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Abstract: The output tracking problem for a class of discrete-time nonlinear systems exposed
in Nonlinear Block Controllable (NBC) form is faced. This paper considers both matched
and unmatched perturbations. First, the sliding manifold is designed taking into account the
Block Control procedure combined with a perturbation estimation. The impact of unmatched
perturbation is attenuated with help the perturbation estimation. Therefore, a discrete-time
sliding mode controller is synthesized such that the system state is driven toward a vicinity of
the designed sliding manifold and stays there for all sampled time instants, avoiding chattering
and reducing the matched perturbation effect. The effectiveness of the proposed technique is
confirmed by simulation.
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1. INTRODUCTION

In recent years, the rise of digital technology and its
extensive use have allowed the implementation of so-
phisticated control methods. Indeed, enhancements in
microcontrollers have improved the discrete-time control
schemes, showing significant advantages such as: easy pro-
gramming, reliability, and simple integration with other
digital systems. For this reason, controller synthesis based
on the discrete-time model of the system has generated
a wild interest, which has raised an active investigative
activity in the field of discrete-time control.

In the last three decades diversified tools have been
developed, see e.g. Monaco and Normand-Cyrot (1983);
Mattioni et al. (2017) and references therein. One of
the most effective of these tools is Sliding-Mode Control
(SMC) (Utkin et al., 2009), which has been extensively
studied first in continuous-time framework and it exhibits
notable advantages such as robustness and computational
efficiency.

Since modern control systems are implemented by com-
puters, the investigation of discrete time (DT) SMC has
been an important topics of the SMC theory (Drakunov
and Utkin, 1989; Utkin et al., 2009; Levant and Livne,
2015; Koch et al., 2016; Huber et al., 2016).

⋆ This work was supported by CONACyT, México, under grant
252405. Cristian Zapata-Zuluaga acknowledges CONACyT, México
for the scholarship number 455411.

In the DT setting, SMC, similar to the continuous time
case, enables decomposition of the control design problem
into two independent stages:

• Problem A. Selection of sliding manifold with the
desired sliding motion, and

• Problem B. Design a reaching control law to force
the sliding mode along this manifold.

The main attention has been payed to Problem B
and numerous significant results has been obtained in
a reaching control law design (Wang et al., 2009). In
the proposed DT reaching laws the switching term was
preserved from continuous time SMC to suppress effect
of matched bounded perturbations. However, this term
can produce undesired numerical chattering phenomenon
in the vicinity of sliding manifold. This effect can be
suppressed by implicit Euler discretization of the dis-
continuous term (Huber et al., 2016) or by increasing
the relative degree and correspondingly the order of slid-
ing mode (Koch et al., 2016). To avoid the chattering
problem, continuous reaching controllers has been pro-
posed in (Bartoszewicz and Latosinski, 2016), including
Equivalent-Control-Based (Drakunov and Utkin, 1989)
and adaptive (Bartoszewicz and Adamiak, 2018) SM con-
trollers. However, as a result of the lack of perturbation
for calculating the equivalent control, sliding manifold
reaches a boundary layer O(τ) with τ as the sample pe-
riod. In order to mitigate this obstacle, in some researches
as Su et al. (2000); Abidi et al. (2007), an estimator of
perturbation using its previous step has been designed,
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and an accuracy of O(τ2) in the boundary layer of the
sliding manifold has been achieved. On the other hand,
Problem A, namely, the design of the desired sliding
manifold is of great interest. Basely, a classical linear
sliding manifold has been synthesized for linear time-
invariant (LTI) systems in Utkin et al. (2009); Acary et al.
(2012), and those with matched perturbation in Wang
et al. (2009); Huber et al. (2016); Koch et al. (2016).

This work deals with the aforementioned approach, we
consider a SM output tracking problem for a class of
nonlinear systems presented in Nonlinear Block Control-
lable (NBC) form (Loukianov, 2002) with both matched
and unmatched unmodeled perturbations. The considered
class is quite wide and includes, for example, electrome-
chanical systems. The principal aim is, first, to use Block
Control (BC) feedback linearization (FL) technique com-
bined with the perturbation estimation, for the design
of the desired nonlinear sliding manifold on which the
system motion satisfies a specified transient response,
and the effect of unmatched perturbation on the output
tracking error is reduced. Then, a discrete-time SM con-
troller, based on the equivalent control combined with
the perturbation estimation, is formulated such that the
system state is driven into a smaller bounding layer of
the designed sliding manifold and stays there for all
sampled time instants, avoiding chattering and reducing
the matched perturbation effect. The performance of the
designed strategy is validated by simulation.

The rest of the paper is organized as follows: Section
2 presents the class of nonlinear systems considered in
this work. Based on this and exploiting the considered
system structure, sliding manifold design is presented in
Section 3. Section 4 investigates the discrete-time con-
troller synthesis. The closed-loop system motion over the
manifold is studied in Section 5. To prove the effectiveness
of the proposed discrete-time sliding mode controller, it is
applied to the continuous-time magnetic levitation system
in Section 6 and simulations investigate the closed-loop
system behavior. Final comments conclude the paper in
Section 7.

2. PROBLEM STATEMENT

Consider the following continuous time nonlinear system
subject to uncertainty:

ẋ = h(x) +G(x)u+ g(x, t), (1)

where x ∈ X ⊂ R
n is the state vector, u ∈ U ⊂ R

m is the
control vector. It is assumed the vector field h(x) and the
columns of G(x) are smooth and bounded mappings of
class C∞

[t,∞), h(0) = 0, and rank(G(x)) = m for all x ∈ X

and t ≥ 0. The unknown mapping g(x, t) characterizes
external disturbances and parameter variations.

In this work, we assume that system (1) can be presented
(possible under an appropriate nonsingular smooth trans-
formation) in the following Nonlinear Block Controllable
(NBC) form form with perturbation:

ẋ1 = h1(x1) +G1(x1)x2 + g1(x1, t)

...

ẋi = hi(x̄i) +Gi(x̄i)x̄i+1 + gi(x̄i, t)

...

ẋr = hr(x) +Gr(x)u+ gr(x, t)

(2)

y = x1 (3)

where x =
[

x⊤1 , . . . , x
⊤
r

]⊤
, x̄i =

[

x⊤1 , . . . , x
⊤
i

]⊤
for i =

1, . . . , r − 1; dim(xj) = nj for j = 1, . . . , r; n =
∑r

j=1 nj ,

rank(Gj(x̄j)) = nj ∀xj ∈ R
nj .

Now, applying explicit Euler method to the system (2)-
(3), the sampled-date system becomes

x1,k+1 = f1(x1,k) +B1(x1,k)x2,k + d1(x1,k, k)

...

xi,k+1 = fi(x̄i,k) +Bi(x̄i,k)x̄i+1,k + di(x̄i,k, k)

...

xr,k+1 = fr(xk) +Br(xk)uk + dr(xk, k)

(4)

yk = x1,k (5)

with

f1(xk) = x1,k + τh1(xk), B1(xk) = τG1(xk),

fi(x̄i,k) = xi,k + τhi(x̄i,k), Bi(x̄i,k) = τGi(x̄i,k)

d1(xk, k) = τg1(xk, k), di(x̄i,k, k) = τgi(x̄i,k, k)

for i = 2, . . . , r, where k ∈ Z
+ ∪ {0} denotes the dis-

crete time with Z
+ the set of the positive integers

and xk, x1,k, . . . , xr,k, are the discrete approximation of
x(t), x1(t), . . . , xr(t), respectively. The control objective
is to force the output yk (5) to track a reference signal

yrefk , reducing the effects of unmatched di(x̄i,k, k), i =
1, ..., r − 1, and matched dr(xk, k) perturbations.

The following assumption is considered hereinafter.

Assumption 1. The matrix Bi (x̄i,k+1) can be decom-
posed as

B1 (x1,k+1) = B1 (φ1,k) + ∆B1 (d1(x1,k, k)) ,

B̄i (x̄i,k+1) = B̄i (φi,k) + ∆B̄i (di(x̄i,k, k))

for i = 2, . . . , r−1 where B̄i(x̄i,k) = B̄i−1(φi−1,k)B̄i(x̄i,k),
B̄1(x1,k) = B1(x1,k), φi,k = fi(x̄i,k) +Bi(x̄i,k)x̄i+1,k;
Bi (φi,k) is known and ∆Bi (di(x̄i,k, k)) is unknown.

3. SLIDING MANIFOLD DESIGN

In this section, the concept of discrete-time Block Control
method is used to design a sliding manifold on which the
effect of the perturbation unmatched part is reduced.

The sliding manifold design procedure consists of a step-
by-step construction of a new system with states

zi,k = Bi−1(x̄i−1,k)xi − αi,k, i = 1, . . . , r, (6)

where αi,k is the desired value for xi,k, which will be
defined by such construction.
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Step 1. On the first step, the output tracking error is
defined as

z1,k = ek = x1,k − α1,k, (7)

with α1,k = yrefk the reference value for x1,k, having from
(4) the following dynamics:

z1,k+1 = f1(x1,k) +B1(x1,k)x2,k + d̄1,k (8)

where d̄1,k = d1(x1,k, k)− α1,k+1.

To impose the following desired dynamics:

z1,k+1 = K1z1,k + z2,k + δ1,k (9)

with K1 a Schur matrix and

δ1,k = d̄1,k − d̄1,k−1, (10)

the new state variable z2,k is defined from (8)-(10) of the
form

z2,k = B1(x1,k)x2,k − α2,k,

α2,k = K1z1,k − f1(x1,k)− d̄1,k−1.
(11)

The perturbation d̄1,k−1 in (11) is calculated from (8) as

d̄1,k−1 = z1,k − f1(x1,k−1)−B1(x1,k−1)x2,k−1. (12)

Step i. Iterating these steps, the i-th variable zi,k in (6)
is zi,k = B̄i−1(x̄i−1,k)xi − αi,k, and using the Assumption
1, its respective dynamics become

zi,k+1 = f̄i(x̄i,k) + B̄i(x̄i,k)xi+1,k + d̄i,k (13)

where

f̄i(x̄i,k) =Bi−1(φi−1,k)fi(x̄i,k),

B̄i(x̄i,k) =Bi−1(φi−1,k)Bi(x̄i,k),

d̄i,k =Bi−1(φi−1,k)di(x̄i,k, k)− αi,k+1+

∆Bi−1 (di−1(x̄i−1,k, k))xi,k+1.

With the desired dynamics defined as

zi,k+1 = Kizi,k + zi+1,k + δi,k (14)

where Ki is a Schur matrix and

δi,k = d̄i,k − d̄i,k−1, (15)

the new state variable zi+1,k in (6) is determined from
(13)-(15) by the following expression:

zi+1,k = B̄i(x̄i,k)xi+1,k − αi+1,k,

αi+1,k = Kizi,k − f̄i(x̄i,k)− d̄i,k−1.
(16)

The perturbation d̄i,k−1 in (16) is obtained from (13) as

d̄i,k−1 = zi,k − f̄i(x̄i,k−1)− B̄i(x̄i,k−1)xi+1,k−1. (17)

Step r. Finally, on the r-th step, the variable zr,k =
B̄r−1(x̄r−1,k)xk−αr,k in (6) is introduced with dynamics

zr,k+1 = f̄r(xk) + B̄r(xk)uk + d̄r,k (18)

where

f̄r(xk) =Br−1(φr−1,k)fr(xk),

B̄r(xk) =Br−1(φr−1,k)Br(xk),

d̄r,k =Br−1(φr−1,k)dr (xk, k)− αr,k+1+

∆Br−1 (dr−1(x̄r−1,k, k))xr,k+1.

It is worth mentioning that the new variables zi,k, i =
1, . . . , r, determine a nonlinear transformation

z1,k = x1,k − α1,k := ψ1(x1,k)

...

zr,k = B̄r−1(x̄r−1,k)xr,k − αr,k := ψr(xk).

(19)

By means of the transformation zk = ψ(xk), ψ(xk) =
[

ψ⊤
1 ψ⊤

2 . . . ψ⊤
r

]⊤
, the system (4) is diffeomorphic to

z1,k+1 = K1z1,k + z2,k + δ1,k
...

zr,k+1 = f̄r(zk) + B̄r(zk)uk + d̄r,k

(20)

where zk =
[

z⊤1,k, . . . , z
⊤
r,k

]⊤
and δj,k = d̄j,k − d̄j,k−1 for

j = 1, . . . , r − 1.

Now, based on Loukianov (2002), a natural choice is the
sliding variable

σk = zr,k. (21)

This variable will be used to design a sliding mode control
in the following section.

4. DISCRETE-TIME SLIDING MODE CONTROL

In this section, a sliding mode controller will be designed
for the transformed system (20), such that the reference

signal yrefk is tracked and the perturbation matched part
effect is reduced. This will be achieved in presence of
constraint on the input

‖uk‖ ≤ umax, umax > 0. (22)

As is usual in SM technique, the control forces the
system evolution on a certain manifold which guarantees
the achievement of control requirements. Considering
the selected sliding variable (21), its dynamics can be
obtained from (18) by the following expression:

σk+1 = f̄r,k + B̄r,kuk + d̄r,k, (23)

with f̄r,k = f̄r(zk), B̄r,k = B̄r(zk). In order to induce
chattering-free sliding mode on the manifold σk = 0 , the
control uk can be selected as (Utkin et al., 2009)

uk = ueq,k (24)

where the equivalent control value ueq,k is calculated as a
solution to σk+1 = 0 (23) for uk of the form

ueq,k = −B̄†
r,k

(

f̄r,k + d̄r,k
)

. (25)

The control (24) with (25) brings the system trajectories
on the sliding manifold σk = 0 (21) in one sampling time
period. However, (25) cannot be implemented since the
perturbation d̄r,k is unknown. To overcome this problem,
the expression (25) is modified as

ũeq,k = −B̄†
r,k

(

f̄r,k + d̄r,k−1

)

(26)

where the retarded perturbation d̄r,k−1 can be obtained
from (23) of the form

d̄r,k−1 = σk − f̄r,k−1 − B̄r,k−1uk−1. (27)
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Replacing (27) in (26) yields

ũeq,k = B̄†
r,k

[

−f̄r,k − σk + f̄r,k−1 + B̄r,k−1ũeq,k−1

]

(28)

In this case, the closed-loop system (23) and (26) becomes

σk+1 = δr,k, δr,k = d̄r,k − d̄r,k−1. (29)

Considering the control constraint (22), the control uk is
selected of the form

uk =

{

ũeq,k for ‖ũeq,k‖ ≤ umax

umax
ũeq,k

‖ũeq,k‖
for ‖ũeq,k‖ > umax.

(30)

Now, a stability analysis is required for closed-loop system
(23) and (30) motion over the manifold σk = 0. First,
to reveal the structure of the modified equivalent control
(26) and the system (23), let us represent them, by im-
posing the term σk + ψr,k = 0, ψr,k = ψr(xk)|xk=ψ

−1

r (zk)
,

into

ũeq,k = −B̄†
r,kσk − B̄†

r,k

(

ψ̄r,k + d̄r,k−1

)

, (31)

σk+1 = σk + ψ̄r,k + B̄r,kuk + d̄r,k. (32)

where ψ̄r,k = f̄r,k + ψr,k.

For the case ‖ũeq,k‖ ≤ umax, the control (26) is applied,
yielding motion in the neighborhood of the sliding man-
ifold ‖σk‖ ≤ χs at finite time, where χs = ‖δr,k‖. For
the case ‖ũeq,k‖ > umax, it is assumed that the available
control resources are sufficient to stabilize the system, i.e.

umax > sup
k

(

‖B̄†
r,k‖‖ψ̄r,k + d̄r,k‖

)

. (33)

This last assumption implies that the control magnitude
is enough to guarantee the control objective requirements.

Substituting the proposed control (30) with (31) in (32)
yields

σk+1 =σk + ψ̄r,k + d̄r,k −
umax(σk + ψ̄r,k + d̄r,k−1)

‖B̄†
r,k(σk + ψ̄r,k + d̄r,k−1)‖

=(σk + ψ̄r,k + d̄r,k)

(

1−
umax

‖B̄†
r,k(σk + ψ̄r,k + d̄r,k−1)‖

)

+
umaxδr,k

‖B̄†
r,kσk + ψ̄r,k + d̄r,k−1‖

.

Thus,

‖σk+1‖ =‖σk + ψ̄r,k + d̄r,k−1 + δr,k‖×
(

1−
umax

‖B̄†
r,k(σk + ψ̄r,k + d̄r,k−1)‖

)

+
umaxδr,k

‖B̄†
r,k(σk + ψ̄r,k + d̄r,k−1)‖

=‖σk + ψ̄r,k + d̄r,k‖+
umax‖δr,k‖

‖B̄†
r,kσk + ψ̄r,k + d̄r,k−1‖

−
umax‖σk + ψ̄r,k + d̄r,k−1‖+ ‖δr,k‖

‖B̄†
r,k(σk + ψ̄r,k + d̄r,k−1)‖

≤‖σk‖+ ‖ψ̄r,k + d̄r,k‖ −
umax

‖B̄†
r,k‖

<‖σk‖

due to (33).

Thus, as ‖σk‖ decreases monotonically, ũeq,k (31) does
too, and there will be a time k̄ such that ‖ũeq,k‖ ≤ umax,
for k > k̄. At this time, the equivalent control ũeq,k (28)
is applied, bringing the closed-loop system trajectory in
an O

(

τ2
)

-neighborhood of the sliding manifold (Su et al.,
2000), i.e.

‖σk‖| = O(τ2), k > k̄
achieving quasi-sliding mode.

5. SLIDING MODE DYNAMICS

Now, SM dynamics will be investigated, i.e. when the
closed-loop system motion appears in the O(τ2) vicinity
of the manifold σk = zr,k = 0.

This motion is governed by the reduced order SM equa-
tion derived from (20) and (29) of the form

z1,k+1 = K1z1,k + z2,k + δ1,k
...

zi,k+1 = Kizi,k + zi+1,k + δi,k
...

zr−1,k+1 = Kr−1zr−1,k + δr−1,k + σk
or in compact form

z̄r−1,k+1 = Asz̄r−1,k + δk (34)

where

z̄r−1,k =
[

z⊤1,k z
⊤
2,k . . . z

⊤
r−1,k

]⊤
,

As = diag(K1, . . . ,Kr−1) + Ia,

Ia = subdiag(In1
, . . . , Inr−1

),

δk =
[

δ⊤1,k, . . . , δ
⊤
i,k, . . . , (δ

⊤
r−1,k + σk)

]⊤
.

Then, a solution of the system (34) is defined by

z̄r−1,k = Aks z̄r−1,0 +
k−1
∑

i=1

Aisδk−i−1.

Since As is a Shur matrix, the steady state solution can
be estimated by
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‖z̄r−1,k‖ ≤

k−1
∑

i=1

‖Ais‖‖δk−i−1‖. (35)

From δi,k = O(τ2), i = 1, ..., r − 1 and ‖σk‖ = O(τ2) it
follows δk = O(τ2). Selecting the poles of order O(1) of
the matrix As, yields

‖z̄r−1,k‖ = O(1)O(τ2) = O(τ2), (36)

resulting in the tracking error ek (7) ultimate bound

‖ek‖ = O(τ2). (37)

The obtained results are formulated in the following
theorem.

Theorem 1. Consider the robust tracking problem for the
system (4) with the output (5) and the constraint control
input (22). Let Assumption 1 with condition (33) are
satisfied. Then, a solution of the system (4) closed by
the control (30) with (28) is ultimately exponentially
bounded by (36), and the tracking error ek defined in
(7) is ultimately bounded by (37).

6. SIMULATION RESULTS

To show the effectiveness of the proposed design, a sim-
ulation is carried out. Consider the magnetic levitation
system drawn in Fig. 1, which consists of a steel ball
suspended in a voltage-controlled magnetic field. The sys-
tem input is the supplied voltage u, the ball’s position is
denoted by y; i is the current in the coil of the electromag-
net, R is the coil’s resistance, L is the coil’s inductance,
gc is the gravitational constant, c is the magnetic force
constant, and m is the mass of the levitated ball. Let
the states be chosen such that x1 = y, x2 = ẏ, x3 = i

and x = [x1 x2 x3]
⊤

is the state vector. The continuous-
time dynamical model of the system is governed by (Koch
et al., 2016)

ẋ1 = x2 + d1(t)

ẋ2 = gc −
c

m

x23
x21

+ d2(t)

ẋ3 = −
R

L
x3 +

2c

L

x2x3
x21

+
1

L
u+ d3(t)

y(t) = x1(t),

(38)

with unmatched d1, d2 and matched d3 perturbations.

Now, using the following local diffeomorphism:

χ = [χ1, χ2, χ3]
⊤
=

[

x1, x2, gc −
c
m

(

x3

x1

)2
]⊤

, (39)

the dynamical model (38) can be expressed in the new
coordinates (39) as 1

χ̇1 = χ2 + d1(t)

χ̇2 = χ3 + d2(t)

χ̇3 = f(χ) + g(χ)u+ d3(t)

y(t) = χ1(t)

(40)

Fig. 1. Schematic diagram of the magnetic levitation
system Koch et al. (2016).

Time [s]

0 0.5 1 1.5 2 2.5 3 3.5 4

m

0.005

0.01

0.015

0.02

0.025

0.03

Fig. 2. Position response x1,k with proposed controller.

The system parameters are defined as gc = 9.8m/s2

m = 66.87× 10−3kg, c = 13.632× 10−5kgm s−2 A−2,
L = 1.08H and R = 18Ω; while the perturbations are de-
fined as d1(t) = 0.005 cos(12t)+0.06 sin(4t)+0.2, d2(t) =
0.3 sin(30t) + 0.2 cos(10t) + 1 and d3(t) = 2 cos(14t) +
0.5 sin(2t). The aim is to force the position ball y to track
a reference signal despite to matched and unmatched
perturbations. Applying the explicit Euler’s method to
discretize the system (40), yields

χ1,k+1 = χ1,k + τχ2,k + τd1,k
χ2,k+1 = χ2,k + τχ3,k + τd2,k
χ3,k+1 = χ3,k + τf(χk) + g(χk)uk + τd3,k

yk = χ1,k

(41)

where τ is the sampling time, χ1,k, χ2,k and χ3,k are
the discrete approximation of χ1(t), χ2(t) and χ3(t),
respectively. The sample perturbations are d1,k = d1(kτ),
d2,k = d2(kτ) and d3,k = d3(kτ). The control gains are
settled as K1 = 0.9 and K2 = 0.7, and the control input is
saturated at umax = 70V. Initial conditions of the system

are adjusted in χ0 = [0.01 0 0.7]
⊤
. The reference is stated

as a time-variant signal to be tracked which is defined as

yref = χref1 = 0.015 + 0.009 sin(2πkτ). Sample time is
established as τ = 1ms.

Fig. 2 shows the position response and the reference
signal when the proposed controller is implemented. It
can be seen that the controller drives the system output
to track the desired value after the time 0.5s. Respectively,
1 Due to space limitations, the functions f(χ) and g(χ) are omitted.
For more details of those functions see Koch et al. (2016).
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Fig. 3. (a) Position error z1,k, (b) zoom of the same
graphic on (a).
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Fig. 4. (a) Sliding variable σk, (b) zoom of the same
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Fig. 5. Control input applied to the system.

position error z1,k is depicted in Fig. 3. Sliding variable
σk = z3,k response is presented in Fig. 4. It can be seen
that it remains in a boundary layer with thickness O(τ2);
this result agrees with the theoretical design. Finally, Fig.
5 illustrates the control applied to the system, which stays
in the control constraint (22) |uk| ≤ 70V.

7. CONCLUSIONS

A novel discrete-time sliding mode controller was pro-
posed for a system in NBC form with both matched
and unmatched perturbations. First, the sliding manifold
design was formulated by using the BC iterative tech-
nique for this purpose. On the designed manifold, the
influence of unmatched perturbation is reduced due to
an approximation based on its previous step. Then, a DT
SM controller based on the improved equivalent control
is designed to achieve the desired manifold be attractive,

and the effect of the matched perturbation is also reduced
achieving O(τ2) order precision of the tracking error.
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