
Hierarchical-Modular Control for the

prototype of a Flexible Manufacturing Cell

A. I. Hernández-Silva ∗ , E. Aranda-Bricaire ∗

∗ Departamento de Ingenieŕıa Eléctrica, Sección de Mecatrónica,
CINVESTAV, AP. 14-740, 07000 Ciudad de México(e-mail:

aldo.hernandez@cinvestav.mx, earanda@cinvestav.mx).

Abstract: This work presents the implementation of a Hierarchical-Modular Control archi-
tecture for the prototype of a Flexible Manufacturing Cell. Finite-state automata are used for
the modelling of the cell. Supervisory Control Theory is employed to restrict its operation and
control architecture for product recipes definition. Given monolithic supervisors that guarantee
a safe operation of the prototype, product recipes are added in order to resemble a Flexible
Manufacturing Cell capable of producing different products with minimal modifications of the
control architecture.

Keywords: flexible manufacturing cell, discrete-event systems, supervisory control, automata,
hierarchical control, modular control.

1 INTRODUCTION

Nowadays, manufacturing industry is facing a fast evo-
lution, due to an increasing demand and retrenchment
in delivery time. To meet the new production require-
ments imposed by this philosophy, most manufactures
are obligated to optimize their processes. One way to
do so, is by implementing the idea of Flexible Manu-
facturing Systems (FMS), where a manufacturing cell
is conceived to vary its operation according to a given
product recipe. A FMS consists in several automated
workstations, interconnected via automatic systems for
material handling and distribution (Groover 2000). These
systems can be modeled as discrete event systems. Dis-
crete Event Systems (DES), are those whose state space
is finite and whose state can only change as a result of
asynchronously occurring instantaneous events over time
(Cassandras and Lafortune 2009). Industrial processes fall
among this category. DES are modelled using formalisms
such as automata, petri nets, etc. The issue of achieving
a specific behavior is addressed by Supervisory Control
Theory (SCT).

In SCT, a large system can be abstracted by modelling its
various subsystems and imposing an accepted behavior on
it (Afzalian and Noorbakhsh and Wohnham 2010). One
major difficulty arises when the control is synthetized be-
cause the state-space grows exponentially with the num-
ber of subsystems resulting in a computational problem
for designers and industrial implementation (De Queiroz
and Cury 2002).

This paper continues the work done in (Rodŕıguez-Zúñiga
2018), where safety operation of a Flexible Manufacturing

Cell (FMC) is achieved using specifications. As it was
shown in the paper previously mentioned, the resulting
supervisory control become complex in terms of the state
space dimension. Therefore, in the present work a hierar-
chical architecture is used to add new operational features
additionally to the already programmed for a safety-
mode operation. These new features are known as product
recipes (Hernández-Silva 2019) which are defined and
synthetized in a higher control level. As a consequence,
a two-level hierarchical control architecture controls the
operation of the FMC. To achieve a synergetic operation
between safety supervisory control and high-level product
recipes, hierarchical consistency and non-blocking prop-
erties are used.

2 PRELIMINARIES

In this section, standard notation and basic concepts of
automata theory (Rosen 2012) and supervisor control
theory (Cassandras and Lafortune 2009) (Wohnam 2017)
are summarized.

2.1 Languages and Finite-state Automata

A finite state automaton (FSA) is an intuitive and natural
description of a DES, it has a finite number of states and
transits between these states on the occurrence of events.
State transition diagram is the simplest way to present
the idea of automaton (Fig. 1). Formally, an automaton
G is a six-tuple:

G={X,Σ, f,Γ , x0, Xm},

Where X is the state set, Σ is the event set (or al-
phabet), f : X × E → X is the (partially defined)

Memorias del Congreso Nacional de Control Automático

ISSN: 2594-2492

Puebla, Puebla, México, 23-25 de octubre de 2019 636 Copyright©AMCA. Todos los Derechos Reservados www.amca.mx



Fig. 1. State transition diagram of an automaton.

transition function, Γ is the active event function (set
of all events σ for which f(x, σ) is defined), x0 is the
initial state, Xm⊆X is the set of marked states. A lan-
guage L defined over an alphabet Σ is a set of finite-
length strings formed from events in Σ. The language
generated by an automaton G depicts all the strings
that can be generated by the system. It is defined
by L (G) :={s∈E∗| f (x0, s) is defined}. The marked lan-
guage Lm, represents all the desired strings in a system,
it is defined by Lm (G) :={s∈L (G)| f (x0, s)∈Xm}.

Some important operations over languages are presented
next. For a finite event set Σ, the set of all finite strings
over Σ is denoted by Σ∗ (Kleene-closure), in the languages
context L∗ := {ǫ} ∪ L ∪ LL ∪ · · · . Concatenation of two
strings is represented by s1s2 ∈ Σ∗. The empty string
ǫ ∈ Σ∗ is the identity element of concatenation, i.e.,
sǫ = ǫs = s,∀s ∈ Σ∗. The prefix-closure of a language is
defined by L := {s ∈ Σ∗ : (∃t ∈ Σ∗)[st ∈ L]}. The natural
projection from a larger set of events Σl, to a smaller set
of events Σs ⊂ Σl, is defined by P : Σ∗

l → Σ∗
s

P (ǫ) := ǫ

P (σ) := σ if σ ∈ Σs

P (σ) := ǫ if σ ∈ Σl \ Σs

In other words, this operation takes a string formed from
the larger event set and erases events in it that do not
belong to the smaller event set.

Sometimes two (or more) automata are required to op-
erate together with the intention to interact. This joint
behaviour is modelled by Parallel composition, denoted
by ||. For two automata G1 and G2 it is defined as follows:

G1||G2 := X1×X2,Σ1∪Σ2, f,Γ1||2, (x01, x02), Xm1×Xm2

Where
f((x1, x2), σ) :=











(f1(x1, σ), f2(x2, σ)) si σ ∈ Γ1(x1) ∩ Γ2(x2)
(f1(x1, σ), x2) si σ ∈ Γ1(x1) \ Σ2

x1, f2(x2, σ)) si σ ∈ Γ2(x2) \ Σ1

undefined otherwise

2.2 Supervisory control

A DES modelled by an automaton G, describes a behavior
represented by its generated language L(G). The event set
can be decomposed as Σ = Σc ∪ Σuc, where Σc is the set
of controllable events and Σuc is the set of uncontrollable
events. Sometimes the operation of the prototype is haz-
ardous, i.e., it is not satisfactory and must be restricted.
To do so, W. M. Wonham and P. J. Ramadage developed

the celebrated Supervisory Control Theory. The paradigm
of this theory is based on the existence of a supervisor S,
which controls the transition function of G, in the sense
that controllable events of G can be dynamically enabled
or disabled. The expression S/G denotes the operation of
system G under the action of supervisor S. A controlled
system is said to be non-blocking if L(S/G) = Lm(S/G).
This property outstanding since, if it is not fulfilled, a
system cannot complete a task. Additionally, a supervi-
sor must satisfy the controllability condition, stated as
follows: for a given language K such that L(S/G) = K,
it is said to be controllable with respect to a system G
and a set of uncontrollable events Σuc ⊆ Σ, if KΣuc ∩
L (H) ⊆ K. A supervisor fulfills both controllability and
non-blocking conditions if it meets the following theorem
(Cassandras and Lafortune 2009).

Theorem 1. Non-blocking Controllability Theorem. Given
a DES G with Σuc ⊆ Σ. There exists a non-blocking su-
pervisor S for G such that Lm(S/G) = K and L(S/G) =
K iff the two following conditions are held:

Controlability :KΣuc ∩ L (H) ⊆ K (1)

Lm (G) − closure : K = K ∩  Lm(G) (2)

2.3 Modular supervisory control

Using parallel composition between all the components
of a system and all the specifications of the desired per-
formance, one obtains the model of the close-loop system
(monolithic supervisor). During the supervisory control
synthesis, the major challenge in the area of DES arises
because the state space of the system grows exponentially
with respect to the number of components. Contrary to
this approach, the modular supervisory control exploits
the modularity of specifications and the decentralized
structure of composite plants. According to this, a modu-
lar supervisor is synthetized for each specification over
a local plant. Preserving the non-conflicting property
ensures that the local modular supervisors have the same
accomplishment as monolithic supervisors (Fabian 2006).
The non-conflict property of two supervisors is verified if:

Lm(S1/G) ∩ Lm(S2/G) = Lm(S1/G) ∩ Lm(S2/G) (3)

2.4 Hierarchical control

Hierarchical control addresses the state space explosion by
introducing a two-level structure (Fig. 2). At the lowest
level, a closed-loop system is established between G and
Sl (Wong and Wonham 1996), where Conl is the control
action from supervisor and Inf l is the feedback informa-
tion from the system. The highest level is constructed via
Hierarchical abstraction denoted by Inf lh, which performs
a natural projection over the plant G, resulting in a
smaller high-level model of the plant Gh. Then, the high-
level supervisor synthesis is computed using Gh, obtaining
a high-level closed-loop system, where Infh is the feedback

Puebla, Puebla, México, 23-25 de octubre de 2019 637 Copyright©AMCA. Todos los Derechos Reservados www.amca.mx



Fig. 2. Hierarchical control architecture

information channel and Conh is the control action. Fi-
nally, Comhl represents the communication between the
supervisors of the two levels.

2.4.1 Hierarchical abstraction of decentralized systems

Hierarchical architectures reduce the complexity of su-
pervisor synthesis by only considering the relevant in-
formation from the plant G, so the high-level plant Gh

has always less or equal number of states compared to G
(Schmidt and Marchand 2005). When there is the neces-
sity of adding more subsystems to the original plant, the
process of redesign becomes computationally expensive
as the low-level plant G must be composed considering
all subsystems. After this, a low-level supervisor is syn-
thetized and then, the process on Hierarchical abstraction
is performed. To prevent this computationally-expensive
process, a plant G is considered as a Decentralized control
system, which consists of several smaller components with
their own functionality. These smaller components inter-
act to exhibit the behavior of overall system. It is possible
to project the decentralized subsystems to the higher level
first and then, form the total high-level control system
via parallel composition (Schmidt and Moor 2008). To
achieve this, the following definitions are presented. First,
a high-level alphabet Σh, is defined based on the events
needed to obtain a desired behavior . Decentralized high-
level alphabets are defined as Σh

i := Σh ∩ Σi, where Σi

represents the alphabet of each module. Decentralized
natural projections are defined as pdeci : Σ∗

i →
(

Σh
i

)∗
for

i = 1, . . . , n, where n is the total number of decentralized
subsystems. Using the previous definitions, the following
is stated: Gh = ||

n

i=1
pdeci (Gi). Finally, in order to compute

a supervisor Sl, it must satisfy the non-blocking property
and needs to be hierarchical consistent (Zhong and Won-
ham 1990). Hierarchical consistency property is achieved
if a decentralized low-level specification Ki ⊆ Σ∗

i meets
the following criteria (Schmidt and Moor 2008):

phi
(

Lm

(

Sh/Gh
))

⊆ pdeci (Ki) (4)

Ki controllable w.r.t Gi and Σi,uc (5)

And the non-blocking property is fulfilled if:

Fig. 3. Hierarchical decentralized architecture

Lm

(

Sl
i/Gi

)

= Lm

(

Sl
i/Gi

)

(6)

The hierarchical and decentralized architecture is de-
picted in Figure 3.

3 FLEXIBLE MANUFACTURING CELL

The rest of the paper focuses on a laboratory case
study, namely, the flexible manufacturing cell made
by the German brand Fischertechnik availabke in the
Discrete-Event Systems laboratory of Electric Engineer-
ing Department at CINVESTAV. The cell consists in
4 modules that represent different processes resembling
an actual manufacturing industry installation (Fig. 4).
The modules are: 1) Pneumatic Center, 2) Machining
Center, 3) Pressing Center, 4) 3 DOF Robotic Arm.
The cell is designed to transport a piece by conveyor
belts throughout the stations resembling a manufactur-
ing process. Previous results on this manufacturing cell
(Rodŕıguez-Zúñiga 2018)(Rodŕıguez-Zúñiga and Aranda-
Bricaire 2018)(Hernández-Silva 2019) show the modelling
process of the four modules using automata. Four mono-
lithic supervisors synthetized from safety and procedure
specifications to follow a desired behavior of each module
were presentend as well.

Fig. 4. Flexible manufacturing cell

Puebla, Puebla, México, 23-25 de octubre de 2019 638 Copyright©AMCA. Todos los Derechos Reservados www.amca.mx



In Table 1, condensed information about pneumatic, ma-
chining, pressing and robotic arm modules is presented.

Table 1. Modules information

Module Plant Supervisor Prop.
1

Prop.
2

Pneumatic (16,64) (7,32) Yes Yes
Machining (256,2048) (16,160) Yes Yes
Pressing (6,14) (6,6) Yes Yes
Robotic arm (12,32) (14,14) Yes Yes

In that Table, parentheses denote (states, transitions),
property 1 stands for controllability and property 2 stands
for non-blocking. To compute complex automata oper-
ations in next sections, the software package TCT was
used. This software was developed by Renyuan Zhang and
W. M. Wonham (Wonham 2017).

4 HIERARCHICAL-MODULAR CONTROL

The main purpose of hierarchical-modular approach is
to provide extra information to a given structure, in
this case, four monolithic supervisors and four plants are
already defined and modeled. The extra information to be
added will be product recipes. For a given recipe, the four
process machines of the FMC are considered to be enabled
or disabled. Considering this, the high level alphabet Σh

is defined based on the controllable and uncontrollable
events of: press machine 1 ΣPM1 = {121, 120}, milling
machine ΣMM = {211, 210}, lathe machine ΣLM =
{221, 220} and press machine 2 ΣPM2 = {321, 320} as
follows:

Σh={120, 121, 210, 211, 220, 221, 320, 321}

In Table 2, the desired recipes are defined based on
the controllable events of the high level alphabet Σh

c =
{121, 211, 221, 321}.

Table 2. Product recipes

Recipe Press 1
(121)

Milling
(211)

Lathe
(221)

Press 2
(321)

R0 No No No No
R1 Yes No No No
R2 No Yes No No
R3 Yes Yes No No
R4 No No Yes No
R5 Yes No Yes No
R6 No Yes Yes No
R7 Yes Yes Yes No
R8 No No No Yes
R9 Yes No No Yes
R10 No Yes No Yes
R11 Yes Yes No Yes
R12 No No Yes Yes
R13 Yes No Yes Yes
R14 No Yes Yes Yes
R15 Yes Yes Yes Yes

From Table 2, recipes are grouped into 5 cases:
1) one machine operates, recipes: R1, R2, R4 and R8,

2) two machines operate: R3, R5, R6, R9, R10 and R12,
3) three machines operate, recipes: R7, R11, R13 and R14,
4) four machines operate, recipe: R15,
5) no machine operates, recipe: R0.

The four process machines consider for the recipes (press
machine 1, milling machine, lathe machine and press
machine 2) are part of only three modules in FMC:
Pneumatic, Machining and Pressing. For this reason, to
perform the hierarchial abstraction three decentralized
high-level alphabets are defined: Σh

1 = {120, 121}, Σh
2 =

{210, 211, 220, 221} and Σh
3 = {320, 321}. With such

definitions, the four process machines can be abstracted
from the model of each module using the decentralized
natural projections. Finally, the resulting automatan from
each projection, are grouped using parallel composition
to obtain the high-level plant Gh. The previous process
simplifies the computational complexity for supervisor
synthesis as it uses a reduced model of the plant and by
focusing in specific events of the whole FMC. In this case,
Gh consists of 16 states and 64 transitions.

4.1 Supervisor synthesis

To achieve the desired behavior, high-level specifications
are introducced. Generic automata are used to represent
recipes where two (Fig. 5) and three (Fig. 6) machines
operate. The main action of high-level specifications, is to
impose a sequence for machines operation. For example,
manufacturing process a is followed by manufacturing
process b. Therefore, the specifications for recipes R3,
R5, R9, R10 and R12 are represented using the following
automaton (Fig. 5).

0 1

a

b

selfloop(Σh − {a, b})

Fig. 5. Specification for recipes R3, R5, R9, R10 and R12

Where a, b ∈ Σh
c . The specifications for recipes R7,

R11, R13 and R14 are represented using the following
automaton (Fig. 6).

0 1

ds, es, fs

df , ef , ff

selfloop(Σh − {ds, es, fs, df , ef , ff})

Fig. 6. Specification for recipes R7, R11, R13 and R14

Where ds, es, fs ∈ Σh
c , df , ef , ff ∈ Σh

uc = {120, 210, 220,
320}, subscript s and f stand for the start and finish of

Puebla, Puebla, México, 23-25 de octubre de 2019 639 Copyright©AMCA. Todos los Derechos Reservados www.amca.mx



a manufacturing process in a machine, respectively. The
previous specification states that one manufacturing pro-
cess must finish before another starts. The specification
used for recipe R15 is presented in Figure 7.

0 1

121,211,221,321

120,210,220,320

Fig. 7. Specification for recipe R15

Similarly to the specification shown in Figure 6, the spec-
ification for recipe R15 enables only one manufacturing
process at a time, but in this case, the four manufacturing
processes are available. To obtain a simplified supervisor
for the previous recipe especifications, the following TCT
instructions were used for each recipe.

SCRi = supcon(Gh, ERi) (7)

CRi = condat(Gh, SCRi) (8)

SRi = supreduce(Gh, SCRi, CRi) (9)

With i= 3, 5, 7, 9, 10, 11, 12, 13, 14, 15. If these reduced su-
pervisors meet the hierarchical consistency, non-blocking
and controlability properties, they will be considered as
an acceptable high-level supervisors. To exemplify hier-
archical consistency for supervisor SR3 (Fig. 8), it was
evaluated using (4). The result is shown in Table 3.

0 1

121

211

selfloop (120, 210, 220, 221, 320, 321)

Fig. 8. Reduced supervisor SR3

Table 3. Herarchical consistency for SR3

i ph
i

(

Lm

(

Sh/Gh
))

pdec
i

(Ki)

1 {120, 121}∗ {120, 121}∗

2 {210, 211, 220, 221}∗ {210, 211, 220, 221}∗

3 {320, 321}∗ {320, 321}∗

Where monolithic specification Ki for module i is ob-
tained by using parallel composition between all the
specifications for module i. The recipe supervisors SRi

with i= 3, 5, 7, 9, 10, 11, 12, 13, 14, 15 were evaluated, as in
Table 3, and they fulfilled the hierarchical consistency
property (4). Controllability and non-blocking proper-
ties were verified using TCT instructions: SRicn =
condat

(

Gh, SRi

)

and SRinb = trim(SRi). The results
of evaluating hierarchical consistency, controllability and
non-blocking for each reduced supervisor, are summarized
in the Table 4.

Table 4. High-level supervisors properties

Supervisor Hierar.
consis.

Non-
blocking

Controllable

SR3 Yes Yes Yes
SR5 Yes Yes Yes
SR7 Yes Yes Yes
SR9 Yes Yes Yes
SR10 Yes Yes Yes
SR11 Yes Yes Yes
SR12 Yes Yes Yes
SR13 Yes Yes Yes
SR14 Yes Yes Yes
SR15 Yes Yes Yes

The recipes: R0, R1, R2, R4, R6 and R8 are not yet
implemented. To do so, a modular supervisor approach
was proposed as follows: if two previously synthetized
high-level supervisors are used in a high-level modular
architecture, the desired behaviour by a non-implemented
recipe can be achieved. Table 5 is used to illustrate the
method used:

Table 5. High-level modular design process

Supervisor Press 1
(121)

Milling
(211)

Lathe
(221)

Press 2
(321)

SR12 No No Yes Yes
SR5 Yes No Yes No

SR4 No No Yes No

The interpretation is as follows: recipe SR4 has to dis-
able events 121, 211 and 321, if the high-level supervi-
sors SR12 and SR5 work modularly, the joint action
disables the desired events. Using this high-level modular
method, supervisors for the next recipes are obtained:
SR0 = mod(SR12, SR3), SR1 = mod(SR3, SR9),
SR2 = mod(SR3, SR10), SR4 = mod(SR5, SR12),
SR6 = mod(SR7, SR14) and SR8 = mod(SR9, SR12).
Where mod(X,Y ) stands for the modular architecture
using X and Y high-level supervisors. Since modular ap-
proach is used, non-conflict property (Fabian 2006) must
be verified. To do so, TCT instruction called nonconflict
is used. This instruction evaluates if two languajes are
conflicting which causes modular architecture failure but,
if it returns “nonconflicting” message, modularity is
preserved. Also, hierarchical consistency, controllability
and non-blocking properties must be verified. In this mod-
ular case, the supervisors involved must be joined using
parallel composition and then such properties tested. In
the Table 6 results on this evaluations are summarized.

Table 6. High-level modular supervisors

Modular
Supervisor

Hierar.
consis.

Non-
conflict

Non-
blocking

Controllable

SR0 Yes Yes Yes Yes
SR1 Yes Yes Yes Yes
SR2 Yes Yes Yes Yes
SR4 Yes Yes Yes Yes
SR6 Yes Yes Yes Yes
SR8 Yes Yes Yes Yes

Puebla, Puebla, México, 23-25 de octubre de 2019 640 Copyright©AMCA. Todos los Derechos Reservados www.amca.mx



Low-level supervisors disable controllable events from the
incoming string according to safety specifications. On the
other hand, high-level supervisors act on the resulting
string, first checking if the string contains events from
the high-level alphabet and then, disabling controllable
events according to a desired recipe. If the resulting string
after low-level supervisor does not include events from the
high-level alphabet, this string reaches and acts directly
on the plant.

5 IMPLEMENTATION

To test the control architecture, it was translated to lad-
der language (LAD) following a standard equivalence be-
tween finite-state automata and LAD instructions (Silva
and De Queiroz 2010). The disabling nature of the con-
trollable events by supervisor must be preserved in LAD,
so disabling operation was carried out by adding extra
contacts (De Queiroz and Cury 2002).

The hardware used was a Siemens S7-1200 PLC which
enables to use TIA Portal software. In this software, its in-
terface has two main windows, one showing all the blocks
programmed (project tree) and another showing the
current block open (block interface). The Hierarchical-
Modular approach exhibits easiness at testing the recipes
programmed. The user opens the main block, then he can
select amongst all recipes, which one will be uploaded
to the PLC by simply changing one block (Fig. 10). In
the following URL, the FMC executing the hierarchical
modular control architecture for recipe three is presented:
https://bit.ly/2XTdrVk.

Fig. 9. Hierarchical-Modular architecture test

6 CONCLUSION

The main objective of this paper was to present a method
to simplify the process of adding extra information to
a controlled system. This method, uses a hierarchical-
modular architecture to introduce new processes in a
FMC with no safety-risks. Meaning that there is a signif-
icant reduction in both computational and programming
effort.

7 REFERENCES

Afzalian, A. and Noorbakhsh, S.M. and Wohnham, W.M.
(2010). Discrete-event supervisory control for under-
load tap-changing transformers (ULTC): from syn-
thesis to PLC implementation.

Cassandras, C.G. and Lafortune, S. (2009). Introduction
to discrete event systems. Springer Science & Bussiness
Media.

De Queiroz, M.H. and Cury, J.E. (2002). Synthesis and
implementation of local modular supervisory control for
a manufacturing cell. In Discrete Event Systems, 2002.
Proceedings. Sixth International Workshop on, 377-382.
IEEE.

Fabian, M. (2006). Discrete Event Systems: lecture notes.
Control and automation laboratory, Chalmers Univer-
sity of Technology.

Groover, M.P. (2000). Automation, Production Systems,
and Computer-integrated Manufacturing. Prentice Hall.

Hernández-Silva, A.I. (2019). Control Jerárquico-Modular
de un prototipo de celda de manufactura flexible. M. Sc.
Thesis, Depto. de Ingenieŕıa Eléctrica CINVESTAV.

Rodŕıguez-Zúñiga, J.A. (2018). Modelado y control super-
visor de un prototipo de celda de manufactura flexible.
M. Sc. Thesis, Depto. de Ingenieŕıa Eléctrica CINVES-
TAV.

Rodŕıguez-Zúñiga, J.A. and Aranda-Bricaire, E. (2018).
Modelado y control supervisor de un prototipo de celda
de manufactura flexible. Memorias del Congreso Na-
cional de Control Automático, vol. 1, 195-200.

Rosen, K.H. (2012). Discrete mathematics and its appli-
cations. Mc Graw Hill.

Schmidt, K. and Marchand H. (2005). Modular and De-
centralized Supervisory Control of Concurrent Discrete
Event Systems Using Reduced System Models. Proc.
Workshop Discrete Event Syst. (WODES), Ann Arbor,
149-154.

Schmidt, K. and Moor, T. (2008). Nonblocking Hierar-
chical Control of Decentralized Discrete Event Systems.
IEEE Trans. Automat. Control, vol. 53, no. 10, 2252-
2265.

Silva, Y.G. and De Queiroz, M.H. (2010). Formal synthe-
sis, simulation and automatic code generation of su-
pervisory control for a manufacturing cell. ABCM Sym-
posium Series in Mechatronics, vol. 4, 418-426.

Wong, K.C. and Wonham, W.M. (1996). Hierarchical
control of discrete event systems. Discrete Event Dyn.
Syst.: Theory Appl., vol 6, no. 3, 241-273.

Wonham, W.M. (2017). Notes on Control of Discrete
Events Systems. Department of Electrical Engineer-
ing, University of Toronto, Canada.

Zhong, H. and Wonham, W.M. (1990). On the consistency
of hierarchical supervision in discrete-event systems:
A state-based approach. IEEE Trans. Automat. Con-
trol, vol. 35, no. 10, 1125-1134.

Puebla, Puebla, México, 23-25 de octubre de 2019 641 Copyright©AMCA. Todos los Derechos Reservados www.amca.mx


