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Abstract: This paper proposes a free-model task space control for a robot’s end-effector. The robot
is considered a non-linear discrete time system, using the data driven control and model free control
approach. An adaptive Kalman filter provides an equivalent system by means of the robotic Jacobian
matrix, which only needs the input-output data to control the robot’s position. Besides, we design
the adaptive gains for sliding mode controller, using a neuro-fuzzy network structure. In the simulation
was tested the performance of the equivalent Jacobian matrix and, slidng mode controller with adaptive
gains for tracking control. We also provided a Lyapunov analysis of the equivalent model to guarantee
convergence based on the adaptive Kalman filter.

Keywords: robot’s end-effector, equivalent system, adaptive Kalman filter, adaptive gains, sliding
mode control

1. INTRODUCTION

The methods of nonlinear system control intend to solve the
main problematic for control design as: nonlinearities, para-
metric uncertainties, and superposition properties losses. The
robot’s motion control is a common issue for nonlinear control.
Furthermore, the robotic application field has matured, and the
manipulator robots control design needs to enhance the task
execution accuracy. The classic control techniques allow to
deal with main robot tasks, but the inaccuracy in the mathemat-
ical model can cause low performance in the robot. In contrast,
currently the use of free model control has gained attention, in
parallel with the current research tendency to use data con-
trol. The Data Driven Control (DDC) allows working with an
equivalent system by the dynamic linearization model, Hou
and Jin (2011). The Model Free Adaptive Control (MFAC)
based on DDC has been implemented in robotic systems: Zen
et al. (2018) designed an equivalent system by the pseudo Jaco-
bian matrix, and Li et al. (2018) applied the Jacobian estimate
by an adaptive Kalman filter to control a continuum robot. In
previous work was presented a free-model robot control with
a proportional controller, Gómez et al. (2018). The equiva-
lent model (estimated Jacobian matrix) only needs the on-line
input-output information, in comparison with classical robot
model: the proposed control omits the knowledge of the class
and the physical parameters. The objective of this paper is to
test the end-effector tracking control with an equivalent system
provided by an adaptive Kalman filter. The robotic plant is
an omnidirectional mobile manipulator; whit 5 revolute dof
in the robotic arm and 3 prismatic dof in the omnidirectional
mobile platform. The Strong Tracking Kalman Filter (STKF)
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is a class of adaptive algorithm which allows to obtain the
Jacobian matrix as an equivalent model, regarding the robot
input-output data. The main characteristics of the equivalent
model provided by the STKF are: the robustness against un-
certainties, and instantaneous changes in the movement.

As well, we designed the controller based on the equivalent
system. The control proposal is a Sliding Mode Controller
(SMC) with on-line adaptive gains using the Fuzzy Rules
Emulated Network structure (FREN) in the work presented
by Treesatayapun and Uatrongjit (2005). The basic principle
of SMC allows to an equivalent system deals with nonlinear-
ities, external disturbance and uncertainties. Aditional, FREN
adapts the SMC gains in terms of control error change. The
simulation results show the equivalent model control perfor-
mance, and we introduce the system model stability analysis.
The structure of this paper is: section 2 describes of the un-
known nonlinear discrete time system, section 3 presents the
simulation results, and section 4 gives the conclusions.

2. DISCRETE TIME SYSTEM

The position of the robot’s end-effector χ(k) = f(qn) is:

χ(k) = [p(q)] ∈ R
m ⊂ SE(3), (1)

where p(q) denotes the end-effector position; m is the robot
dof and n is the end-effector dof. The end-effector velocity
approximates within a discrete time derivative:

χ(k + 1)− χ(k)

Ts

= JA(k)

[

q(k)− q(k − 1)

Ts

]

∈ R
m, (2)
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where the Jacobian matrix is JA(k) =
∂f(χ(k + 1))

∂f(qn(k))
∈

R
m×n nad Ts is the sampling time

χ(k + 1)− χ(k)

Ts

= JA(k)ω(k) ∈ R
m, (3)

and ω(k) ∈ R
n represents the discrete joint velocities

2.1 Equivalent model system

The Jacobian vector Jv(k) contains the dynamics system from
the Jacobian matrix JA(k) in the next way

Jv(k) =

[

∂fx

∂qn

∂fy

∂qn

∂fz

∂qn

]T

∈ R
a, (4)

where x, y and z are the end-effector axes, and a = 24 is the
multiplication of the Jacobian matrix subspaces m = 3 and
n = 8. The measurement matrix H(k) is a diagonal matrix
with the control signals ω(k):

H(k) =







[ω1(k) . . . ωn(k)] 0
. . .

0 [ω1(k) . . . ωn(k)]






∈ R

m×a

(5)

The Strong Tracking Kalman Filter (STKF) is an adaptive
algorithm with estimation error tracking, Li et al. (2018). Thus,
fading factor λk enhances the robustness against uncertainties,
and the updated covariance matrix Qk captures the instanta-
neous change of the Jacobian. The STKF estimates the Jaco-
bian vector Jv(k) in equation (6)

KF (k) =P (k)HT (k)
[

H(k)P (k)HT (k)
]−1

P (k + 1) = [I −K(k)H(k)P (k)]λk +Qk (6)

Ĵv(k + 1) =Ĵv(k) +K(k)

[

∆χ

Ts
−H(k)Ĵv(k)

]

,

where KF (k) ∈ R
a×n is the Kalman gain, P (k + 1) ∈ R

a×a

is the error covariance matrix, Ĵv(k + 1) ∈ R
a is the updated

state of Jacobian vector. The next expression defines the error
estimation

vn(k) =
∆χ

Ts
−H(k)Ĵv(k) ∈ R

m, (7)

the updated covariance matrix Qk is

Qk = KF (k)Ĉ(k)KF (k), (8)

the matrix Ĉ(k) is the result of weighting quadratic error
estimation

Ĉ(k) =
1

N

k
∑

n=k−N+1

vnv
T
n , (9)

the value of bk is in terms of the trace value of matrices Mk

and Nk

bk =
tr [Nk]

tr [Mk]
, (10)

Mk and Nk are computed in equation (11)

Nk = Vk −H(k)QkH(k)T

Mk = H(k)P (k)H(k)T , (11)

the matrix Vk is

Vk =

{

v0v
T
0 k = 0

0.95Vk−1+vkv
T

k

1.95
k ≥ 1

(12)

the value of bk restricts the value of λk in the equation (13)

λk =

{

bk, when bk ≥ 1

1, when bk < 1
(13)

2.2 System stability analysis

This section presents the stabilty analysis of the equivalent

system Ĵv(k+ 1) provided by the STKF, we consider the next
assumptions:

Assumption 1: The output is observable, i.e H(k)Ĵv(k) =
∆χ

Ts
∀k > 0.

Assumption 2: The initialization of the Jacobian vector Jv(0) ∈
R

a, and covariance matrix are in a normal distribution P (0) ∈
R

a×a ∼ N(Jv0 , P0).

Assumption 3: The covariance matrix P (k) ∈ R
a×a is a

positive definite matrix, and P−1(0) > 0.

Using the estimation error in the equation (7) the cost function
proposed is:

ξ(k) =
1

2
vn(k)v

T
n (k), (14)

at each time step updates the value of the Ĵv(k + 1)

Ĵv(k + 1) = Ĵv(k)−KF (k)
∂ξ

∂Ĵv
, (15)

the chain rule method calculates the term
∂ξ

∂Ĵv
by

∂ξ

∂Ĵv
=

∂ξ

∂vn

∂vn

∂HĴv

∂HĴv

∂Ĵv
= vn(k) [−1]H(k), (16)
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the equation (6) determines the updated vector Ĵv(k+ 1). It is
considering the next Lyapunov’s function

V (k + 1) =
1

2
vn(k + 1)vTn (k + 1), (17)

the rate of change in the Lyapunov function is

∆V (k + 1) = V (k + 1)− V (k), (18)

the change in the error estimation is

∆vn(k + 1) = vn(k + 1)− vn(k), (19)

the equation (18) becomes:

∆V (k + 1) = ∆vn(k)

[

vn(k) +
1

2
∆vn(k)

]

, (20)

∆vn(k) is approximated in the next way

∆vn(k) ≈
∂vn

∂Ĵv
∆Ĵv, (21)

where

∂vn

∂Ĵv
=

∂vn

∂HĴv

∂HĴv

∂Ĵv
= −H(k), (22)

the equation (21) and equation (22) produces

∆vn(k) ≈
∂vn

∂Ĵv
∆Ĵ = −H(k)KF (k)vn(k), (23)

the change in the Lyapunov’s function is

∆V (k) = −H(k)KF (k)v
2
n(k)

[

1−
1

2
H(k)KF (k)

]

, (24)

according with the stability condition ∆V < 0

0 < KF (k) < 2H−1(k), (25)

the Kalman filter gain KF (k) should lie in the range indicated
in equation (25) to guarantee system stability.

2.3 Controller design

This section introduces the SMC with adaptive gains, and the
control error defines

e(k) = χ(k)− χd(k) ∈ R
m, (26)

where χ(k) is the current end-effector position and χd(k) is
the desired end-effector position. The sliding mode surface is

s(k) = ∆e(k) +G(k)e(k) ∈ R
m, (27)

G(k) ∈ R
m×m is a diagonal matrix that contains the adaptive

gains for SMC: Gx(k), Gy(k), and Gz(k)

the equation (28) uses a continuous smooth function for SMC

ν(k) = − tanh

(

s(k)

ǫ

)

∈ R
m, (28)

where ǫ > 0, it is possible to calculate the signals of the

controller using the pseudoinverse of ĴA(k)

ω(k) = Ĵ+

A (k)ν(k) ∈ R
n, (29)

and the updated joint position

q(k + 1) = q(k) + ω(k) · Ts ∈ R
n (30)

∑

SMC+FRENAG

z−1

Equivalent
system
model

e(k) χ(k+ 1)

z
−1

ω(k)

ĴA(k)

∆e(k)

χd(k)

Fig. 1. Control block diagram of an equivalent system control.

The Fig. 1 depicts the control scheme proposed for this work.
The Fuzzy Rules Emulated Network (FREN) adapts the gains
matrix G(k). The architecture of artificial network has 4 dis-
tinct layers in terms of: (1) input error e(k); (2) linguistic
variables µi(k); (3) linear consequence parameters βi; and (4)
adaptive gains G(k). Fig. 2 shows the architecture of Fuzzy
Rules Emulated Network Adaptive Gains (FRENAG), and the
output gives the adaptive gains as:

µPLµPLµPL

µPSµPSµPS

µZeµZeµZe

µNSµNSµNS

µNLµNLµNL

βPLβPLβPL

βPSβPSβPS

βZeβZeβZe

βNSβNSβNS

βNLβNLβNL

e(k)e(k)e(k)
∑∑∑

G(k)G(k)G(k)I(k)I(k)I(k)

Fig. 2. Fuzzy rules emulad network architecture for adaptive
gains.

G(k) =
∑

i=1

βiµi(k) (31)

The membership functions designs for adaptive gains are in
the Fig. 3 and the linear consequence parameters are in table
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1. Where the linguistic variables: PL is positive large, PS
is positive small, Ze is zero, NS is negative small, and NL
is negative large. The membership functions µi are designed
in terms of the end-effector axes, and the linear consequence
parameters βi (constant values) are tuned intuitively.

3. SIMULATION RESULTS

3.1 Robotic system

The base of study is the Kuka youBot mobile manipulator,
which has 3 dof for omnidirectional mobile platform and 5 dof
for manipulator arm (n = 8). The joint configuration space is

the cartesian product SE(2)×T
5. The equivalent model ĴA(k)

includes the 8 dof of the robot, the omnidirectional platform
and the robotic arm is considered the plant. The kinematic
model of Kuka youBot generates the input and output data
for simulations, but it is not included in the robot controller.
In the simulations the estimated Jacobian is considered the
real model for the system. The simulations takes the estimated
Jacobian coming from the STKF to be considered in the
control law in the equation (29). The Fig. 1 shows the diagram
of the robot and controller approach.

3.2 Tracking control

The robot home position is χ(0) = [0.1430, 0, 0.6480, 0, 0, 0],
and the desired trajectory is a circle giving for the next func-
tions:

χxd(k) =0.5 sin(
4πk

kmax
)

χyd(k) =0.5 cos(
4πk

kmax
) (32)

χzd(k) =0.55

The end-effector follows a circle with x and y and z remains in
constant position, in the equation (32) kmax is the maximum
time index of the simulation. Fig. 4 shows the simulation
results of end-effector circular trajectory, the evolution of the
end-effector’s axes, the convergence of the control errors, the
gains adaptation, and the joint velocity as a control signal
(mobile platform and robot arm), while the equivalent Jacobian
system completes the control. The equivalent system fulfills
the demands in the end-effector trajectory control by the pro-
posed controller based on SMC and FRENAG.

4. CONCLUSION

We found that an equivalent system based on data driven
control (STKF) can control the end-effector trajectory only
with the knowledge between the input/output relationship. As
well, we demonstrated the stability analysis of the Jacobian
matrix estimation (equivalent system) by the STKF, and we
proposed adaptive gains for a SMC based on neuro-fuzzy
artificial network architecture (FREN). The control advantages

of the equivalent system ĴA(k) are: less robot’s parameters

knowledge, on-line data driven controller, and classical model
independency. The simulations for tracking control shows the
effectiveness of the Jacobian matrix estimation and control.
As a future plan we extend the work to cover the proposed
controller stability analysis, the robot’s orientation control, and
the validation in a real robot for some experimental setup.
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Fig. 3. Membership function for the end-effector tracking χ(k) = [x, y, z]: a) membership functions of x axis, b) membership
functions of y axis, and c) membership functions of z axis.

Table 1. Linear consequence parameters of adaptive gains parameters for Gx(k), Gy(k) and Gz(k).

Name Parameters Gx(k) values Gy(k) values Gz(k) values

Positive Large βPL 1 1.25 0.25
Positive Small βNL 0.85 1 0.35
Zero βZe 0.85 0.5 0.75
Negative Small βNS 0.25 0.5 0.85
Negative Large βNL 0.15 0.25 1
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Fig. 4. Performance of end-effector tracking control: a) end-effector desired trajectory (cricle), b) end-effector desired functions,
c) end-effector tracking error, d) mobile platform control signals, and e) robot arm control signals.
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