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Abstract: In this paper, the problem of nonlinear sliding mode (SM) regulation is addressed
for nonlinear affine control system subject to unmodelled disturbance. In particular, the error
feedback SM regulator problem is defined, taking the concepts related to the zero output
tracking submanifold as a starting point. Applying the internal model concept to the time-
invariant SM equation, the solvability conditions to the problem are derived. A proportional-
integral (PI) nonlinear observer is proposed, and using the observer state, a sliding manifold
on which the tracking error is ultimately bounded, is formulated. A SM control algorithm is
proposed to ensure the designed manifold to be attractive, achieving robustness with respect
to allowed uncertainties. The effectiveness of the proposed method is demonstrated by the
application to the Pendubot system.
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1. INTRODUCTION

The regulation problem for nonlinear systems is defined
as designing a feedback law in order to asymptotically
track a reference signal while rejecting disturbances, both
provided by an external system, also called exosystem. In
the classical setting, the Francis-Isidori-Byrnes equation
is used, along with the internal model principle, which
generates the feedback control law that is capable of pro-
ducing the desired steady state behaviour, Isidori (1955).
However, in practice, control plants are affected addition-
ally by unmodelled perturbations. As results, the corre-
sponded nonlinear regulator equation cannot be solved
since the unmodelled perturbation is usually unknown.
An alternative approach for dealing with this problem
is to combine the output regulation theory with the
SM control technique, Utkin et al. (2009), which allows
decomposing and simplifying the regulator design pro-
cedure and imposing robustness properties with respect
to matched perturbation, Draženović (1969), El-Ghezawi
et al. (2007). The output regulation problem solution via
the SM technique has been broadly studied in the last two
decades by several authors (see, among others, Jeong and
Utkin (1999), Elmali and Olgac (1992), DZ et al. (2001),
Zheng and Zhong (2013), Govindaswamy et al. (2014))
mainly for minimum phase systems. Few works were
addressed to non-minimum phase systems, however, just
for the case of linear systems (Jeong and Utkin (1999),
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Utkin and Utkin (2014)), and for the particular case of
nonlinear systems with unitary relative degree, Bonivento
et al. (2001). By combining SM technique with regulation
theory, in Loukianov et al. (2018), a robust regulator is
proposed that is able to compensate a matched time-
varying perturbation, and using the equivalent control
technique Utkin et al. (2009), the autonomous nonlinear
regulator equation can be used. It is, however, a state
feedback regulator, and an error feedback regulator is
left out of this work. In Bonivento et al. (2001), an error
feedback SM regulator is addressed but only for systems
with unitary relative degree.

In this paper, an Error Feedback SM Regulator problem
for nonlinear systems subject to matched unmodelled per-
turbations is formulated and solution existence conditions
are derived using a Regulator Equation that corresponds
to the SM equation. A solution of the Regulator Equation
is used to define a control error and a local center manifold
on which the output error is zeroed. To estimate the
unmeasured control error and exosystem state, a nonlin-
ear Proportional-Integral (PI) observer, Beale and Shafai
(1988), is designed. Based on the obtained control error
estimation, a sliding manifold is formulated, and a reach-
ing control law is proposed. It is shown that a solution
of the closed-loop system in the case of nonvanishing
perturbation is ultimately bounded and the tracking error
is driven to a small bound.

The rest of this work is organized as follows. In Section 2,
the error feedback SM regulation problem is formulated
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and conditions for the solution are presented. In Section
3, a nonlinear PI observer, sliding manifold and SM
control algorithm are designed and the the closed-loop
system solution stability is analyzed. In Section 4, the
problem is revisited for a class of nonlinear systems
presented in Regular form. To show the effectiveness of
the proposed method, the SM regulator is designed for
Pendubot dynamical system in Section 5. Finally, Section
6 concludes this work.

2. PROBLEM STATEMENT

Consider a nonlinear system affine in control subject to
perturbations

ẋ = f(x) +B(x)(u+ δ(x, t)) +D(x)w (1)

y = h(x),

where x ∈ X ⊂ ℜn is the state of the system, u ∈ ℜm

is the control input, w represents modelled perturba-
tions, y ∈ ℜp represents the output, and δ(x, t) is a
m−dimensional vector of bounded unmodelled perturba-
tions.

For an error feedback regulator with the objective of
achieving the tracking error

e = h(x)− q(w) (2)

be equal to zero, an exosystem that generates the desired
reference signal q(w) is defined as

ẇ = s(w) (3)

where w ∈ W ⊂ ℜq.

Let us define A0 =

[

∂f(x)

∂x

]

(0)

, B0 = B(0), and C0 =

[

∂h(x)

∂x

]

(0)

to introduce the following assumptions:

• A1. The pair A0, B0 is stabilizable.

• A2. The matrix S =

[

∂s(w)

∂w

]

(0)

has all its eigenval-

ues on the imaginary axis.

The control error or local center manifold (Isidori (1955))
is consequently introduced as

ε(x,w) = 0, ε = x− π(w). (4)

The Error Feedback SM Regulation problem can be
defined as finding a dynamic discontinuous controller

ξ̇ = η(ξ, u, e) (5)

u =

{

u+(ξ) if σ(ξ) > 0

u−(ξ) if σ(ξ) < 0
(6)

with ξ ∈ Ξ ⊂ ℜn, and the sliding manifold

σ(ξ) = 0, σ = [σ1, . . . , σm)]T (7)

such that the following conditions are satisfied :

• C1. Finite-time convergence of the closed-loop sys-
tem states to the sliding manifold σ(ξ) = 0.

• C2. Asymptotic stability of the SM dynamics in the
absence of the perturbation.

• C3.
· A. For the case ‖δ(ε, t)‖ ≤ γ1, γ1 > 0, there is
γ2 > 0 and a neighborhood Ω ⊂ X × W × Ξ
of the origin, such that for each initial condition
(x0, w0, ξ0) ∈ Ω the tracking error satisfies

‖e(t)‖ ≤ γ2, ∀ t ≥ T0.

· B. For the case ‖δ(ε, t)‖ ≤ γ3‖ε‖, γ3 > 0,
there is a neighborhood Ω ⊂ X × W × Ξ of
the origin, such that for each initial condition
(x0, w0, ξ0) ∈ Ω the tracking error satisfies

lim
t→∞

e(t) = 0.

Here, δ(x, t) = δ(ε, t) for convenience. In the classical
setup, in absence of the perturbation, that is, δ(x, t) = 0,
it has been shown that the solvability of the Regulator
problem can be stated in terms of the existence of a pair
of mappings x = π(w) and u = c(w) with π(0) = 0 and
c(0) = 0 which solve the following Regulator Equation:

∂π(w)

∂w
s(w) = f(w) +B(w)c(w) +D(w)w

0 = h(w)− q(w).

In the presence of δ(x, t), the corresponding Regulator
Equation

∂π(w)

∂w
s(w) = f(w) +B(w)(c(w) + δ(w, t)) +D(w)w)

0 = h(w)− q(w)

is impossible to solve since δ(w, t) is unknown and un-
modelled.

3. SOLUTION OF ERROR FEEDBACK SLIDING
MODE REGULATION PROBLEM

In this section, to analyze the behaviour of the real control
error ε and derive the solution existence condition, the
SM dynamics will be derived, first, for ε instead of its
estimate ε̂ which will be used in the control design. Then,
the obtained SM dynamics will be modifyed using the SM
error feedback controller (5) - (7).

3.1 Control error dynamics

Using (4), (1) and (3), the following control error dynam-
ics are obtained:
ε̇ = f(ε+ π(w)) +B(ε+ π(w))(u+ δ(ε+ π(w), t))

+D(ε+ π(w))w −
∂π(w)

∂w
s(w)

(8)

ẇ = s(w)

e = h(ε+ π(w))− q(w).

Introducing the Jacobian matrices: S =
[

∂s(w)
∂w

]

(0)
, Q =

[

∂q(w)
∂w

]

(0)
, Π =

[

∂π(w)
∂w

]

(0)
and D0 = D(0), the linearized

system (8) is presented as
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[

ε̇
ẇ

]

=

[

A0 A0Π−ΠS +D0

0 S

] [

ε
w

]

+

[

B0

0

]

u+

[

φ(ε, w)
φw(w)

]

(9)

e = [C0 C0Π−Q]

[

ε
w

]

+ φe(ε, w)

where φ(ε, w), φw(w) and φe(ε, w) contain nonlinear
terms and φ(0, 0) = 0, φw(0) = 0 and φe(0, 0) = 0.

Define the following matrices:

Ā =

[

A0 A0Π−ΠS +D0

0 S

]

, C̄ = [C0 C0Π−Q] .

With this definitions, the following assumption can be
introduced:

• A3. The pair Ā, C̄ is detectable.

3.2 SM Dynamics

Setting σ(ξ) = σ(ε) = 0 (7) and following the equivalent
control method, the SM dynamics for the variable ε can
be derived, first, by calculating ueq from σ̇(ε) = 0 as

ueq = −[G(ε)B(·)]−1G(ε)
[

f(·) +D(·)w

−
∂π(w)

∂w
s(w)

]

− δ(·)
(10)

under condition rank[G(ε)B(·)] = m, where G(ε) = ∂σ(ε)
∂ε

.

Then, substituting (10) in (8), the SM dynamics become

ε̇ = p(·)

[

f(·) +D(·)w −
∂π(w)

∂w
s(w)

]

(11)

where the nonlinear operator p(·) is defined as p(·) = In−
B(·)[G(ε)B(·)]−1G(ε).

Using (9), the linear approximation of (11) can be rewrit-
ten as

ε̇ = PA0ε+ P (A0Π−ΠS +D0)w + φ(ε, w) (12)

where P = In −B0[G(0)B0]
−1G(0).

3.3 Proportional-Integral Observer

To estimate the unmeasured state vector (ε, w) and design
the SM error feedback, that is, the dynamical controller
(5) - (7), a nonlinear PI observer is proposed as
[

˙̂ε
˙̂w

]

=

[

f(ε̂, ŵ) +B(ε̂, ŵ)u+D(ε̂, ŵ)ŵ − ∂π(ŵ)
∂ŵ

s(ŵ)
s(ŵ)

]

+ L1(e− ê) + L2ξ0
(13)

ξ̇0 = e− ê (14)

where ξ0 =
∫

(e− ê)dt; ε̂ and ŵ are the estimates of ε and
w, respectively, ê = h(ε̂, ŵ) − q(ŵ), and L1, L2 are the
observer gain matrices.

Using the systems (8) and (13) with its linearization (9),
the linear observer error dynamics result in





˙̃ε
˙̃w

ξ̇0



 = R

[

ε̃
w̃
ξ0

]

+ δ1(ε, ε̃, w̃, t) (15)

where [ε̃, w̃]T = [ε− ε̂, w − ŵ]T ,

R =

[

Ā− L1C̄ L2

−C̄ 0

]

δ1(ε, ε̃, w̃, t) =

[

φ(ε̃, w̃)−B0δ(ε, t)− L11φe(ε̃, w̃)
φw(w̃)− L12φe(ε̃, w̃)

−φe(ε̃, w̃)

]

.

Under AssumptionA3, the matrices L1 = [L11, L12]
T and

L2 = [L21, L22]
T can be chosen such that the matrix R in

(15) is Hurwitz .

3.4 Solution existence conditions

Lemma 1. The relation

p(π(w))

[

f(π(w)) +D(π(w))w −
∂π(w)

∂w
s(w)

]

= 0

is true if and only if there are π(w) and λ(w), such that

f(π(w)) + d(π(w))w −
∂π(w)

∂w
s(w) = B(π(w))λ(w).

The proof of this Lemma comes from Draženović (1969)
and El-Ghezawi et al. (2007).

From Lemma 1, the solvability conditions are established
in the following proposition:

Proposition 1 Under assumptions A1-A3, if there exist
a Ck(k ≥ 2) mapping x = π(w), with π(0) = 0, defined in
a neighborhood W of the origin, satisfying the following
conditions

f(π(w)) + d(π(w))w −B(π(w))λ(w) =
∂π(w)

∂w
s(w)

h(π(w))− q(w) = 0

then, the Error Feedback SM Regulation problem, as de-
fined above, is solvable.

Proof 1. Choosing the manifold σ(ξ) = σ(ε̂) = 0 (7) as

σ(ε̂) = Csε̂, (16)

where Cs = G(0), and using (13), the following system
can be obtained:

σ̇(ε̂) = f̄(ε̂, ŵ) + B̄(ε̂, ŵ)u (17)

where f̄(ε̂, ŵ) = Cs[f(ε̂, ŵ) + D(ε̂, ŵ)ŵ − ∂π(ŵ)
∂ŵ

s(ŵ) +

L11(e− ê) + L21ξ] and B̄(ε̂, ŵ) = CsB(ε̂, ŵ).

Setting σ̇(ε̂) = 0, the equivalent control is calculated as

ûeq(ε̂, ŵ) = B̄(ε̂, ŵ)−1f̄(ε̂, ŵ). (18)

Using (18), the SM error feedback controller is designed
accordingly

u = ûeq(ε̂, ŵ)− B̄(ε̂, ŵ)−1(k1 sign(σ(ε̂)). (19)

Then, the closed-loop system (17) - (19) becomes

σ̇(ε̂) = −k1 sign(σ(ε̂)).

It can be easily seen that for k1 > 0, a SM motion occurs
on σ(ε̂) = 0 (16) in finite time, satisfying C1.
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Without loss of generality, we assume that using the
relation [ε̃, w̃]T = [ε− ε̂, w − ŵ]T (15) and ueq(ε, w) (10),
the control ûeq(ε̂, ŵ) (18) can be represented as

ûeq(ε̂, ŵ) = ueq(ε, w) + δ2(ε̃, w̃, t). (20)

Then, by substituting (20) in (8) and using the linear
approximation (11) of (12), the SM dynamics have the
form

ε̇ = PA0ε+ P (A0Π−ΠS +D0)w + φ(ε, w)

+ δ2(ε̃, w̃, t).
(21)

Combining (21), (15), (3) and (2), the closed-loop system
motion on the manifold σ(ε̂) = 0 is described by

ε̇ = PA0ε+ P (A0Π−ΠS +D0)w + φ(ε, w)

+ δ2(ε̃, w̃, t)
(22)





˙̃ε
˙̃w
˙̂
ξ



 = R





ε̃
w̃

ξ̂



+ δ1(ε, ε̃, w̃, t) (23)

ẇ = Sw + φw(w)

e = h(ε+ π(w))− q(w).

By choosing adequately the matrix Cs, n−m eigenvalues
of matrix PA0 can be assigned to be in C−, while m
eigenvalues are equal to zero. Moreover, the matrices L1

and L2 can be chosen such the the matrix R is Hurwitz.
Therefore, the equilibrium point ε = 0, ε̃ = 0, w̃ = 0 of
the system (22) - (23) in the absence of the perturbation
is asymptotically stable satisfying C2.

If the condition given by Lemma 1 is satisfied, then

P (AΠ−ΠS +D0)w + φ(0, w) = p(π(w))
[

f(π(w))+

d(π(w))w −
∂π(w)

∂w
s(w)

]

= 0.

- For the case ‖δ(ε, t)‖ ≤ γ1, there is γ3 > 0 and a
neighborhood Ω of the origin where

∥

∥

∥

∥

δ1(ε, ε̃, w̃, t)
δ2(ε̃, w̃, t)

∥

∥

∥

∥

≤ γ3.

Therefore, a solution of the perturbed system (22) - (23)
is ultimately bounded resulting in

‖e(t)‖ ≤ γ2, ∀ t ≥ T0.

Thus, the condition C3.A is satisfied.

- For the case ‖δ(ε, t)‖ ≤ γ3‖ε‖, there is γ4 > 0 and a
neighborhood Ω of the origin where

∥

∥

∥

∥

δ1(ε, ε̃, w̃, t)
δ2(ε̃, w̃, t)

∥

∥

∥

∥

≤ γ4 ‖ε, ε̃, w̃‖ .

Therefore, in this case, a solution of the perturbed system
(22) - (23) tends asymptotically to zero. By continuity of
h(ε, w), limt→∞ e(t) = 0, satisfying C3.B. ✷

4. REGULAR FORM

In this section, we consider a class of nonlinear systems
which can be represented (possibly after a nonlinear

transformation) in Regular form, Loukianov and Utkin
(1981)

ż1 = f1(z1, z2) +D1(z)w

ż2 = f2(z) +D2(z)w +B2(z)(u+ δ(z, t))

e = h(z)− q(w)

where z = [z1, z2]
T , z1 ∈ ℜn−m, z2 ∈ ℜm , rank B2 = m.

4.1 Conditions of existence for Regular form

Introducing the steady state π1(w) and π2(w), one can
define the steady-state error as

ε1 = z1 − π1(w)

ε2 = z2 − π2(w).

Now, the control error dynamics become

ε̇1 = f1(ε1, ε2, w) +D1(ε1, ε2, w)w −
∂π1(w)

∂w
s(w) (24)

ε̇2 = f2(ε, w) +D2(ε, w)w −
∂π2(w)

∂w
s(w)

+B2(ε, w)(u+ δ(ε, w, t))
(25)

e = h(ε1, ε2, w)− q(w). (26)

The sliding variable is selected as

σ = ε2 + σ0(ε1).

On the sliding manifold σ = 0, or ε2 = −σ0(ε1), the SM
equation becomes

ε̇1 = f1(ε1 + π1(w), σ0(ε1) + π2(w))

+D1(ε1 + π1(w), σ0(ε1) + π2(w))w −
∂π1(w)

∂w
s(w).

To estimate ε1, ε2 (24)-(25), and w (3), the following
nonlinear PI observer is proposed





˙̂ε1
˙̂ε2
˙̂w



 =









f1(ε̂1, ε̂2, ŵ) +D1(ε̂1, ε̂2, ŵ)ŵ −
∂π1(ŵ)

∂ŵ
s(ŵ)

f2(ε̂, ŵ) +D2(ε̂, ŵ)ŵ − ∂π2(ŵ)
∂ŵ

s(ŵ)

s(ŵ)









+ L1(e− ê) + L2ξ1 +

[

0
B2(ε̂, ŵ)

0

]

u

ξ̇1 = e− ê

with ê = h(ε̂, ŵ)− q(ŵ).

Defining ε̃1 = ε̂1 − ε1, ε̃2 = ε̂2 − ε2, w̃ = ŵ − w,
the observer error can be represented as in (15), with
L1 = [L11, L12, L13], and L2 = [L21, L22, L23].

Proposition 2 Under A1 - A3, if there exist Ck(k ≥ 2)
mappings x1 = π1(w) and x2 = π2(w), with π1(0) = 0
and π2(0) = 0, defined in a neighborhood W of the origin,
satisfying the following conditions:

f1(π1(w), π2(w)) +D1(π1(w), π2(w))w =
∂π1(w)

∂w
s(w)

h(π1(w), π2(w))− q(w) = 0
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then, the Error Feedback SM Regulation problem for non-
linear systems in Regular form, as defined above, is solv-
able.

The proof of this Proposition is similar to Section 3.4.

5. EXAMPLE: APPLICATION TO PENDUBOT

The proposed method is applied here to an underactuated
electromechanical system known as the Pendubot, whose
mathematical model can be described by

ẋ = f(x) +B(x)(u(t) + δ(x, t)) (27)

y = x2,

where x = [θ1, θ2, θ̇1, θ̇2]
T represent each joint posi-

tions: x1, x2, and velocities: x3, x4. The input u(t) is
a scalar value, the term δ(x, t) describes an unmod-
elled perturbation term including parameter variations
bounded by ‖δ(x, t)‖ ≤ γ0‖x‖ + γ1, and the functions
f(x) = [x3, x4, b3(x2)p1(x), b4(x2)p2(x)]

T , and B(x) =
[0, 0, b3(x2), b4(x2)]

T , where b3(x2) =
D22

D11(x2)D22−D2

12
(x2)

,

and b4(x2) = − D12(x2)
D11(x2)D22−D2

12
(x2)

.

Here, p1(x), p2(x), D11(x2), D12(x2), and D22, depend on
operations between plant parameters and elements of the
state.

The desired tracking trajectory, q(w) = w2, is produced
by

ẇ =

[

0 αw2

−αw1 0

]

.

Hence, the tracking error becomes e = x2 − w2.

After the transformation, (27) can be represented in
Regular form as

ż1 = z3 − f11(z)

ż2 = z4
ż3 = f31(z)

ż4 = f41(z) + b4(z2)(u(t) + δ(z, t))

y = z2

where the expressions f11(z) = D22

D12(z2)
z4, f31(z) =

b3(z2)p1(z) +
D22

D12(z2)
b4(z2)p2(z) +

D22

D12(z2)
2C3(z2, z4), and

f41(z) = b4(z2)p2(z).

Defining the steady-state error as εi = zi − πi(w), i =
1, ..., 4, the error dynamics are described by

ε̇1 = ε3 + π3(w)− f11(ε+ π(w))−
∂π1

∂w
s(w)

ε̇2 = ε4 + π4(w)−
∂π2

∂w
s(w)

ε̇3 = f31(ε+ π(w))−
∂π3

∂w
s(w)

ε̇4 = f41(ε+ π(w)) + b4(ε2, w)(u(t) + δ(ε, w, t))

−
∂π4

∂w
s(w)

(28)

where π(w) = [π1(w), . . . , π4(w)]
T .

From (28), the Regulator Equation is given by

∂π1

∂w
s(w) = π3(w)− f11(π(w)) (29)

∂π2

∂w
s(w) = π4(w) (30)

∂π3

∂w
s(w) = f31(π(w)) (31)

0 = π2(w)− w2. (32)

From (32) and (30), it follows π2(w) = w2, and π4(w) =
−αw1. Since the solution of π1(w), and π3(w), involves
solving partial differential equations; we take a simpler
approach such as proposing a polynomial approximation
for π1(w) as

π1(w) = a0 + a1w1 + a2w2 + a3w1w2 + a4w
2
1 + a5w

2
2+

a6w1w
2
2 + a7w

2
1w2 + a8w

3
1 + a9w

3
2 +O4(‖w‖),

with α = 1.5, a0 = 1.57, a1 = −0.008, a2 − 0.98,
a3 = a4 = a5 = 0, a6 = −0.57e − 04, a7 = 0.01,
a8 = −2.57e− 05, a9 = −0.007; and from (29):

π3(w) =
∂π1

∂w
s(w)−

D22

D12(w2)
αw1. (33)

Based on (13)-(14), the proposed observer takes the form:













˙̂ε1
˙̂ε2
˙̂ε3
˙̂ε4
˙̂w













=

























ε̂3 + π3(ŵ)− f11(ε̂+ π(ŵ))−
∂π1

∂ŵ
s(ŵ)

ε̂4 + π4(ŵ) + αŵ1

f31(ε̂+ π(ŵ))

f41(ε̂+ π(ŵ)) + b4u(t)−
∂π4

∂ŵ
s(ŵ)

αŵ2

−αŵ1

























+ L1(e− ê) + L2ξ

ξ̇ = e− ê,

where e = z2 − w2 = ε2, and ê = ε̂2.

The sliding variable is selected as σ = ε̂4+Cs[ε̂1, ε̂2, ε̂3]
T ,

and the controller is chosen as in (19).

6. NUMERICAL EVALUATION AND SIMULATION
RESULTS

Using Table 1, the linear matrices A11, A12, are numeri-
cally evaluated, and selecting Cs = [49.64, 48.64, 8.0203]T ,
the matrix (A11 − A12Cs) has the eigenvalues (−0.99,
−6.21 + 0.44i,−6.21− 0.44i).

On the other hand the matrix gains L1, and L2 are com-
puted as in Beale and Shafai (1988), obtaining L1 = (1×
104)[−1.4097, 0.0260,−8.8378, 1.9860, 0.5930,−0.4517],
L2 = (1 × 104)[−0.0386, 0.0100,−1.6190,−0.0186,
0.6034,−0.0168], which ensures the matrix R has the
eigenvalues (−150,−70,−18,−13,−7,−2.5,−2).

The Pendubot model was simulated using MATLAB,
using the parameters from Table 1, with x1(0) = 1.57rad,
x2(0) = x3(0) = x4(0) = 0, and the external perturbation
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Link 1 Link 2

Mass (kg) 0.0551 0.0237

Length (m) 0.0825 0.2197

Center of mass distance (m) 0.0523 0.0799

Moment of inertia (kg m2) 6.272e-05 1.759e-04

Friction coefficient (kg m2s−1) 5.5286e-04 9.8895e-05

Table 1. Nominal values for parameters

Fig. 1. Output tracking signal z2 (solid blue), and refer-
ence w2 (dotted gray).

as δ(t) = 0.0001 sin (0.1t) is present from t > 7. Fig. 1
shows the output tracking signal and its reference, where
the performance of the controller shows good results. The
control signal u(t) and ueq(t) are shown in Fig. 2 (a), and
(b) respectively.

Fig. 3 shows a comparison with a Luenberger observer, it
can be seen how it is not robust, and even has a finite-time
escape.

0 10 20 25

Time (s)

-0.1

0

0.1

T
o
rq

u
e 

(N
m

)

0 10 20 25

Time (s)

-0.02

0

0.02

T
o
rq

u
e 

(N
m

)

a)

b)

Fig. 2. a) Discontinuous control action u(t). b) ueq(t)
control action.

7. CONCLUSIONS

The SM error feedback regulation problem for nonlinear
systems with unmodelled external matched perturbations
was analyzed, and conditions for existence of solution
were derived. Using a nonlinear PI observer, an error
feedback regulator was designed in order to track a
signal produced by a given exosystem. The effectiveness
of the proposed method is mostrated by application to
Pendubot system .
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