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Abstract: Memristors are resistive memory devices, where the resistive memory state is a
function of the memristor’s initial conditions and the history of the voltage across its terminals.
Applications of these devices are in neuromorphic circuits. In particular, as representations
of the open-close dynamics of the ionic channels in neurophysiological models. We use a
memristive version of the Integrate and Fire neuron to construct a time-varying memristive
neural network. In this model, a memory state is a stable unique equilibrium point. We
show that the existence of a memory state depends uniformly on properties of the network
topology and description of the memristive characteristic function. We illustrate our results
using numerical simulations.
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1. INTRODUCTION

The brain is capable of information integration and pro-
cessing incoming from several different organs resulting
in capabilities like memory and reasoning. The neuron is
the basic processing unit of the brain, its behavior, and
emergent properties as they are connected into networks
are studied in many different ways. The neuron’s electrical
behavior is captured by the Hodgkin and Huxley model
(HH) (Hodgkin & Huxley, 1949). In particular, the action
potential phenomenon is the result of the physiological
excitability of the ionic currents in the neuron’s mem-
brane. The so-called Integrate and Fire (IF) neural model
is a simplified model that captures this phenomenon as a
charge and discharge of a capacitor (Lapique, 1971).

The electrical representation of neural models required
the use of time-varying conductance to model the opening
and closing of ion channels in the membrane. No basic
discrete electronic component had these features until
in 1971 L. O. Chua theorized the existence of a fourth
electric basic element called Memristor (Chua, 1971).
That name is a contraction of words: resistance and
memory.

The memristor is an electronic device characterized by a
relation between its electric charge and its magnetic flux.
Since these variables are related to the current and voltage
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across the device via its derivative, the resistance value
of the memristor depends on the history of the voltage
that passed through it, furthermore as the derivative
goes to zero the resistance value is maintained in the
device without new current been needed. As a result, non-
volatility is a property of this resistive memory (Chua,
2011).

As presented in (Sah et.al , 2016), the memristor is a can-
didate to represent the time-varying conductances of the
neural model (Hodgkin & Huxley, 1949). The possibility
of implementing memristive circuits as a representation
of biological neurons gives the interest in them as neuro-
morphic circuits (Chua et.al , 2012; Yang et.al , 2019). In
particular, (Di Marco et.al , 2018) proposes a memristive
version of the IF neural model.

As biological neurons communicate with each other
through synapses, several memristive neurons can be cou-
pled together into networks where dynamical phenomena
can emerge. Yet, the dynamical behavior of memristive
neurons, in particular Memristive IF neurons (MIFN),
needs to be studied further.

An important feature of the MIFN model is that it has
a continuum of equilibrium points. However, for a given
fixed initial condition there exists only an equilibrium
point and further this unique equilibrium point is stable,
as such, in the sense of a memristor resistance, this unique
stable equilibrium point is the memory state of the MIFN
model (Di Marco et.al , 2018).
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This contribution aims to establish under what conditions
a network on identical MIFN models with a time-varying
coupling structure has a memory state. In other words,
under what conditions, both in terms of the memristor
description and the coupling structure of time-varying
connections, of a memristor IF neural network (MIFNN)
has a unique stable fixed point for a given fixed initial
condition.

The remainder of the contribution is organized as follows:
In Section 2, the basic aspects of memristor theory,
and the memristive version of the IF neuron model are
presented. In Section 3, the memory state problem for the
time-varying MIFNN model is described in detail. Section
4 presents our main result, in the form of conditions
for existence, uniqueness, and stability of an equilibrium
point for the time-varying MIFNN. In Section 5 our
results are illustrated with numerical simulations, then
the contribution is finished with closing remarks.

2. PRELIMINARIES

2.1 Memristor

In (Chua, 1971) a memristor is defined as a basic elec-
tronic element that relates electric charge with magnetic
flux, and represented as shown in Fig. 1.

Fig. 1. Memristor’s electronic symbol

The memristor fundamental function is defined as:

Qw(t) = fw(ϕw(t)) (1)

where Qw(t) ∈ R is the electric charge, and ϕw(t) ∈ R

is the magnetic flux of the memristor. fw : R → R,
fw(·) ∈ C1 is the memristive characteristic function, it
usually considered to be a monotonic increasing function.

We have voltage Vw(t) and current Iw(t) in the memristor
are expressed as:

Vw(t) = ϕ̇w(t) (2a)

Iw(t) = Q̇w(t) (2b)

From the above, the current-voltage relation on the mem-
ristor is:

Iw(t) = w(ϕw)Vw(t) (3)

where w(ϕw) = dfw(ϕw)
dϕw

is the memductance of the

memristor in Ω−1. By integrating (2a) with respect to
time, the magnetic flux ϕw(t) is found to be:

ϕw(t) =

∫ t

t0

Vw(τ)dτ + ϕw(t0) (4)

where ϕw(t0) is the initial magnetic flux.The magnetic
flux described by (4) depends on the history of the
memristor voltage Vw(t), for this reason if the dynamics
of the voltage and magnetic flux converge to a fixed
value (Q∗

w, ϕ
∗
w), furthermore if it is stable, one can call

(Q∗
w, ϕ

∗
w), the memory state of the memristor and w(ϕ∗

w)
its memductance.

In (Chua & Kang, 1976) is proposed a general mathemat-
ical description called memristive system described by:

ẋ(t) = f(x(t), v(t))
i(t) = h(x(t))v(t)

(5)

where x(t) ∈ R
n is vector of state variables of the

memristive system, v(t) ∈ R is the input associated to
the electrical variable voltage, i(t) ∈ R is the output
associated to the electrical variable current, f : R

n ×
R → R is locally Lipschitz in R

n × R, h : Rn → R is
a continuous function.

Memristive systems have been used to characterize the
behavior of biological systems, in particular the behavior
of time-varying conductances on neuron membrane mod-
els as can been seen in (Chua et.al , 2012).

2.2 Simplified neural models

There are several reduced models of the HH model
(Hodgkin & Huxley, 1949). One of them is the IF
(Lapique, 1971), in which electrical circuit representation
is depicted in Fig. 2.

Fig. 2. IF neuron model

From Fig.2, the current iCIF
(t) ∈ R of the capacitor is

defined by:
iCIF

(t) = CIF v̇IF (t) (6)
where vIF (t) ∈ R is the voltage across the capacitor
and CIF is its capacitance, the current igIF (t) of the
conductance gIF is defined by:

igIF (t) = gIF (vIF (t)− EI) (7)

The dynamical model of the circuit in Fig. 2 is obtained
by the Kirchoff’s Currents Law.

iCIF
(t) + igIF (t) = 0 (8)

Substituting equations (6) and (7) in (8) is obtained:

Cv̇IF (t) = −gIF (vIF (t)− EI). (9)

The IF neuron model is modified by including memristive
elements in its description to generate the so-called MIFN
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model. In the following subsection, its electrical circuit
and dynamical model are presented.

2.3 Memristive Integrate and Fire Neuron Model

Consider the Memristive Integrate and Fire neuron model
as proposed in (Di Marco et.al , 2018) consisting of a
memristor M connected in parallel to a capacitor C as
represented in Fig. 3.

Fig. 3. Electrical circuit of the MIFN model

From Fig. 3, the current ic(t) ∈ R of the capacitor is
defined by:

ic(t) = C ˙vC(t) (10)

where vC(t) ∈ R is the capacitor voltage and C is its
capacitance. The memristor current iw(t) is defined by:

iw(t) = w(ϕ(t))vM (t) (11)

as before w(ϕ) is the memductance of the memristor.
According to Kirchhoff’s Voltage Law vC(t)− vM (t) = 0,
therefore vC(t) = vM (t) = v(t). The dynamical model of
the circuit in Fig. 3 is obtained by the Kirchhoff’s Current
Law.

ic(t) + iw(t) = 0 (12)

Substituting equations (10) and (11) in (12) and recalling
(2a), the following MIFN model equations are obtained:

Cv̇(t) = −w(ϕ(t))v(t) (13a)

ϕ̇(t) = v(t) (13b)

with initial conditions ϕ(t0) = ϕ0 and v(t0) = v0.

The equilibrium points of (13a)-(13b) are a continuum
given by

πe = {[0, ϕ]⊤ ∈ R
2 : ϕ ∈ R}. (14)

Is important to note that for a given fixed initial condition
there exits a unique equilibrium point (0, ϕe) ∈ R

2 for
(13). Furthermore, this equilibrium point if stable, is the
memory state of the MIFN model.

In the following section, the MIFNN model is presented
and investigated under the consideration of time-varying
couplings.

3. TIME-VARYING MIFNN MODEL

Consider a set of N identical MIFN (13a-b) called nodes
M = {m1, ...,mN}. Where each node has unitary capac-
itances C1 = .. = CN = 1 and identical characteristic
memristive functions fw1

(·) = ... = fwN
(·) = fw(·).

Therefore, all nodes have identical memductance w(·) =
w1(·) = ... = wN (·).

If node mi is connected to node mj by a fixed edge sij ∈
S ⊂ M × M where i 6= j, then aij = 1. Alternatively,
if these nodes are not connected aij = 0. Since the edges
are undirected, aij = aji ∀i, j and there are no isolated
nodes in the network. The coupling structure is given by
the adjacency matrix A = {aij} ∈ R

N×N .

Let every edge has an associated time-dependent con-
nection weight given by a function cij : R+ → R>0 lo-
cally Lipschitz in R+. The time-varying Laplacian matrix
L(t) = (ℓij(t))N×N associated to this connection topology
is given by:

ℓij(t) =







N
∑

k=1,k 6=i

aikcik(t), i = j

−aijcij(t), i 6= j

(15)

The dynamics of the i−th node is given by:

v̇i(t) = −w(ϕi(t))vi(t)−
N
∑

j=1

ℓij(t)vj(t) (16a)

ϕ̇i(t) = vi(t) (16b)

for i = 1, 2, · · · , N .

A vectorial form of (16) is:

V̇ (t) = −W (φ(t))V (t)− L(t)V (t) (17a)

φ̇(t) = V (t) (17b)

where V (t) = [v1(t), ..., vN (t)]
⊤

∈ R
N and φ(t) =

[ϕ1(t), ...., ϕN (t)]⊤ ∈ R
N are the voltage and magnetic

flux vectors, respectively. With the memductance matrix
W (φ(t)) = diag(w(ϕ1(t)), .., w(ϕN (t))) ∈ R

N×N .

From (15) we have that the time-varying Laplacian ma-
trix of the MIFNN is uniformly diffusive, that is, the
sum by row and by columns is zero at all times. As
a consequence the eigenvalues of L(t), denoted as λi(t)
(i = 1, · · · , N) can be arrange as (Lü & Chen, 2005):

λN (t) ≥ · · ·λ2(t) ≥ λ1 = 0 (18)

In other words, the coupling of the MIFNN is captured
by a Laplacian matrix that is semipossitive at each time
instant.

As before, for (16a)-(16b) there is a continuum of the
equilibrium points defined by the set

βe = {[0, φ]⊤ ∈ R
2N : φ ∈ R

N}. (19)

The equilibrium point [0, φ∗]⊤ ∈ βe is a memory state of
the MIFNN model, if for a given fixed initial condition
[V0, φ0]

⊤ ∈ R
2N , [0, φ∗]⊤ is unique and stable equilibrium

point to which the network model converges, as shown in
the following section, where we determine the conditions
for the existence and stability of a unique equilibrium
point of (16a-b) for a given fixed initial condition.
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L(t) =















ℓ11(t) −1.5 −6 −0.5 + exp(2− 0.1t) −0.5− t exp(−0.1t) −0.1t2

−1.5 ℓ22(t) − exp(0.1t− 6) −6 cos2(t) sin(0.1πt)− 7 − exp(−0.5t) − exp(0.1t)
−6 − exp(0.1t− 6) ℓ33(t) −0.1t − cos(t)− 1.1 − arctan(t)

−0.5− exp(2− 0.1t) −6 cos2(t) sin(0.1πt)− 7 −0.1t ℓ44(t) −10 −3
−0.5− t exp(−0.1t) − exp(−0.5t) − cos(t)− 1.1 −10 ℓ55(t) − sin(πt)− 1.1

−0.1t2 − exp(0.1t) − arctan(t) −3 − sin(πt)− 1.1 ℓ66(t)















(20)

ℓ11(t) = 1.5 + 6 + 0.5 + exp(2− 0.1t) + 0.5 + t exp(−0.1t) + 0.1t2

ℓ22(t) = 1.5 + 6 cos2(t) sin(0.1πt) + exp(0.1t− 6) + 7 + exp(−0.5t) + exp(0.1t)
ℓ33(t) = 6 + exp(0.1t− 6) + 0.1t+ cos(t) + 1.1 + arctan(t)
ℓ44(t) = 0.5 + exp(2− 0.1t) + 6 cos2(t) sin(0.1πt) + 7 + 0.1t+ 10 + 3
ℓ55(t) = 0.5 + t exp(−0.1t) + exp(−0.5t) + cos(t) + 1.1 + 10 + sin(πt) + 1.1
ℓ66(t) = 0.1t2 + exp(0.1t) + arctan(t) + 3 + sin(πt)− 1.1

(21)

4. MAIN RESULTS

To establish the existence and stability of a unique
equilibrium point for the MIFNN model given a fixed
initial condition [V0, φ0]

⊤, we start considering the voltage
equation (16a).

Assuming:

(1) There exists a solution to the magnetic flux equation
(16b) which is unique and continuous on R for each
node i.

(2) The memristive characteristic fw(·) of the neurons is
a monotonic and strictly increasing function.

The voltage equation of the MIFNN model (17a) can be
written as

V̇ (t) = −B(t)V (t) (22)

where B(t) = W (φ(t)) + L(t),

We have the following results:

Theorem 1. The voltage equation (22) has a unique equi-
librium point given by

V ∗ = 0 ∈ R
N (23)

Proof 1. Given that the L(t) is a positive semidefinite
matrix for all time instants, and W (φ(t)) is positive
definite due to assumption (2). Their sum is positive
definite ∀t, and as a consequence B(t) is a non-singular
matrix ∀t, therefore get that V ∗ = 0 is the only solution
to its equilibrium point algebraic equation. ✷

From the above result we can derive the following:

Theorem 2. Under assumptions (1) and (2) the unique
equilibrium point V ∗ = 0 ∈ R

N is uniformly asymptoti-
cally stable.

Proof 2. To establish the stability of V ∗ = 0 consider the
Lyapunov candidate function, E(V (t)) = 1

2V
⊤(t)PV (t)

with P a constant symmetric and positive definite matrix
of appropriate dimensions. Its derivative on the trajecto-
ries of (22) is given by

Ė(V (t)) = −V ⊤(t) [PB(t)]V (t) (24)

If ∃Q ∈ R
N×N definite positive for all time, such that

PB(t) > −Q, would imply that Ė(V (t)) < 0, ∀t, that
is, V ∗ = 0 is uniformly asymptotically stable equilibrium
point of (17a). ✷

As a consequence of Theorem 2 we know that the right
side of (17b) will converge to zero. Then, we have the
following result:

Corollary 2.1. Under assumptions of theorem 2. If B(t)
is positive definite ∀t, then the solution of the magnetic
flux equation of the MIFNN model (17b) will converge
asymptotically to a fixed value φ∗ ∈ R

N . Furthermore,

φ∗ = lim
t→∞

∫ t

t0

V (τ)dτ + φ0 (25)

Proof 3. Integrating both sides of (17b) we have

φ(t) =

∫ t

t0

V (τ)dτ + φ0

From the result in Theorem 2 we have that for a suf-
ficiently large T , V (T ) = 0, regardless of the initial
condition [V0, φ0]

⊤ ∈ R
2N , and given that V (t) is a

unique and continuous function, the limit in (25) exists
and is a unique fixed value that depends on the history of
the voltage across the memristive neurons and the initial
conditions.

Finally, combining the above results we have

Theorem 3. Under assumptions of theorem 2, for a given
fixed initial condition the time-varying MIFNN model
(17a-b) has a unique equilibrium point [0, φ∗]⊤ ∈ R

2N

and it is uniformly asymptotically stable.

Proof 4. It follows from the previous results.

5. SIMULATION EXAMPLE

In this numerical analysis, we illustrate Theorems 2 and
3, by constructing six node network as described in (17a)-
(17b), where every node is connected to its five neighbor
nodes, the network topology consists of a six-node fully
connected network, where its time-varying Laplacian is
described in equation (20). Let the initial conditions be:

V0 = [−5.5, 4.5,−3.1, 6.3,−2.2, 5.2]
⊤

(26)

φ0 = [1,−1,−2,−1.4,−1.6, 3]
⊤

(27)

Let the memductance matrix be:
W (φ) = diag(w(ϕ1), · · · , w(ϕ6)) ∈ R

6×6, where w(ϕi) =
dfw(ϕi)

dϕi

is the memductance function and fw(ϕi) the

memristive characteristic function described by:
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fw(ϕi) =

{

0.1ϕi − 4, ϕi ≤ −2
2.1ϕi, −2 < ϕi < 2

0.1ϕi + 4, ϕi ≤ 2
(28)

Therefore, assumption (2) is satisfied, and we proceed
to solve the system of the six node network, described
above via numerical integration using Matlab R© software,
through Runge-Kutta method. First is verified Theorem
2, that is, asymptotic convergence of nodes voltages
towards zero solution as shown in Fig. 4.

0 0.5 1 1.5 2 2.5 3
−6

−4

−2

0

2

4

6

8

time (s)

v
i
(t
)
(V

)

 

 

v1(t)
v2(t)
v3(t)
v4(t)
v5(t)
v6(t)

Fig. 4. Numerical integration of the MIFNN network
described by (17a-b). Plot of node voltages V (t) =
[v1(t), v2(t), v3(t), v4(t), v5(t), v6(t)]

Subsequently, to verify the results of Corollary 2.1, that
is, the asymptotic convergence of nodes magnetic fluxes
towards different constant values, dependent on the initial
conditions [V0, φ0]

⊤ ∈ R
12, as shown in Fig. 5.

0 1 2 3
−4

−2

0

2

4

6

time (s)

ϕ
i(
t)

(W
b
)

 

 

ϕ1(t)
ϕ2(t)
ϕ3(t)
ϕ4(t)
ϕ5(t)
ϕ6(t)

Fig. 5. Numerical integration of the six nodes network
described by (17a-b). Plot of nodes magnetic fluxes
φ(t) = [ϕ1(t), ϕ2(t), ϕ3(t), ϕ4(t), ϕ5(t), ϕ6(t)]

As shown in Fig. 5 the corresponding equilibrium point
φ∗ as described in equation (25) in Corollary 2.1 is:

φ∗ = [1.1002,−0.0152,−2.1316,−0.5967,−1.0827, 4.6169]
⊤

(29)

As a result of the numerical analysis performed in Fig.
4 and Fig.5 is verified Theorem 3, in which is shown
that for the initial condition (26), the equilibrium point
[0, φ∗]⊤, where φ∗ is given in (29), is an asymptotic stable
equilibrium point of (17a-b).

6. DISCUSSION OF RESULTS

In this contribution, we proposed a time-varying MIFNN
model and derived simple conditions to establish the exis-
tence of a memory state, e.g. a unique stable equilibrium
point for each initial condition. The conditions for the
existence of a memory state are the increasing mono-
tonicity of the memristive characteristic function and
uniform dissipation of the time-varying Laplacian matrix
to describe the neuron connections. Further, we show
using the Lyapunov approach that the voltage equation
of the MIFNN model converges to the zero solution as its
only equilibrium point and that is uniformly asymptoti-
cally stable. As a consequence of this, for a given initial
condition the entire time-varying network has a unique
stable equilibrium point, which represents the network’s
memory of its initial conditions.
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