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Abstract: We propose a design methodology to construct piecewise linear systems with
attractors of different number and distribution of scrolls. We investigate the underlying chaos
generating mechanisms of benchmark chaotic systems, then we propose variants based in these
benchmark structures that result in new alternative attractors. Unlike previous methods our
method is not based on adding equilibrium points on the system, instead we manipulate the
eigenvalues and eigenspaces of the existing linear subsystems of the systems to produce or
inhibit the formation of scrolls. To illustrate the effectiveness of our proposed method we show
new attractors with different symmetries and number of scrolls based on some well-known
chaotic systems.
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1. INTRODUCTION

In recent years, the scientific community has placed in-
creasing attention on the design of simple circuits and
systems with chaotic behavior Chen and Ueta (2002);
Campos-Cantón et al (2012). Different authors have
shown that piecewise linear (PWL) systems, i.e., linear
systems with a PWL function in their mathematical de-
scription, can generate chaotic behaviors Sprott (2000);
Lü et al. (2000); Campos et al. (2010). One of the simplest
chaotic system proposed in the literature is Chua’s circuit
Chua et al. (1993). A particularly interesting interpreta-
tion of Chua’s circuit is as a PWL system, that is, as
three linear time-invariant (LTI) systems continuously
connected through a PWL function, which is usually
called the nonlinear resistor, or Chua’s diode Chen and
Dong (1998). Based on this interpretation different forms
of alternative attractors can be generated. In Suykens
et al. (1991) a family of systems with multiples of the
double scroll attractor of Chua’s circuit was proposed.
Multispiral chaotic attractors using a PWL function were
investigated in Aziz-Alaoui (1999). Alternative methods
allow for the generation of n-scroll hyperchaotic attractors
Cafagna and Grassi (2003), and even attractors with
scrolls ordered on directed grids of one, two, and three
dimensions Yalçin et al. (2005). A review of alterna-
tives approaches can be found in Lü and Chen (2006),

while recently in Dı́az-Gonźlez et al (2017, 2016); Anzo-
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Hernández et al (2018) alternative construction of PWL
chaotic systems have been proposed.

In most of the works referred above, the approach ba-
sically consists on adding breakpoints into the original
PWL function of the system, effectively adding equilib-
rium points around which oscillations occur. In Elhadj
and Sprott (2010) the authors propose a two-variable
version to the Chua’s diode as a way to obtain three
scrolls from a single Chua’s circuit without increasing the
number of equilibrium points and show numerically that
other variants are possible. However, no general method
is presented for arbitrary PWL systems.

In this contribution, we propose a methodology to gener-
ate attractors with different distributions and number of
scrolls without adding equilibrium points to the original
system. To this end, we define a modulating parameter
approach such that no additional breakpoints are intro-
duced in the original PWL function of the system, instead
the geometry of the eigenspaces of its linear subsystems
is manipulated such that oscillations around the existing
equilibrium points are generated or inhibited.

2. PIECEWISE LINEAR CHAOTIC SYSTEMS

Consider a controlled linear dynamical system

ẋ(t) = Ax(t) + uf (x(t)) (1)

where x(t) = [x1(t), x2(t), x3(t)]
⊤ ∈ R3 is the state

variable of the system; A = {aij} ∈ R3×3 is a constant
matrix; and uf (x(t)) : R

3 → R3 is a piecewise continuous
controller. We propose that the controller be given by
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uf (x(t)) =











M1x(t) +B1, if x(t) ∈ H1

M2x(t) +B2, if x(t) ∈ H2

... ...
MNx(t) +BN , if x(t) ∈ HN

(2)

with Mi ∈ R3×3 and Bi ∈ R3 (i = 1, 2, ..., N). The PWL
controller is a function defined in terms of state space
partitions Hi, such that

N
⋃

i=1

Hi = R3, and

N
⋂

i=1

Hi = ∅. (3)

Notwithstanding the simplicity of (1)-(2), for a wide
range of parameter values the system produces complex
trajectories. In fact, letting the switching condition be
dependent on a single variable it can express different
benchmark chaotic systems. For example, the well-known
chaotic system

...
y (t) + 0.6ÿ(t) + ẏ(t) = |y(t)| − 2 becomes

Sprott (2000):

ẋ(t) =

(

0 1 0
0 0 1

a31k −1 −0.6

)

x(t) + uf2(x(t)) (4)

uf2(t) =



























(

0 0 0
0 0 0
1 0 0

)

x(t) +

(

0
0
−2

)

, if x1(t) ≥ 0

(

0 0 0
0 0 0
−1 0 0

)

x(t) +

(

0
0
−2

)

, if x1(t) < 0

(5)

The equilibrium points are x̄k = −A−1

k Bk (x̄1 = [2, 0, 0]⊤

and x̄2 = [−2, 0, 0]⊤). The eigenvalues associated to
each equilibrium point are ρ(A1) = {γ1, σ1 ± ω1} =
{0.5885,−0.5942± 1.1603i} and ρ(A2) = {γ2, σ2 ± ω2} =
{−0.8356, 0.1178 ± 1.0876i}. In both cases, γiσi < 0 and
ωi 6= 0. As such, both equilibriums are focus-saddle,
therefore candidates to apply the Shilnikov method to
establish the existence of chaos Silva (1993).

An important observation is that around each equilib-
rium point there are stable and unstable eigenspaces:
On the positive side, an unstable eigenline E1

u = {x ∈
R3|[2, 0, 0]⊤ + t[−0.8259,−0.4860,−0.2860]⊤, with t ∈
R} associated to γ1 = 0.5885, and a stable eigenplane
E1

s = {x ∈ R3|[2, 0, 0]⊤+t[−0.8259,−0.4860,−0.2860]⊤+
s[−0.8259,−0.4860,−0.2860], with t, s ∈ R} associated
to σ1 ± ω1 = −0.5942 ± 1.1603i. On the negative side,
an unstable eigenplane E2

u = {x ∈ R3|[−2, 0, 0]⊤ +
t[0.5128,−0.0618,−0.6282]⊤ + s[0.1124, 0.5709, 0]⊤, with
t, s ∈ R} associated to σ2 ± ω2 = 0.1178 ± 1.0876i
and a stable eigenline E2

s = {x ∈ R3|[−2, 0, 0]⊤ +
t[−0.6764, 0.5652,−0.4722]⊤, with t ∈ R} associated to
γ2 = −0.8356.

The strongest restriction to apply Shilnikov’s method
is the identification of homoclinic orbits or heteroclinic
loops Silva (1993). Which is a geometric condition for the
existence of a trajectory, with both positive and negative
limits at the same equilibrium point (homoclinic) or lo-

(a)

(b)

Fig. 1. (a) The Sprott system attractor along with its
stable and unstable eigenspaces, switching surface,
and (b) its controller function uf2(x(t)).

cated at one equilibrium point in one direction and at the
other in the opposite direction (heteroclinic). From Figure
1a, one can consider that moving along the unstable plane
E2

u, then switching near the stable line E1

u and returning
near E2

u a homoclinic orbit can be generated for x̄2. The
exact description of the homoclinic orbit is a far more
complex problem as shown in Tigan and Llibre (2016).
Assuming the existence of such homoclinic orbit. Since the
eigenvalue inequality of Shilnikov is satisfied |γ2| > |σ2|
(0.8356 > 0.1178) for x̄2, then homoclinic chaos can be
argued for the system around this equilibrium. However,
since the identification of homoclinic/heteroclinic orbits
is a prohibitively complex problem.

The graphical representation of the Sproot system is
shown in Figure 1b. By analogy between these figures the
positive slope of uf2(x(t)) gives a scroll while the negative
slope returns the trajectory to the negative side. This is
a very simple and direct way of capturing the eigenspace
geometry of the PWL system and the resulting chaotic
attractor.

Another example is Chua’s circuit Chua et al. (1993)
(ẋ1(t) = −10x1(t) + 10x2(t) − 10G(x1(t)); ẋ2(t) =
x1(t) − x2(t) + x3(t); ẋ3(t) = −14x2(t), with G(x1(t)) =
−0.6x1(t) − 0.3(|x1(t) + 1| − |x1(t) − 1|)), which can be
written as a PWL system of the form:

ẋ(t) =







Ā1x(t) +B1, if x1(t) > 1
Ā2x(t) +B2, if |x1(t)| ≤ 1
Ā3x(t) +B3, if x1(t) < −1

(6)
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(a)

(b)

Fig. 2. (a) The Chua’s circuit attractor, and (b) its PWL
controller function.

where Āk =

(

ā11k 10 0
1 −1 1
0 −14 0

)

, Bk =

(

b1k
0
0

)

with ā111 =

ā113 = −4.0, ā112 = 2, b11 = 6.0, b12 = 0, and b13 = −6.0.
In this case there are three equilibrium points x̄1 =
[1.5, 0,−1.5]⊤, x̄2 = [0, 0, 0]⊤ and x̄3 = [−1.5, 0, 1.5]⊤.
With the eigenvalues ρ(Ā1) = ρ(Ā3) = {γ1, σ1 ± ω1} =
{γ3, σ3 ± ω3} = {−5.4272, 0.2136± 3.2051i} and ρ(A2) =
{γ2, σ2 ±ω2} = {−3.1643,−1.0822± 2.7708i}, that is, all
are focus-saddle equilibriums.

In a similar way as above, the properties of the eigenspaces
can be reinterpret in terms of the corresponding PWL
controller function. For illustration purposes, in Figure
2a we show the chaotic attractor of Chua’s circuit, while
the corresponding PWL controller is shown in Figure 2b.

In the PWL version of the Chua’s circuit in the form of
(1) we have H1 = {x(t) ∈ R3|x1(t) < 1}, H2 = {x(t) ∈
R3||x1(t)| ≤ 1} and H2 = {x(t) ∈ R3|x1(t) < −1} with
two switching surfaces at Σ1 = {x(t) ∈ R3|x1(t) = 1}
and Σ−1 = {x(t) ∈ R3|x1(t) = −1}. Then

ẋ(t) = Ax(t) + uf (x(t))

with A =

(

0 10 0
1 −1 1
0 −14 0

)

and

uf (x(t)) =







[−4x1(t) + 6, 0, 0]
⊤
, if x1(t) > 1

[2x1(t), 0, 0]
⊤
, if |x1(t)| ≤ 1

[−4x1(t)− 6.0]
⊤
, if x1(t) < −1

Considering uf (x(t)) as the controller of the attractor
structure a positive slope means no scroll, while a negative
slope generated scrolls. From this observation in what
follows we propose a design methodology to generate new
chaotic attractors where scrolls are added or remove from
the attractors of PWL systems.

3. DESIGNING PWL CONTROLLERS TO
GENERATE NEW CHAOTIC ATTRACTORS

Inspired by the observations on Sprott system. We start
by proposing to generate a new attractor for this system
with two scrolls. We propose modulating the PWL con-
troller function in the following manner:

uf2(t) =



























ǫ1

(

0 0 0
0 0 0
1 0 0

)

x(t) +

(

0
0
−2

)

, if x1(t) ≥ 0

ǫ2

(

0 0 0
0 0 0
−1 0 0

)

x(t) +

(

0
0
−2

)

, if x1(t) < 0

(7)

Choosing different combinations of ǫ1 and ǫ2 new at-
tractors are generated. The PWL function of the Sprott
system generates scrolls for negative slopes, then by sim-
ply choosing ǫ1 = −1 and ǫ2 = 1, the two-scroll at-
tractor shown in Figure 3a is obtained. This is achieved
by adding a scroll oscillation around the equilibrium
point x̄1 where the eigenvalues associated to x̄1 become
ρ(A1) = {−0.8356, 0.1178 ± 1.0876i}. Other variants are
easily realized by the following combinations: ǫ1 = −1,
ǫ2 = −1, this flips the conditions of the original PWL con-
troller function resulting on a single scroll attractor for the
Sprott system, but now around the opposite equilibrium
point (Figure 3c). Playing with the parameters ǫ1 and ǫ2
the width of the scroll can be altered, for ǫ1 = −0.75 and
ǫ2 = −1 the single scroll attractor shown in Figure 3e is
generated.

A similar method can be use to generate new tree-scroll
attractors. By taking inspiration from Chua’s circuit, we
propose using the PWL controller function

uf (x(t)) =







[−4ǫ1x1(t) + 6, 0, 0]
⊤
, if x1(t) > 1

[2ǫ2x1(t), 0, 0]
⊤
, if |x1(t)| ≤ 1

[−4ǫ3x1(t)− 6.0]
⊤
, if x1(t) < −1

(8)

and tuning the modulation parameters ǫi one can gener-
ate new attractors with one, two or three scrolls. Choosing
ǫ1 = 1, ǫ2 = −0.75, ǫ3 = 1 a three scroll attractor
is generated (see Figure 4a). In this case, the PWL
function is changed to having all three negative slopes,
the additional scroll is generated around the equilibrium
point x̄2 = [0, 0, 0]⊤ where the associated eigenvalues
become ρ(A2) = {−3.0, 0.25± 2.6339i} which satisfy the
Shilnikov condition. With ǫ1 = 0.01, ǫ2 = −0.75, and
ǫ3 = 0.75 an alternative two scroll attractor is generated
(see Figure 4c). Notice that by changing the slope of the
PWL function to almost zero the scroll is eliminated.
Finally, a single scroll attractor for a tree domains sys-
tem is generated around the equilibrium point x̄2 if the
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Fig. 3. New attractors of two domains: (a) Double scroll attractor, and (b) its PWL controller functions (ǫ1 = −1
ǫ2 = 1) (c) Single scroll attractor, and (d) its PWL controller functions (ǫ1 = −1, ǫ2 = −1) (e) Single scroll
attractor, and (f) its PWL controller functions (ǫ1 = −0.75, ǫ2 = −1).

modulation parameters are set to ǫ1 = 0.01, ǫ2 = −0.75
and ǫ3 = 0.01 as shown in Figure 4e.

As illustrated in Figures 3 and 4, using the proposed
method new attractors can be found in terms of the
parameters ǫi, by modifying the stability properties of
the trajectories around the system’s equilibrium points.
However, these new PWL controller functions do not
introduce new equilibrium points. In fact, to a large
extend, the original chaotic systems retain their structure.
Therefore, implementations of these new chaotic systems
can easily be realized electronically.

4. CONCLUSIONS

This contribution we proposed a method to generate
alternative chaotic attractors for PWL systems with two
and three domains. Our method takes inspiration from
two well-known chaotic systems, Sproot and Chua’s cir-
cuit. Our proposal consists in modulating a parameter
make the slopes of their corresponding PWL functions to
have negative slope, which modifies the stability proper-
ties of the linear subsystems and allows for the formation
of scrolls. As a result scrolls can be generated or inhibited
with in the original chaotic structure.
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Fig. 4. New attractors of three domains: (a) Three scroll attractor, (b) its PWL controller function with ǫ1 = 1,
ǫ2 = −0.75, ǫ3 = 1; (c) Two scroll attractor, (d) its PWL controller function with ǫ1 = 0.01, ǫ2 = −0.75,
ǫ3 = 0.75, (e) Single scroll attractor, (f) its PWL controller function with ǫ1 = 0.01, ǫ2 = −0.75, ǫ3 = 0.01.

The approach presented in this paper is simple and viable
for different families of PWL systems. Although here we
are focused on generating new attractors in the same
original system, the proposed approach can easily be
generalized to multi-scroll chaotic attractor of composed
PWL systems.
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