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Abstract: An analysis of the electromyography (EMG) signal features is provided to
realize whether a subject has made some motion or not. In this paper we determine
such features and specify the motion characteristics required in the prothesis robotics. An
accurate features analysis requires the EMG signal envelope, which is highly affected by
diverse artifacts and unknown non Gaussian noise. It is shown that noise and artifacts can
be efficiently suppressed if to use filtering algorithms developed for colored measurement
noise (CMN). An efficient filtering algorithm is presented to remove the EMG envelope
artifacts. It is also demonstrated that the EMG signal features can be extracted with more
accuracy under the CMN. Extensive experimental investigations are provided using diverse
EMG signal data.Feature analysis in biomedical signals often requires the calculation of
the envelope. However, envelope acquisition methods extract undesirable artifacts; Therefore,
many researchers develop extraction techniques. We will present filtration processes to remove
EMG envelope artifacts, which estimates the linear envelope of the signal at the output. Finally,
we will know if the EMG envelope gives the optimal features for an accurate prediction.

Keywords: EMG signals, envelope, filtering, features, classification.

1. INTRODUCTION

Electromyography (EMG) is a recording of potentials of
the different muscle fibers, which records positive and
negative deflections of the electrical activity or signals
from a particular muscle, where we can visualize the
performance of the data. EMG signals are represented
in real-time for a better analysis. The EMG analysis
can be combined with different technologies for a better
result to identify the information that may interest us. To
effectively do that, we also need to remove the noise which
comes from the surrounding electricity, unwanted detail
from waveforms have to be eliminated and reduced by
using of good quality filter digital (1; 2; 3). The extracted
information from EMG singal is used by bio-electronics,
bio-mechanics, and biorobotics applications, where uses
EMG features as such as frequency and amplitude to
identify diverse motions (4; 5; 6).

For better qualitative analysis of the EMG recording ,
the EMG envelope is getting by using different methods,
where the value negative else becomes positive (5; 11; 12;
13).Some research uses the envelope, which is reflected in
the average movement activity, thus achieving an efficient
noise reduction. However, it produces unacceptable bias
errors and does not prevent spikes (14; 15). In (16),

the envelope improves using the Savitsky-Golay smoother
combined with a low-pass filter, the smoothing provides.
However, it introduces time-delay-lags. In this investiga-
tion, we employ the NinaPro database, which contains
the records of the upper limbs of 27 intact subjects while
performing 52 finger, hand and wrist movements of in-
terest (28). The data resolution over a 10 mV range. A
part of the EMG signal record is given in Fig. 1. The
EMG signal morphology is clearly recognized. All tests of
synthetic data are provided using a special software.

2. EMG SIGNAL ENVELOPE AND PROBLEM
FORMULATION

2.1 EMG Signal Envelope

The Hilbert Transformation is a mathematical algorithm
to provide the EMG signal envelope. The Hilbert transfor-
mation ûn (imaginary part) of un (real part) can be used

to draw the envelope Un =
√

u2n + û2n, as shown in Fig.1,
available from (24), where desired (smoothed) envelope is
required due to the data are highly contaminated by noise
(15). Several important observations can now be made by
analyzing Fig. 1:
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Fig. 1. Envelope shaping of an EMG signal having low
MUAP density (24): (a) measured waveform and
(b) envelope shaping, where the original data are
depicted with a dashed line, the Hilbert transform
(imaginary signal) with a solid line, and an envelope
with a bold line.

The problem focuses on identifying the best processing
algorithm achieving the highest estimation, in order to
increase the accuracy of the features. Therefore, we make
a comparison between traditional filters and modified
filters assuming CMN using advanced statistical tech-
niques. Thus, our report can be better geared towards
the monitoring and evaluation of its trends.

3. EMG ENVELOPE MODEL AND FILTERING
ALGORITHMS

This section shows a method of extracting the envelope of
the signals with the different motions, for which the fea-
tures are extracted to determine what kind of movement
it belongs. We start with the NinaPro database, which
contains kinematic and sEMG data from the upper limbs
of 27 intact subjects while performing 52 finger, hand and
wrist movements of interest. This database is publicly
available for academic purposes at a dedicated website
(28). At last, We developed the algorithms to produce es-
timates with minimal variations about the desired smooth
envelope and insignificant time-delays.

3.1 State-Space Model of EMG Signal Envelope

For discreet case, Un can be formulated in the state space
with

xn =Axn−1 +Bwn , (1)

yn =Hxn + vn , (2)

vn = ψnvn−1 + ξn , (3)

For polynomial approximation, entries of the system
matrix A are provided by the Taylor series (30; 31),

A =
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
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∈ RK×K , (4)

where n is the discrete-time index, K is the number of
the envelope states, xn ∈ RK is the state vector, yn
is the scalar observation of Un, ψn is the scalar color
factor, wn is the envelope noise, vn is the system noise,
δn is a Kroneker symbol, which has unknown entries, the
observation matrix is H = [ 1 0 . . . 0 ] ∈ R1×K . Matrix
Bn ∈ RK×P projects the envelope noise wn ∈ RP into
xn. ψn is supposed to be known at each n and such
that noise vn is stationary; by ψn = 0, noise vn becomes
white Gaussian, as required by optimal estimators. Due
to wn, is generally unknown, it is supposed to have zero
mean with uncertain both the statistics and distribution.
However, to run the KF, we will consider wn as zero
mean and white Gaussian, wn ∼ N (0, Q) ∈ RP , with
the covariance E{wnw

T
k } = Qδn−k.Noise ξn is zero mean

and white Gaussian, ξn ∼ N (0, σ2
n), with the variance

E{ξ2n} = R = σ2
ξ and the property E{wnξk} = 0 for all n

and k. We assume that the estimate x̂nx̂n|n of xn under
the intensive nonwhite variations in Un (Fig. 1) will range
closer to the desired envelope under the supposedly CMN.

3.2 cKF and cH∞ Algorithms

To apply the KF to (1)–(3), one can follow (? ), consider a
new observation zn as measurement differences, and write

zn = yn − ψyn−1 ,

=Hxn + vn − ψHxn−1 − ψvn−1 . (5)

By taking xn−1 from eq1 and vn−1 from (3), a new
observation can be written as

zn = Dxn + v̄n , (6)

where D = H − Γ, Γ = ψHF−1, and

v̄n = ΓBwn + ξn (7)

is white Gaussian scalar noise with the properties,

E{v̄2n}=ΓΦ+R = ΓΦ+ σ2
ξ , (8)

E{v̄nw
T
n }=ΓBQ , (9)

where the weighted matrix Q is

Φ = BQBTΓT . (10)

The modified state-space model (1) and (6) has now
time-correlated and white wn and v̄n and the KF can
be applied, if to derive the optimal bias correction gain
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taking into account the correlation. For given yn, x̂0, P0,
Q, R, ψ, and CMN, the cKF algorithm becomes

zn = yn − ψyn−1 , (11)

P−
n = FPn−1F

T +BQBT , (12)

Sn =DP−
n D

T +R+HΦ+ ΦTDT , (13)

Kn = (P−
n D

T +Φ)S−1
n , (14)

x̂−n = Fx̂n−1 , (15)

x̂n = x̂−n +Kn(zn −Dx̂−n ) , (16)

Pn = (I −KnD)P−
n −KnΦ

T (17)

and, by ψ = 0 and Φ = 0, it becomes the standard KF.

The H∞ filter has been derived based on the game theory
in (29) as

P̄n = P̄−
n (I − θS̄nP̄

−
n +HT R̄−1HP̄−

n )−1 , (18)

K∞
n = P̄nH

T R̄−1 , (19)

x̂n = Fx̂n−1 +K∞
n (yn −HFx̂n−1) , (20)

¯Pn+1 = FP̄nF
T + Q̄ (21)

where chosen by the designer the symmetric positive
definite matrices P̄0, Q̄, and R̄ have different meanings
than in the KF and P̄−

1 can be computed as P̄−
1 =

FP0F
T +Q (29). Matrix S̄n is constrained by a positive

definite matrix (P̄−
n )−1 − θSn + HT R̄−1H > 0 in order

to keep (18) positive definite. It is a user choice to
assign S̄n , which is introduced in the cost function J
to weight the estimation error. If a goal is to weight
all error components equally, one must set Sn = I.
Because the squared norm error-to-error ratio (cost J)
is guaranteed in the H∞ filter to be J < 1/θ, a scalar
bound θ > 0 must be small enough. For Gaussian noise
with no disturbances, θ = 0 makes the H∞ filter KF. For
cH∞, a new observation can be represented in discrete-
time state-space as eq1.

3.3 cUFIR Filtering Algorithm

The UFIR filter (25) requires the zero mean assumption
and an averaging horizon [m,n] ofN points, fromm = n−
N + 1 to n, to be optimal Nopt in the MSE sense. The
advantage of this filter is that it does not require any
information about the noise. Of importance is that wn

and v̄n are both zero mean and their correlation does not
produce bias. Therefore, this filter can be applied directly
to (1) and (6), unlike the KF. The cUFIR algorithm
operates as follows. Given N , yn, and ψ, one must set
n = N − 1, N, . . ., m = n − N + 1, and s = n − N +
K and compute the initial values Gs = (CT

m,sCm,s)
−1

and x̄s = GsC
T
m,sYm,s in short batch forms via Ym,s =

[ ym . . . ys ]
T and

Cm,s =











DA−(K−1)

...
DA−1

D











. (22)

Provided the initial values at s, iteratively updated values
appear for l = s+ 1, . . . , n using the recursions

zl = yl − ψyl−1 , (23)

Gl = [DTD + (AGl−1A
T )−1]−1 , (24)

Kl =GlD
T , (25)

x̄−l =Ax̄l−1 , (26)

x̄l = x̄−l +Kl(zl −Dx̄−l ) , (27)

and the output estimate x̂n = x̄n is taken when l = n. It
also follows that, by ψ = 0, the cUFIR algorithm becomes
the standard UFIR filter. The error covariance of the
UFIR filter can be computed approximately by the KF
error covariance if to replace the Kalman gain Kn with
GnD

T . That yields

Pn = (I −GnD
TD)P−

n (I −GnD
TD)T

+GnD
T (ΓΦ +R)DGn

−2(I −GnD
TD)ΦDGn

= P−
n − 2(P−

n D
T +Φ)DGn +GnD

TSnDGn

= P−
n − (2P−

n D
T + 2Φ +GnD

TSn)DGn , (28)

where P−
n is given by (12) and Sn by (13). Note that

the cUFIR algorithm does not require Pn, although the
recursion (28) can be included to for any purposes.

4. APPLICATIONS

We will apply the cKF, cH∞, and cUFIR algorithms,
which are compared to the KF, H∞ filter, and UFIR
filter. First, we will consider EMG signals to determine
if they have any indications, signs, symptoms, diagnosis
or treatment of any disease, disorder, or abnormality,
for which we require the Hilbert transform to shape the
envelope. Next, we will identify their features. For all
EMG data, we specify model (1)–(3) with two states,
K = 2, and matrices

A =

[

1 τ
0 1

]

, B =

[

τ2

2
τ

]

, H = [ 1 0 ] . (29)

We suppose that the envelope noise wn acts in the third
state and projects to state xn by matrix B. The filters will
be applied to EMG signal data available from (27; 28).

4.1 EMG Signals Processing to Determine Motions

First Application :

We begin with a surface EMG signal collected from the
basic movements of the fingers made by a 28-year-old
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man, database available at (28). Fig.2a shows the Hilbert
transform getting from healthy raw EMG, as well as in
Fig. 2b and Fig.2c show the envelopes shaped by each
standard filter. In Fig. 2b, we apply developed algorithms
on the envelope using a Nopt = 140 for the UFIR filter
and supuse a standard deviation of σξ = 50µV and set

σw = 0.1V/s
2
for the KF estimate. For the H∞ filter,

we consider the case of Sn = I. and θ = 1.0e−6. It is
imperative to keep in mind mention that 0 < θ < 1 must
be small enough to provide better robustness than by the
KF (29).
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Fig. 2. A part of the EMG signal (0.3...2.8)s available from
(27): a) envelope (data) obtained through the Hilbert
transform (solid), b) its UFIR (dash-dotted), KF
(bold), and H∞ (dashed) estimates, and c) cUFIR
(dash-dotted), cKF (bold), and cH∞ (dashed line)
estimates.

In Fig. 2c can be observed as the excursions are sup-
pressed by the cKF, the cH∞, and cUFIR using ψ = 0.65,
θ = 1.0e−6, and N̄opt = 140. We have found all values
experimentally.

Second Application :

We now consider an EMG signal with grasping and
functional movements, which were taken from a 31-year-
old man(28). The selected part of a signal shown in Fig.
3b was processed similarly to the previous case with the
same tuning parameters. As can be seen, the KF, H∞

filter, and UFIR filter still produce consistent estimates
with no essential time-delays. It can also be concluded
that the cKF, cH∞, and cUFIR filter better suppress the
excursion, this may be seen in Fig. 3c with ψopt = 0.65.

Third Application :

The third motion is shown by Fig.4, which show the made
estimations by each developed algorithm in this paper. At
last, we can only conclude that again Gauss-Markov inter-
pretation of variations in the EMG signal allows getting
a more smoothed envelope. Other important conclusions
are as follow:
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Fig. 3. A part of the EMG signal (6.2...8.6)s available
from (28): a) envelope (data) obtained through the
Hilbert transform (solid), b) UFIR (dash-dotted),
KF (bold), and H∞ (dashed) estimates, and c)
cUFIR (dash-dotted), cKF (bold), and cH∞ (dashed
line) estimates.
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Fig. 4. A part of the EMG signal (4.5...6.7)s available from
(27): a) envelope (data) obtained through the Hilbert
transform (solid), b) its UFIR (dash-dotted), KF
(bold), and H∞ (dashed) estimates, and c) cUFIR
(dash-dotted), cKF (bold), and cH∞ (dashed line)
estimates.

4.2 Classification of Features

One way to evaluate the EMG signal is to segment the
transient waveform and determine its features statisti-
cally, which can be done using several available methods.
In this paper, we extract features of amplitude, time, and
frequency by applying the Hilbert transform (34). The
most common time domain features of EMG signals are
listed in Table I.

The classification model using in this paper is the
Quadratic SVM with a multiclass method of one-vs-one.
We can only conclude that the features classification of
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Table 1. Feactures of the EMG signal

Time Domain Feacture

Integrated EMG IEMG =
∑

N

n=1
|xn|

Mean Absolute Value MAV = 1

N

∑

N

n=1
|xn|

Root MEan Squere RMS =

√

1

N

∑

N

n=1
x2
n

Waveform Length WL =
∑

N−1

n=1
|xn+1 − xn|

Standard Deviation STD =

√

1

N

∑

N−1

n=1
(xn − x)2
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Fig. 5. cUFIR Filter Confusion Matrix and KF Filter
Confusion Matrix

the modified algorithms is better than that of the stan-
dard filters, which is visible in the confounding matrices
shown in this section. First, the confusion matrix of the
cUFIR filter is showed in Fig.5a and then the confusion
matrix of the KF algorithm is showed in Fig.5b. Given
an accuracy of 79.1% and 73.2%, respectively. The above
test was repeated for each estimation reaping the same
success. It is important to mention that features are not
free from outliers.

In Fig.5a and Fig.5b, the first three diagonal cells show
the number of correct classifications, where 153 data
have been used by motions classification technical. From
Fig.5a, the following can be noted, 22 cases are correctly
classifed as motion 1. This corresponds to 100% . Simi-
larly, 44 cases are correctly classified as motion 2 and 55
cases as motion 3. This corresponds to 74.6% and 76.4% of
all, respectively. 15 of the data are incorrectly classified as
motion 3 and this corresponds to 25.4% of all in motion
2. Similarly, 17 of motion 3 are incorrectly classified as
motion 2 and this corresponds to 23.6% of all data in
motion 3. Overall, 79.1% of the data are correct and 20.9%
are wrong classifications.

On Fig.5b, out of 153 data, 73.2% are correct and 26.8%
are wrong. Out of 22 data of motion 1, 93.8% are correct
and 6.2% are wrong. Out of 59 motion 2 cases, 72.9% are
correctly predicted as motion 2 and 27.1% are predicted
wrong. Out of motion 3, 95% are correct and 25% are
classified wrong.

5. CONCLUSIONS

The envelope is not artifact-free, in respect of which tend
to be high variations that can be seen by the naked eye.
Once the filtered envelope has been determined and calcu-

lated by using the different algorithms, one can conclude
that the filters that are based on CMN mathematical
approaches perform better under the WGN. The modified
algorithms cKF, cH∞, and cUFIR have demonstrated
better performance into feature classification than the
KF, H∞, and UFIR filters. It is clear that the outliers
must be removed to get the best performance. Thus, these
filters are more suitable for the desired envelop extraction,
provided that the coloredness factor is chosen properly.
The modified algorithms can further be improved to
remove the outliers that we consider as a future work.
Feature extraction and model processing are carried out
by The Hilbert Transformation, but from the literature
or other sources other methods of envelope getting are
employed, it can be understood that the techniques reach
similar results. The color factor ψ must be optimized
to provide the best envelope shaping and ψ should not
exceed 1.0 to satisfy the requirements of the measurement
noise stationarity.

REFERENCES

[1] D. I. Rubin, J. R. Daube, Rapid MUAP quantiza-
tion, in: AANEM Workshop, pp. 1–7, 2008.

[2] M. Reaz, M. Hussain, and F. Mohd-Yasin, “Tech-
niques of emg signalanalysis: Detection, processing,
classification, and applications,” Biological Proce-
dures Online, vol. 8, pp. 11–35, 2006.

[3] A. Merlo, D. Farina, and R. Merletti, “A fast and
reliable technique formuscle activity detection from
surface emg signals,” IEEE Trans. Biomed. Eng, vol.
50, no. 3, pp. 316–323, 2003.

[4] G. Tallison, P. Godfrey, G. Robinson, “EMG signal
amplitude assessment during abdominal bracing and
hollowing,” J. Elec- tromyography Kinesiology, vol.
8, no. 1, pp. 51–57, 1996.

[5] T. D’Alessio and S. Conforto, “Extraction of the
envelope from surface EMG signals,” IEEE Eng.
Med. Biol. Mag., vol. 20, no. 6, pp. 55–61, 2001.

[6] L. Zhang, R. Shiavi, M. A. Hunt and J. Chen,
“Clustering analysis and pattern discrimination of
EMG linear envelopes,” IEEE Trans. Biomed. Eng,
vol. 38, no. 8, pp. 777-784, Aug. 1991.

[7] S. Thongpanja, A. Phinyomark, F. Quaine, Y. Lau-
rillau, C. Limsakul, and P. Phukpattaranont, “Prob-
ability density functions of stationary surface EMG
signals in noisy environments,” IEEE Trans. Inf.
Theory, vol. 63, no. 6, pp. 1547–1557, 2016.

[8] G. Jang, J. Kim, S. Lee, and Y. Choi, “EMG-based
continuous control scheme with simple classifier for
electric-powered wheelchair,” IEEE Trans. Instrum.
Elec., vol. 65, no. 7, pp. 3695–3705, 2016

[9] L. Ramı́rez, M. Ruano, C. Younes, “Análisis de
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