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Abstract: In this work it is presented a contraction analysis-based design for the synchro-
nization of a pair of chaotic fractional order systems is presented. It allows to send encrypted
information through a channel, using the chaotic sequence generated by a master system as
a carrier signal to the second slave system which decrypts the message using a key signal.
Contraction analysis gives a straightforward analysis design, one given for the synchronization
and convergence of neighbor trajectories of both systems. Numeric examples are presented to
show the effectiveness of the proposed design.
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1. INTRODUCTION

Even though the concept of integro-differential fractional
equations were first proposed at the end of the 17th
century and taken into account as a research subject until
1884, their application to describe dynamic systems has
only been gaining attention in recent years due to the fact
that several classes of physical systems, especially those
including diffusion dynamics or friction, as well as memory
and hereditary properties in materials and systems can
be better and more succinctly described by fractional
derivatives and integrals, rather than by their integer
counterparts [Caponetto, 2010]. As usually the integer
integral or derivative is represented by the operators Jn

and Dm respectively, where n ∈ N; so, fractional integral
and derivative are typically described also as the operators
Jβ and Dα, where α, β ∈ ℜ.

As the same tools used to analyse linear systems with
integer differentials and integrals, such as the Laplace
transform and the Fourier analysis can be extrapolated
and used in linear fractional ones, some methods have
been proposed to approximate the solution given by a
fractional differential equation of fractional differential
system (FOS), from a higher-order transfer function with
integer derivatives [Mansouri et al., 2010, Oustaloup et al.,
2000] to the analysis of the step response [Dorcák et al.,
2002], similar to the case of first and second-order sys-
tems. In most cases the parameters of FOSs are assumed
known or obtained from a physical analysis of the system,
especially regarding the fractional α and β.

New techniques for analysis of linear and nonlinear
fractional-order systems have been proposed in recent
years. Lyapunov analysis for stability has been extended
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to the fractional case [Aguila-Camacho et al., 2014,
Duarte-Mermoud et al., 2015], as well as for the Barbalat
lemma [Navarro-Guerrero and Tang, 2017], that have
been used to propose a contraction-analysis approach to
not only the convergence of the trajectories of a FOS
to a fixed point, but also convergence among trajecto-
ries based on contraction-analysis [González-Olvera and
Tang, 2018]. This approach has been proven to be useful
in analysis and design of synchronization schemes for
chaotic systems, investigated [Zhu et al., 2009] to study
its applications [Angulo-guzman et al., 2016, Delgado and
Duarte, 2014, Hartley et al., 1995] and to design secure
communications [Kiani-B et al., 2009].

In this work we present an observer of a synchronization
scheme for a chaotic fractional-order systems in order to
send an encrypted message, based on contraction theory
analysis and design. The paper is organized as follows: In
Section 2, a brief description of fractional calculus and
systems are given and the problem statement is given. In
Section 3, the algorithm for the synchronization scheme
based on contraction theory is presented, and in Section 4
results are shown in order to illustrate the effectiveness of
the method. Finally, conclusions are discussed in Section
5.

2. BACKGROUND

From a mathematical point of view, a fractional order
integral or derivative is defined as an extrapolation of
the definition of the integer-order integral or derivative
of a certain function f(t), seen as a general fractional
differential operator Dα. In this work we use the Caputo
Fractional Differential Operator [Caputo, 1967]:

C
aD

α
t f(t) = f (α)(t) =
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Γ(n− α)

∫ t

a

dnf(τ)
dtn

(t− τ)α+1−n
dτ,∈ (n− 1, n), n ∈ N

dn

dtn
f(t), α = n ∈ N.

(1)
as in the area of control systems, generally the Caputo’s
definition is preferred, since the initial conditions typically
associated with physical interpretation are involved, such
as the integer derivative at t = 0. In this work we use the
simplified notation C

0D
α
t f(t) = D(α) = f (α)(t).

2.1 Contraction analysis for fractional-order nonlinear
systems and asymptotic convergence

Let a fractional-order state space system with an initial
condition be defined by the fractional differential equation

x(α)(t) = f(x(t), t), x(t0) = x0, (2)

where x(t) ∈ ℜn is the state vector, t ≥ t0 = 0, f : ℜn ×
ℜ+ → ℜn a nonlinear continuously differentiable vector

field, and α = [α1, α2, . . . , αn]
T

are the fractional orders
αi ∈ (0, 1]. This definition includes systems with external
inputs f(x(t), t) = f̄(x(t),u(t), t) or with a feedback
control u(t) = u(x(t), t).

Assumption 1. (2) is of commensurate order, so α is taken
as a single scalar, where 0 < α ≤ 1.

Consider then a given trajectory x(t) of the system (2),
(and with little abuse of notation (let x = x(t) when
possible) and in a fixed time an adjacent trajectory x̃(t)
defined as x̃(t) = x(t) + δx(t), where δx(t) is the virtual
displacement from the original trajectory. Then ‖δx(t)‖
as the differential distance between them at a fixed time.
Given that the fractional derivative is a linear operator,
the dynamics of x̃(t) is described by:

Dαx̃(t) = Dα (x(t) + δx(t))

= Dαx(t) +Dαδx(t) = f(x(t), t) + δx(α)(t), (3)

The dynamics of the virtual displacement of each x
(α)
i (t) =

fi(x(t), t) at a fixed time is given by

δ[x
(α)
i (t)] = δ[fi(x(t), t)] = δ[fi(x1, . . . , xn, t)] = (4)

n
∑

k=1

(

∂fi
∂xi

)

(x(t), t)δxk(t). (5)

Therefore, as δ[Dαxi(t)] = D[δx
(α)
i (t)] = δx

(α)
i (t) at a

fixed time t, we get

δx(α) =
∂f

∂x
δx

∆
= J(x, t)δx, (6)

where J(x, t) = [∂fi(x(t), t)/∂xj(t)] = ∂f/∂x, that is, the
jacobian matrix of f(x(t), t). It is interesting to note how,
given that the virtual displacement is given in a fixed time,
no fractional derivatives appear at the right side of (6).

As consequence, for adjacent trajectories of (2), the
dynamics of their difference is given by (6), that depends
on the properties of J(x, t), where its symmetric part is

Js =
1

2

(

J(x, t) + JT (x, t)
)

,

and λ̄m = supx∈X {λm(x(t), t)} the bound of its largest
eigenvalue in a given region of the state-space x ∈ X ⊆
ℜn.

Let the Euclidian distance be given by V (δx(t)) =
1
2 ‖δx(t)‖

2
= 1

2δx
T (t)δx(t). Using the result given by

Aguila-Camacho et al. [2014], its fractional derivative
DαV (δx(t)) results in the inequality:

DαV (δx(t))≤ δxT (t)Dαδx(t) = δxT (t)J(x(t), t)δx(t)

≤ λ̄mδxT (t)δx(t).

So we have the fractional-order differential inequality

DαV (δx(t)) ≤ 2λ̄mV (δx(t)). (7)

Therefore, there must be a non-negative function m(t)
such that the equality is met, i.e.

DαV (δx(t)) = 2λ̄mV (δx(t))−m(t). (8)

Given that 0 < α ≤ 1, let L{V (δx(t))}
∆
= V (δx(s)) and

L{m(t)}
∆
= M(s), from (8) we obtain:

L{DαV (δx(t))} = sαV (δx(s))− sα−1V (δx(0))

= 2λ̄mV (δx(s))−M(s),

so

V (δx(s))(sα − 2λ̄m) = sα−1V (δx(0))−M(s). (9)

Therefore,

V (δx(s)) =
sα−1

sα − 2λ̄m

V (δx(0))−
1

sα − 2λ̄m

M(s), (10)

As for a pair of functions g(t), h(t) we have that the
Laplace transform of its convolution is

L

{∫ t

0

g(t)h(t− τ)dτ

}

= L{g(t) ∗ h(t)} = G(s)H(s).

We then obtain the solution in the time domain:

V (δx(t)) =Eα(2λ̄mtα)V (δx(0))−
(

tα−1Eα,α(2λ̄mtα)
)

∗ (m(t)). (11)

Given that m(t) and tα−1Eα,α(2λ̄mtα) are non-negative
functions [Li et al., 2009], then the solution to the inequal-
ity (7) is:

V (δx(t)) ≤ V (δx(0))Eα(2λ̄mtα). (12)

Now, if in the region λ̄m < 0 ∀ x ∈ X , then it
is guaranteed that lim

t→∞
V (δx) = 0. Consequently, as

V (δx(t)) = 1
2 ‖δx(t)‖

2
, the distance between adjacent

trajectories decays inside the region as

‖δx(t)‖ ≤ ‖δx(0)‖
√

Eα(2λ̄mtα), (13)

while the states remain in the region. Therefore, it follows
that limt→∞ δx = 0 whenever x0 ∈ X , and a asymptotic
convergence is guaranteed.

With this result, we can give the following definition:

Definition 1. [González-Olvera and Tang, 2018] Given
(2), a region X of the state space is called a contractive
region if the symmetric part of the Jacobian matrix ∂f/∂x
is negative definite for x ∈ X . If it is only negative semi-
definite, then the region is called semi-contractive.
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Therefore, in a contractive region the trajectories con-
verge to each other with a distance bounded by a Mittag-
Leffler vanishing function, and we can give the following
theorem:

Theorem 1. [González-Olvera and Tang, 2018] If the sys-
tem (2) is contractive in a given region X ⊆ ℜn, then
if a given trajectory remains inside the region, then any
nearby trajectory that starts in a ball around that tra-
jectory converges asymptotically to the former, and the
distance between them is bounded by a Mittag-Leffler
vanishing function.

Now consider a different metric, seen as a change of
coordinates given a linear time-invariant invertible trans-
formation T ∈ ℜn×n in the form

δz = Tδx, (14)

and let the generalized Jacobian matrix be defined as

F(x, t) = T
∂f

∂x
T−1 (15)

In this sense, a given Euclidian metric is defined for the
virtual infinitesimal displacement by ||δx||2P = ||δz||2 =
δxTPδx, with P = TTT . The objective now is to analyze
convergence of the trajectories of (2) and, for that matter,
we can give the next definition:

Definition 2. Given (2), a region X of the state space
is called a contractive region with respect to a constant
uniformly positive definite metric P = TTT if there
exists a positive scalar βF > 0 such that the generalized
Jacobian matrix (15) complies with F(x, t) ≤ −βF I, or

equivalently
(

∂f
∂x

)T
P + P

(

∂f
∂x

)

≤ −2βFP , for x ∈ X .
In other words, a contractive region is such where the
symmetric part of (15) is negative definite, while if it
is only negative semidefinite, then the region is called a
semi-contractive region.

Then we can postulate the following Theorem:

Theorem 2. If the system (2) is contractive under a given
metric P > 0 in a given region X ⊆ ℜn, then adjacent
trajectories inside the region converge asymptotically to
each other, and their distance is bounded by a Mittag-
Leffler vanishing function.

In the case of a semi-contractive region, that is, when
(15) is only negative semi-definite, it can only be proven
that the distance among trajectories remains bounded.
Consider then the class of systems (2) that, given a
diffeomorphism ξ = (ξT1 , ξ

T
2 )

T = Φ(x) are transformed
into

Dα

(

ξ1
ξ2

)

=

(

f1(ξ1, ξ2)
f2(ξ1, ξ2)

)

, (16)

where the first variation is

Dα

(

δξ1
δξ2

)

=







∂f1(ξ1, ξ2)

∂ξ1

∂f1(ξ1, ξ2)

∂ξ2
∂f2(ξ1, ξ2)

∂ξ1

∂f2(ξ1, ξ2)

∂ξ2







(

δξ1
δξ2

)

, (17)

and consider that if ∂f1(ξ1,ξ2)
∂ξ2

= −∂f2(ξ1,ξ2)
∂ξ1

and ∂f2(ξ1,ξ2)
∂ξ2

=

0 ∀t ≥ 0, given the positive definite function

V (δξ1, δξ2) =
1

2
δξT1 δξ1 +

1

2
δξT2 δξ2, (18)

we have that its fractional derivative along the system
trajectories complies with

V (α)(δξ1, δξ2) ≤ δξT1
∂f1(ξ1, ξ2)

∂ξ1
δξ1. (19)

Therefore, we can state the following Theorem:

Theorem 3. If the system (2) is semi-contractive under
the metric P > 0 in a given region X ⊆ ℜn, and if
there exists some diffeomorphism ξ = (ξT1 , ξ

T
2 )

T = Φ(x)

such that ∂f1(ξ1,ξ2)
∂ξ2

= −∂f2(ξ1,ξ2)
∂ξ1

, ∂f2(ξ1,ξ2)
∂ξ2

= 0, and
∂f1(ξ1,ξ2)

∂ξ1
< 0 for x ∈ X , then δξ1 → 0 as t → 0 with

a Mittag-Leffler vanishing function, and ||δξ2|| remains
bounded.

2.2 Partial contraction

One particularly useful result of contraction analysis is
that it gives analysis and design tools to determine when
the trajectories of two systems will converge asymptoti-
cally, and not necessarily to an equilibrium point. That is,
if the trajectories of a given system Σ1 are a particular so-
lution of a second system Σ2, and it results that the latter
is contractive, then its trajectories would asymptotically
converge to the former.

For example, consider the pair of the scalar systems with
α ∈ (0, 1] Σ1 : y(α)(t) = −y(t)− y3(t)+ sin(t) = f(y, y, t)
and Σ2 : υ(α)(t) = −υ(t) − y3(t) + sin(t) = f(y, υ, t).
When υ = y, the trajectories of Σ1 are a particular
solution of those of Σ2.

Consider once again (2) expressed as

Σ1 : x(α) = f(x,x, t). (20)

Note concretely that in (20), f(x,x; t) = f(x; t), that
means that this can be separated, depending on the
convenience of the result or the design, arbitrarily. Define
then an auxiliary system in the form

Σ2 : χ(α) = f(χ,x, t). (21)

Clearly, χ = x is a particular solution. Then, we can
postulate the following theorem:

Theorem 4. Consider the nonlinear commensurate frac-
tional-order system (20) expressed as in (21). If the latter
is contractive with respect to χ, then if some solution
of χ satisfies a given property (such as smoothness or
convergence) in a given region x ∈ X ⊆ ℜn, then all
trajectories of the original system (20) verify that given
property with asymptotic convergence following a Mittag-
Leffler bounding vanishing function, and the original
system is said to be partially contractive.

Proof 1. This proof follows the same steps as in Theorem
3 of Lohmiller and Slotine [1998], as the solution of χ-
system has a certain particular property, then the partic-
ular solution χ = x ∀ t ≥ 0 implies that x verifies that
property asymptotically with a Mittag-Leffler bounding
vanishing function.

Following the previous example, the jacobian matrix of Σ2

is J(υ) = −1 < 0, and therefore is partially contracting,
so limt→∞ y(t) → υ(t).
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3. SYNCRONIZATION DESIGN VIA
CONTRACTION ANALYSIS

From the previous discussion and results on partial con-
traction, consider that Σ1 : x(α) = f(x,x, t) is the master
system, whose trajectories x are to be followed by those
of a slave system Σ2 : x̂(α) = f(x̂,x, t). Therefore, if Σ2 is
partially contracting with respect to x̂, then the solutions
x and x̂ converge to each other.

Consider the communication system portrayed in Fig. 1.
The basic idea consists of using a chaotic signal generator
as a generator of a pseudo-random signal that masks an
information signal and delivers it to a secondary system,
and the original message can be decoded from the received
contaminated signal.

Fractional 

Chaotic 

System

Fractional 

Observer

!(#)

+ +

−&'((#)'((#)

)(#) *)(#)+(#)

Fig. 1. Communication system using a fractional-order
chaotic system and observer

Consider that the first system is given by the Arneodo’s
chaotic fractional-system

τx(α)(t) =





x2(t)
x3(t)

−β1x1(t)− β2x2(t)− β3x3(t) + β4x
3
1(t)



+ ω(t),

y(t) = x1(t), (22)

where ω(t) is a perturbation signal and τ is the time
factor. Assuming that only the output y(t) is measured
and transmitted, the signal containing the message m(t)
is given by

ym(t) = y(t) +m(t) (23)

According to Lu [2005], this system shows a chaotic
behaviour when α ∈ [0.7, 1] and β1 = 5.5, β2 = 3.5,
β3 = 1 and β4 = −1. In this analysis, the time factor can
be adjusted in order to create a faster or slower generated
chaotic message, and for other values the following results
can be adjusted accordingly.

The main problem now is to design an observer that, given
that only y(t) is transmitted privately, reconstructs x(t)
from ym(t), given that the former is transmitted over a
public channel.

Consider the observer (that receives the synchronization
signal y(t)), that will work as a decodifier for the masked
message m(t), given by

τ x̂(α) =





x̂2 +K1(y − x̂1)
x̂3 +K2(y − x̂1)
−β1x1 − β2x̂2 − β3x̂3 + β4x

3
1 +K3(y − x̂1)



 ,

(24)

It is clear that, from the contraction analysis point-of-
view, the x system is a particular solution of x̂ if x̂ = x,
ω(t) = 0 and y = x̂1. Therefore, if we can prove that
observer is contracting in respect to x̂ then limt→∞ x̂ = x.
Taking the Jacobian matrix if the x̂-system we obtain:

Jx̂ =

(

−K1 1 0
−K2 0 1
−K3 −β2 −β3

)

. (25)

In order to search for a gain and parameter combination
that assures semi-contraction of system (24), consider the
general metric

P =

(

p1 p2 p3
p2 p4 p5
p3 p5 p6

)

.

Solving for a particular metric P > 0 such that
(

∂f
∂x

)T
P+

P
(

∂f
∂x

)

≤ −2βFP the synchronization can be achieved.

4. RESULTS

In order to synchronize both systems and symplify the
analysis, take K1 = K2 = 0 and K3 > 0, so the condition
for partial contraction is given by the metric

P = (Pc−1 Pc−2 Pc−3)

being positive definite, where

Pc−1 =

















−
4K3

3 + 4K3
2 − 10K3 + 49

2K3 (2K3 − 7)

−
9K3

2 + 7

K3 (2K3 − 7)
1

K3

















Pc−2 =



















−
9K3

2 + 7

K3 (2K3 − 7)
4K3

2 + 71K3 + 4

2
(

7K3 − 2K3
2
)

2
(

K3
2 +K3 + 1

)

7K3 − 2K3
2



















Pc−3 =















1

K3

2
(

K3
2 +K3 + 1

)

7K3 − 2K3
2

9K3 + 2

7K3 − 2K3
2















The condition for P > 0 is given by K3 ∈ (0, 7/2),
and according to Theorem 3 the conditions for partial
contraction are achieved, so the master and slave systems
synchronize lim

t→∞
x̂ = x .

From the conditions for contraction presented in Section
3, let K3 = 1, so the obtained the metric matrix is

P =

(

4.7 3.2 1.0
3.2 7.9 1.2
1.0 1.2 2.2

)

.
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With this result,
(

∂f
∂x

)T
P +P

(

∂f
∂x

)

= −2I3×3 ≤ −βFP <
0. As the minimum eigenvalue of P is λmin (P ) = −1.847,
the condition is met with βF = 1.0828 > 0.

Let the message be given by m(t) = 0.1 sin(2π2t) +
0.05 cos(2π7t). In Fig. 2 it is shown the power spectrum of
both the masking signal and the message, where it can be
seen that the message is effectively masked by the chaotic
signal. It should be noted that varying the time scale τ
to values different than 1 does modify the bandwidth of
the masking signal correspondingly, allowing to different
signals to be sent through the channel.

0 1 2 3 4 5

Frequency [Hz] 

0

2000

4000

6000

8000

10000

12000

14000
Power spectrum

Masking signal

Message

Fig. 2. Power spectrum of the masking signal and message

In Fig. 3 it is depicted the reconstruction of the signal
message even under a gaussian perturbation signal ω(t)
with standard deviation σω = 0.01 and zero mean. It can
be seen of the signal is effectively reconstructed, with a
RMS error of 0.0045, that implies a 5% error in reference
to the transmitted message.

0 2 4 6 8 10
-0.2

-0.1

0

0.1

0.2

8 9 10
-0.2

0

0.2

0 2 4 6 8 10

Time [s]

-0.1

-0.05

0

0.05

Fig. 3. Signal reconstruction results

5. CONCLUSIONS

This work has presented a contraction analysis-based de-
sign for the synchronization of a pair of chaotic fractional
order systems that allows to send encrypted information
through a channel, using the chaotic sequence generated
by a master system as a carrier signal, while a second
slave system decrypts the message using a key signal. Con-
traction analysis provides with a straightforward analysis
design, as well as conditions for the synchronization and
convergence of neighbor trajectories of both systems. Nu-
meric examples are presented to show the effectiveness of
the proposed design. Further work includes the stability
and robustness analysis for perturbed and noisy signals
recovered from the channel.
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