 14 0 0 −9
−4 0 −2 0 0 −4 0 10 0 0
0 0 0 −2 −3 −2 0 0 7 0
−7 −1 0 0 0 0 −9 0 0 17





























.

The initial joint velocities are assumed to be zero
while the initial joint positions are set as q(0) =
[2, 6,−7, 3, 1, 8, 0, 1,−6, 9,−5, 0,−4, 5,−3, 4,−2, 7,−8, 1]⊤.

The simulation scenario is the same as in (Nuño and
Ortega, 2018) with the sole difference being that the
distance to the center of mass is distinct from the length
of the link. The initial parameter estimates are set as
θ̂(0) = 1012. The controller gains are chosen as pi = 4,
di = 8, Γi = 80I2, ǫ = 0.25.

The simulation results for the leaderless consensus con-
troller without using the neighbours velocities are shown
in Figs. 1-4. Fig. 1 depicts the joint positions agreement
in a consensus point. Fig. 2 shows the joint velocities of
manipulators. Fig. 3 shows the evolution of the estimated
parameters. Input torques of the robot manipulators are
drawn in Fig. 4.
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5

10

0 5 10 15 20 25 30

Time (secs)

-10

-5

0

5

10

Fig. 1. Position consensus using the adaptive P+d con-
troller.

5. CONCLUSIONS

In this paper we report a novel decentralized adaptive
controllers to solve the leaderless consensus in networks
of uncertain EL-systems. The controller estimates only
the gravitational term of the dynamics. Therefore, it does
not require the computational burden of estimating the
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Table 1. Physical Parameters of the Robot Manipulators

Manipulators 1-3 Manipulators 4-6 Manipulators 7-10

Link 1 Link 2 Link 1 Link 2 Link 1 Link 2

Link length lki (m) 0.4 0.4 0.3 0.5 0.5 0.2

Link mass mki (kg) 4 2 2.5 3 3 2.5

Link inertia Iki (kg.m2) 0.478 0.044 0.678 0.144 0.03 0.01

Center of mass lcki (m) 0.2 0.2 0.15 0.25 0.25 0.1

-4
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Time (secs)
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Fig. 2. Joint velocities using the adaptive P+d controller.
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Fig. 3. Estimated parameters for the leaderless consensus
with the adaptive P+d controller.

whole EL-dynamics. The proposals is a simple Propor-
tional plus damping scheme and it does not require to
exchange velocity information between the agents. Simu-
lations show the performance of the proposed controller
using a network composed of ten EL-agents.

Future research goes along two different avenues: 1) in-
cluding time-delays in the communications of the agents;
and 2) extending the solution to directed graphs. None
of these problems can be, however, trivially solved. For
the delayed case one has to design a proper Lyapunov
function such that its time-derivative is negative definite
with regards to the delayed error, which is rather difficult
—to our knowledge, the first strict Lyapunov function
for the delayed case has been designed in (Nuño et al.,

0 5 10 15 20 25 30

Time (secs)

-20

-10

0

10

20

30

40

Fig. 4. Input torques for the leaderless consensus with the
adaptive P+d controller.

2018) for the P+d with gravity cancellation, i.e., without
parametric uncertainty. As for the directed case, we are
analyzing the solution of Ye et al. (2017). However the
Lyapunov function employed in (Ye et al., 2017) can only
be employed to conclude a local stability result.
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Nuño, E., Sarras, I., Loŕıa, A., Maghenem, M., Cruz-
Zavala, E., and Panteley, E. (2018). Strict Lyapunov-
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