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Abstract: A novel computed-torque technique for stabilization of a class of underactuated
robot manipulators is proposed in this paper. Instead of obtaining the equivalent of a linear
error system by model inversion as usually done when all the actuators are available, it is shown
that these plants are amenable to a nonlinear form of the error system by only employing the
available torques. The resulting nonlinear system can thus be exactly rewritten as a polytope,
based on which a control law can be designed in the form of parallel distributed compensation
via linear matrix inequalities. The whole scheme has been successfully applied both in simulation
and real-time implementation to an inverted pendulum on a cart.
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1. INTRODUCTION

Usually, the control of nonlinear plants is achieved by
linearization around an operating point, as linear methods
such as pole placement (Ogata, 2001; Richardson et al.,
2005) or solving the Ricatti equation (Chen, 1984) are easy
to apply and mostly effective. Naturally, this comes at the
price of poor performance when the plant is driven too far
from the nominal values, a situation that has been tackled
by the wide range of model-based nonlinear control techni-
ques such as geometric control (Isidori, 1995), sliding
modes (Shtessel et al., 2013), passivity-based techniques
(Ortega et al., 1998), etcetera. Nevertheless, these appro-
aches are usually too involved for being of practical use.

A simpler, yet effective approach for control of robot mani-
pulators is the computed-torque technique, which is based
on model inversion to cancel out the system nonlinearities
as to obtain a linear error system that can be driven to
zero by ordinary linear tools (Lewis et al., 2003). This ac-
complishment is linked to the structure of Lagrange-Euler
dynamics of robotic manipulators, since model inversion is
possible thanks to the positive-definiteness of the inertia
matrix (Marion, 1965). Thus, if the arm parameters are
known with enough precision, computed-torque control
may provide a good performance for stabilization as well
as trajectory tracking in real-time applications (Khosla
and Kanade, 1989), provided an adequate path is genera-
ted (Lee and Chen, 1983; Shin and McKay, 1985).

Problem statement: Traditional computed-torque control
requires the presence of all generalized torques in the
Lagrange-Euler equations, i.e., it is assumed to be fully
actuated; thus, its application to underactuated mani-
pulators has been hindered, prompting few solutions by
the control community: switching variations (Udawatta
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et al., 2002), genetic algorithms (Udawatta et al., 2003b),
and fuzzy logic (Udawatta et al., 2003a), among others.
Importantly, most of these refinements of the computed-
torque technique yield the systematicness of the traditio-
nal approach to heuristic solutions from the field of soft
computing.

Contribution: In this paper, a novel solution for computed-
torque control of underactuated robotic manipulators is
proposed; it is based on obtaining a nonlinear error sy-
stem instead of a linear one by means of the available
actuators. Once this partial model inversion is perfor-
med, the nonlinear error system is exactly rewritten as
a polytope (convex interpolation) of linear systems via
the sector nonlinearity approach (Taniguchi et al., 2001);
based on the polytope vertices, a controller is designed
via parallel distributed compensation (PDC) to complete
the feedforward signal (Tanaka and Wang, 2001). The
PDC gains are obtained by solving a set of linear matrix
inequalities (Boyd et al., 1994) via commercially available
software (Gahinet et al., 1995). Input/output saturation
limits, decay rate, and other performance measures can
be easily incorporated as LMIs in the controller design,
which may help providing a controller that takes into
account real-time specifications (Duan and Yu, 2013). In
order to test the proposal, an inverted pendulum on a cart
is considered, which is a very well-known underactuated
mechanism with 2 degrees of freedom (DOF), 1 pole, and
2 joints, one translational and another rotational (Angeli,
2001). The actuator only displaces the cart along the
translational axis to stabilize the pole in its upright posi-
tion. Both simulation and real-time results are presented
to illustrate the usefulness of the proposal on a Feedback
plant (Instruments, 2015).

Organization: This work is organized as follows: section
2 introduces the ordinary computed-torque technique in
order to point out the difficulty of applying it to unde-
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ractuated manipulators; section 3 presents our solution
to the previous problem, first for the feedforward part,
then for stabilizing the nonlinear error system trough
convex optimization techniques; section 4 presents the
simulation and real-time implementation results of the
designed controller along with a discussion on related
issues; concluding remarks are given in section 5.

2. PROBLEM STATEMENT

Consider a robotic manipulator consisting of rigid beams
along with translational and rotational joints, grouped in
a generalized coordinate vector q̄ ∈ R

n, amenable to the
following Lagrange-Euler form:

M(q̄)¨̄q(t) +N(q̄, ˙̄q) = τ̄(t), (1)

where M(q̄) is the inertia matrix, N(q̄, ˙̄q) gathers the Co-
riolis, friction, and gravity vectors, and τ̄ is the generalized
torque vector. If fully actuated, every entry in τ̄ will be
available; otherwise, some of these entries might be zero.

Given a desired trajectory q̄d(t) whose first and second
time derivatives are available, we define e(t) = q̄d(t)− q̄(t)
as the error vector, from which it is clear that

−M(q̄) (ë(t)− ¨̄qd(t)) +N(q̄, ˙̄q) = τ̄ . (2)

Thus, defining u(t) ≡ ë(t) and making the proper simpli-
fications, we have the following linear state representation
of the error system:

[
ė(t)
ë(t)

]

︸ ︷︷ ︸

˙̄e(t)

=

[
0 I
0 0

] [
e(t)
ė(t)

]

︸ ︷︷ ︸

ē(t)

+

[
0
I

]

u(t), (3)

with ē ∈ R
2n, for which a control law u can be designed

to guarantee ē(t) → 0 as t → ∞ by any linear control
technique such as pole placement (Chen, 1984) or LMI
formulations (Duan and Yu, 2013). This control law is of
course should be transferred to τ which, in addition, has
the inverse dynamics part incorporated, i.e.,

τ̄(t) = M(q̄)(¨̄qd(t)− u) +N(q̄, ˙̄q), (4)

where the dependency on the accuracy of the model is
evident.

Problem statement: If some of the signals in τ̄ are not
available, i.e., if the robotic manipulator is underactuated,
the right-hand side of (4) may most likely produce an
expression incompatible with the fact that some entries of
τ̄ are fixed to 0. The goal of the next section is to provide
a solution to this issue for stabilization of the nonlinear
system (1) via the computed-torque technique above, i.e.,
q̄d(t) ≡ 0, ∀t ≥ 0.

3. MAIN RESULTS

A strong limitation of the classical computed-torque
technique is that the designer is obliged to adopt a linear
error system such as (3), thus precluding the possibility
of using nonlinear terms for achieving control objectives.
This is particularly critical for underactuated systems,
where the control law is supposed to deal with a variety
of objectives. In this section, we will show a methodology
to judiciously include nonlinear terms in the error system
as to deal with the underactuated characteristics of the
plant, for stabilization purposes.

To begin with, in order to distinguish the available inputs
from those which are not available, consider the following
rewriting of the plant model (1):

M(q̄)¨̄q(t) +N(q̄, ˙̄q) = Ēτ̄(t), (5)

where Ē ∈ R
n×n is defined in terms of its i-j entries as

follows

Ēij =

{
0, if i 6= j or i = j with τ̄i not available,
1, if i = j and τ̄i is available.

If the number of equations in (5) with available torque τ̄i
is m, we can write m equations as

Mi,∗(q̄)¨̄q(t) +Ni(q̄, ˙̄q) = τ̄i(t), (6)

and n−m equations as

Mi,∗(q̄)¨̄q(t) +Ni(q̄, ˙̄q) = 0, (7)

where the subscript {i, ∗} stands for the i-th row of the
corresponding matrix and the subscript {i} for the i-th
entry of the corresponding vector.

From the aforementioned discussion, it is clear that a
suitable rewriting of the system (5) will split actuated
q1 ∈ R

m from non-actuated entries q2 ∈ R
n−m as follows:

[
M11 M12

M21 M22

] [
q̈1
q̈2

]

+

[
N1

N2

]

=

[
τ
0

]

(8)

where arguments of matrices Mij and Ni have been omit-
ted for brevity, their dimensions can be straightforwardly
deduced from the splitting; naturally τ ∈ R

m groups the
actuated entries of the original τ̄ .

Correspondingly, the transformed desired trajectory for
stabilization will be qd(t) = 0 as q̄d(t) = 0, which means

the tracking error e =
[
eT1 eT2

]T
is such that e1 = qd1 −

q1 = −q1 and e2 = qd2 − q2 = −q2. Thus, taking into
account equation (8) we have that the error system is:

M11ë1 +M12ë2 = N1 − τ

M21ë1 +M22ë2 = N2,

from which ë2 can be solved from the second equation as
ë2 = M−1

22 (N2 −M21ë1) due to the positive-definiteness of
the inertia matrix, and substituted in the first one yielding

M11ë1 +M12M
−1
22 (N2 −M21ë1) = N1 − τ

⇐⇒
(
M12M

−1
22 M21 −M11

)
ë1 +N1 −M12M

−1
22 N2 = τ,

where the last equation has the same structure as (2),
which suggests that choosing u = ë1 may help wri-
ting the error system in a simpler manner as ë1 = u,
ë2 = M−1

22 (N2 −M21u), from which τ keeps the following
relationship with u:

τ =
(
M12M

−1
22 M21 −M11

)
u+N1 −M12M

−1
22 N2. (9)

Recalling that for stabilization M−1
22 N2 in ë2 depends on

q1, q2, q̇1, and q̇2, which in turn are equivalent (up to
a sign change) to e1, e2, ė1, and ė2, respectively, it is
always possible to write M−1

22 N2 as a sum of nonlinear
expressions multiplied by these four signals; in other
words, the nonlinear expression M−1

22 N2 admits a right-

hand factorization of ē =
[
eT1 eT2 ėT1 ėT2

]T
Taniguchi et al.

(2001). Thus, a nonlinear version of the error system (3)
can now be written for the stabilization problem as:
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ė1
ė2
ë1
ë2




=






0 0 I 0
0 0 0 I
0 0 0 0

A41 A42 A43 A44






︸ ︷︷ ︸

A(ē)






e1
e2
ė1
ė2




+






0
0
I

−M−1
22 M21






︸ ︷︷ ︸

B(ē)

u, (10)

where, again, arguments for matrices A4j , M21, and M22

have been omitted; yet, it should be kept in mind that
they are nonlinear as indicated in the shorthand notation
A(ē) and B(ē).

The nonlinear error system (10) will be stabilized by a
PDC control law of the form (Wang et al., 1996):

u(t) =

r∑

i=1

hi(z(ē))Fiē(t), (11)

where z(ē) ∈ R
p is a vector collecting the different

nonlinearities in A41, A42, A43, A44, M
−1
22 and M21, which

are assumed to be bounded in a compact set of the
state space, i.e., zj(ē) ∈ [z0j , z

1
j ], j ∈ {1, 2, . . . , p}; hi(z),

i ∈ {1, 2, . . . , r}, r = 2p, are defined from

wj
0(z) =

z1j − zj(ē)

z1i − z0i
, wi

1(z) = 1− wi
0(z),

hi(z) =

p
∏

j=1

wj
ij
, (i1, i2, . . . , ip) ∈ {0, 1}p;

and, finally, Fi ∈ R
m×2n are constant gains to be deter-

mined. Notice that (11) is a nonlinear control law because
of the presence of the system nonlinearities trough the
different hi(z).

It is a standard result of quasi-LPV stabilization techni-
ques as those in Tanaka and Wang (2001) that the origin
ē = 0 of the nonlinear error system (10) under the PDC
control law (11) is asymptotically stable if there exist
matrices X ∈ R

2n×2n, Mi ∈ R
m×2n such that the LMIs

X = XT > 0 and
2

r − 1
Γii+Γij+Γji<0, i, j ∈ {1, 2 . . . , r}, (12)

hold for Γij =A(ē)|hi=1X + B(ē)|hi=1Mj + (∗), with (∗)
denoting the transpose of the expression at its left-hand
side. The corresponding gains are thus Fi = MiX

−1,
i ∈ {1, 2, . . . , r}.

Remark 1. Note that A(ē)|hi=1 and B(ē)|hi=1 are con-
stant matrices corresponding to the vertex systems of a
quasi-LPV exact convex representation of (10); they are
formed with the 2p combinations of minima-maxima of
the nonlinearities gathered in z(ē). There are many ways
of obtaining such representations, which are not unique
(Lendek et al., 2010).

Remark 2. The convex sum relaxation in Tuan et al.
(2001) has been used to obtain the LMIs in (12), but any
othere relaxation scheme can be employed instead, e.g.,
those in Tanaka et al. (1998) and Sala and Ariño (2007).

Remark 3. The LMI nature of conditions (12) allows a
straightforward incorporation of decay rate specifications
and input/output constraints, also in the form of LMIs.
In this work all of them were employed as they play an
important role in the real-time applicability of the control
scheme. Decay rate of α > 0 can be imposed by adding
the term 2αX to Γij above. An input constraint of µ > 0
such that ‖u(t)‖ < µ as well as an output constraint of

λ > 0 such that ‖y(t)‖ < λ for a possibly nonlinear output
y(t) =

∑r

i=1 hi(z)Ciē under initial conditions ē(0), can be
achieved if the following LMIs are added to those above
(Tanaka and Wang, 2001):

[
X MT

j

Mj µ2I

]

≥ 0,

[

1 xT (0)
x(0) X

]

≥ 0,

[

X XCT
i

CiX λ2I

]

(13)

Summing up, the proposed computed-torque technique
will apply (9) with u defined as in (11) achieving stabili-
zation of the underactuated system (5). The next section
illustrates the effectiveness of the proposal, both in simu-
lation and real-time, for an inverted pendulum on a cart.

4. SIMULATION AND REAL-TIME RESULTS

The inverted pendulum on a cart, shown in Fig.1, is a
very well-known underactuated system which consists on
a pole that freely swings around the cart center; the cart,
in turn, is mounted on a linear rail and moves in any
direction thanks to a DC motor, whose voltage is the only
actuator of the system (Angeli, 2001). From the point of
view of a Lagrange-Euler modelling, this system consists
on 2 joints, one translational and the other rotational,
which are marked as xp and θ in Fig.1; they constitute
the vector of generalized coordinates q = [q1 q2]

T , where
q1 = θ (pole angle w.r.t. the upright position) and q2 = xp

(the cart distance to the rail center). Thus, the Lagrange-
Euler model is:

[
M11 M12

M21 M22

]

︸ ︷︷ ︸

M(q)

q̈ +

[
N1

N2

]

︸ ︷︷ ︸

N(q,q̇)

=

[
τ
0

]

︸︷︷︸

τ̄

(14)

with M11 = M22 = mpl cos q1, M12 = mp+mc, M21 = I+
mpl

2, N1 = −mplq̇
2
1 sin q1+bq̇2 y N2 = −mplg sin q1+dq̇1,

where the parameters g, l, mc, mp, I, b, and d are all
specified in Table 1; these values have been taken from the
provider in Instruments (2015). Our goal is to stabilize the
pole in its upright position.

Table 1. Parameters of the inverted pendulum

Parameter Symbol Value

Gravity g 9.81 m/s2

Pole length l 0.36 m
Cart mass mc 2.3 kg
Pole mass mp 0.2 kg
Moment of inertia of the pole I 0.0099 kg ·m2

Cart friction coefficient b 0.00005 N ·m/s
Pendulum damping coefficient d 0.005 N ·m·s/rad

Fig. 1. Inverted pendulum

Puebla, Puebla, México, 23-25 de octubre de 2019 799 Copyright©AMCA. Todos los Derechos Reservados www.amca.mx



By taking into account that e1 = −q1, e2 = −q2, ė1 = −q̇1,
ė2 = −q̇2, it is clear that M−1

22 N2 and M−1
22 M21 can be

written as

M−1
22 N2 =

1

mpl cos q1
(dq̇1 −mpgl sin q1)

=
1

mpl cos(−e1)
(−dė1 −mpgl sin(−e1))

=
1

mpl cos e1
(−dė1 +mpgl sin e1)

= −
d

mpl
z1ė1 +

mpgl

mpl
z1z2e1

M−1
22 M21 =

M21

mpl
z1,

where z1 and z2 are defined in Table 2 along with their
bounds for |e1| ≤ 0.2.

It is now possible to write the error system for the inverted
pendulum in the form (10) as follows

˙̄e=







0 0 1 0
0 0 0 1
0 0 0 0

gz1z2 0 − d
mpl

z1 0







︸ ︷︷ ︸

A(z1,z2)

ē+







0
0
1

−M21

mpl
z1







︸ ︷︷ ︸

B(z1)

u, (15)

where ē = [e1 e2 ė1 ė2]
T
.

The design of a PDC control law (11) for u above relies
on the construction of functions hi as well as the cor-
responding matrices Ai, Bi, i ∈ {1, 2, 3, 4} described in
the previous section. Such task begins by constructing the
following functions, which take into account the definitions
and bounds of zi, i ∈ {1, 2} in Table 2:

w1
0(z1) =

1.0203− z1
1.0203− 1

, w1
1(z1) = 1− w1

0(z1),

w2
0(z2) =

1− z2
1− 0.9933

, w2
1(z2) = 1− w2

0(z2).

Thus, h1(z) = w1
0w

2
0, h2(z) = w1

0w
2
1, h3(z) = w1

1w
2
0,

and h4(z) = w1
1w

2
1, with matrices Ai = A(z1, z2)|hi=1,

Bi = B(z1)|hi=1 given by:

A1=






0 0 1 0
0 0 0 1
0 0 0 0

9.7447 0 −0.0694 0




 A2=






0 0 1 0
0 0 0 1
0 0 0 0

9.81 0 −0.0694 0






A3=






0 0 1 0
0 0 0 1
0 0 0 0

9.9429 0 −0.0709 0




 A4=






0 0 1 0
0 0 0 1
0 0 0 0

10.0095 0 −0.0709 0






B1 = B2 =






0
0
1

−0.4975




 B3 = B4 =






0
0
1

−0.5076




 .

We can now proceed to find X = XT > 0 such that (12)
hold, which will give a stabilizing PDC u for the error
system; once this u is substituted in (9) the full control

Table 2. Definitions of nonlinear terms

Term Definition Lower bounds z0
i

Upper bounds z1
i

z1 1/ cos e1 1 1/ cos(0.2)
z2 sin e1/e1 sin(0.2)/0.2 1

law τ will be obtained. Yet, for real-time implementation
further considerations must be done, namely, the bounds
on u guaranteeing bounds on τ , bounds on the rail length
q2 (i.e., e2), as well as a prescribed decay rate to accelerate
the settling time. How this information is produced and
included is now discussed.

According to the provider, the torque τ in (14) is limited to
the range τ ∈ [−20, 20] newtons, which can be translated
into bounds for u solved from (9) as:

u =
(
M12M

−1
22 M21−M11

)−1 (
τ−N1+M12M

−1
22 N2

)
.

By taking into account that ė1, ė2 ∈ [−10, 10], e1 ∈
[−0.2, 0.2], we have the induced bounds

1.1718 ≤ M12M
−1
22 M21 −M11 ≤ 1.1985,

−8.1739 ≤ N1 −M12M
−

221N2 ≤ 5.3120,

which in turn mean that

min(u) = (1.1718)−1(min τ − 5.3120) = −20.6009

max(u) = (1.1718)−1 (max τ − (−8.1739)) = 24.0432

Therefore, if |u(t)| ≤ 21.6009, it is guaranteed that |τ1| ≤
20 as desired, which means µ = 21.6009 in (13).

The bounds on the rail length can be imposed by consi-
dering it as a constrained output −0.4 ≤ e2 = −q2 ≤ 0.4,
which requires defining a constant Ci = [0 1 0 0], i ∈
{1, 2, 3, 4}, and λ = 0.4 in (13). We can now proceed to
find X = XT > 0 such that (12) hold along with (13)

for initial condition ē(0) = [−0.1 0.1 0 0]
T
, imposing an

additional decay rate of α = 1 to accelerate the settling
time of the stabilization transient. These LMIs produce a
feasible solution X and Mj , j ∈ {1, 2, 3, 4}, from which

P = X−1 =






124.3233 79.6337 28.5935 42.0703
79.6337 61.7024 18.1400 27.9064
28.5935 18.1400 6.6088 9.6500
42.0703 27.9064 9.6500 14.4803




 ,

which defines a quadratic Lyapunov function V (ē) =
ēTP ē associated to the nonlinear error system (15), and
Fj = MjX

−1

F1 = [−126.1094 −52.7746 −31.8751 −36.7767] ,

F2 = [−125.5813 −52.2159 −31.7360 −36.5388] ,

F3 = [−128.9144 −54.0761 −32.4622 −37.5994] ,

F4 = [−128.7243 −53.6262 −32.3999 −37.4642] ,

are the gains in the PDC controller.

Remark 4. The purely LMI-based PDC controller in
Quintana et al. (2017) consists of 16 gains; the PDC part
in our work contains only 4 at the price of incorporating
nonlinear terms in the computed-torque part.

The PDC controller u in (11) with r = 4 can now be
incorporated to τ as in (9); since τ is a torque and
the DC motor requires a voltage v(t) as an input, the
additional relationship v(t) = −τ(t)/9.6 should be taken
into account for simulation and real-time implementation
via the interface of (Instruments, 2015), which is the case
in this work. This linear relationship comes from the
internal dynamics of the DC motor, which are
[
ẋ1

ẋ2

]

=

[
−dm

J
x1 +

Kt

J
x2

− Kb

Lm
x1 −

R
Lm

x2 −
9.6
Lm

v(t)

]

, τ=[0 600Kt]

[
x1

x2

]

,

where J = 1.4 × 10−5, Kt = 0.05, Kb = 0.05, dm = 1 ×
10−6, R = 2.5, Lm = 2.5× 10−3.
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In order to test the ability of the controller to recover from
perturbations, the signal w(t) = 5/6U (t− 8)− 5/6U (t−
8.3) will be added to v(t), where U (t) stands for the step
function. In Figures 2, 3, 4, and 5, the pole angle w.r.t.
the upright position, the position of the cart w.r.t. the
center of the rail, the angular velocity of the pole, and the
cart speed along the rail, respectively, are shown. In each
figure, the the signal at the top is for simulation and that
at the bottom the real-time one; bounds imposed via the
LMI design are shown in dashed lines, if any. The effect of
the perturbation can be noticed at t = 8; the controller is
able to overcome its effect. In Fig. 6 the voltage signal is
displayed; again, the simulation result is shown at the top
and the real-time one at the bottom. The bounds imposed
on the control signal are also shown in dashed lines.

0 5 10 15 20

q
1
(r
a
d
)

-0.2

-0.1

0

0.1

0.2

Time (s)
0 5 10 15 20

q
1
(r
a
d
)

-0.2

-0.1

0

0.1

0.2

Fig. 2. Beam angle q1(t): simulation (top), real-time
(bottom).
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(m
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-0.4

-0.2

0

0.2
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Fig. 3. Cart position q2(t): simulation (top), real-time
(bottom).

5. CONCLUSIONS

A generalization of the computed-torque technique for sta-
bilization of a class of underactuated robot manipulators
has been proposed in this paper; it is based on performing
partial model inversion through the actuated parts as to
obtain a nonlinear error system, which in turn is stabilized
through parallel distributed compensation. The latter has
been designed using linear matrix inequalities that allow
incorporating further plant restrictions and specifications
within the same framework. Simulation and real-time
implementation of the proposed control scheme on an
inverted pendulum on a cart has been successfully done.
Future work should address a generalization for trajectory
tracking.
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Fig. 4. Angular velocity q̇1(t): simulation (top), real-time
(bottom).
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