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Abstract: We investigate the pinning synchronization problem for networks that arbitrarily
switch between a set of admissible connection topologies. We consider that both connections
and controller gains can arbitrarily switch, then we investigate three scenarios to achieve
network synchronization. In the first case, both topology and controller arbitrarily change at
different times. In the second case, both switch at the same time. While in the third, the
controller remains fixed for all time. In all scenarios, the controller is applied only to the
node with the largest node degree of each admissible topology. Then, we can easily compare
the control requirements of the different scenarios. We find that a fixed controller requires a
smaller control gain than an arbitrary switching gain. However, if both topology and gains
commute at the same time, it is possible to use even smaller control gains since one can use
the minimum for each admissible topology. We illustrate our results with numerical simulation
of switching networks of Lorenz systems.
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1. INTRODUCTION

The emergence of synchronized behavior is one of the
most studied phenomena in dynamical networks (Boc-
caletti etal., 2006; Chen, 2014). Two or more systems are
said to be synchronized if their states become coordinated
in time. That is the stability of a particular solution of the
network where the state of the nodes coincides determines
whether or not a network achieves synchronization (Chen
etal., 2014). Although synchronization can sometimes
emerge naturally, there are situations where is necessary
to design a controller to achieve the desired synchronized
behavior, this approach is usually called controlled syn-
chronization (Blekhman etal., 1997). A convenient way to
control networked systems is the so-called pinning control
approach. That is, one designs local controllers for only
a very small number of nodes, this control action drives
the entire network to the desired behavior, which usually
is a common equilibrium point of the network (Li etal.,
2004; Chen etal , 2007). Pinning control has been utilized
to impose a synchronized behavior on a network using
different design techniques including neural networks and
adaptive controllers (Yu etal., 2009; Zhou etal., 2008; Vega
etal., 2020).

⋆ I. L. López-Garćıa received a scholarship from Consejo Nacional

de Ciencia y Tecnológica -CONACYT- under grand number 612121.

Most of the investigations discussed above only consider
networks where the connection topology is fixed. However,
in many real-world situations, the coupling structure of a
network changes for different reasons. In particular, the
interaction between a given pair of nodes may change
abruptly at some specific time instant, which results in a
commutation between two distinct connection topologies.
In a switching dynamical network model, there is only one
active connection topology at each time instant, which is
chosen from a set of admissible connections. In this model,
the switching law is a piecewise constant and continuous
from the right function that indicates arbitrarily which of
the admissible topologies is active at a given time instant
(Xiao & Wang, 2006; Hill & Chen, 2006).

In the literature there are different approaches to es-
tablish the stability of a synchronized solution for this
type of switched system, including the common Lyapunov
function, dwell time, and multiple Lyapunov functions
(Liberzon, 2003; Yao etal., 2006; Liu etal., 2010; Wang
& Wang, 2011; Zhao etal , 2011). It is worth noting that
in (Kim & Hill, 2008), the problem is addressed using
a linearized analysis under the assumption that all the
outer coupling matrices are simultaneously triangulariz-
able. While in (Zhao etal., 2009), the synchronization
problem was studied with switched coupling using the
average dwell time method. In (Du etal., 2015) pinning
synchronization of switching networks was investigated
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assuming that both topology and control gains switch
at the same time, and a synchronization condition was
derived by choosing an appropriate switching law.

In this contribution, we consider three scenarios. A first
one, both the controller and the topology switch arbitrar-
ily at different times. In our second scenario, both switch
at the same time. While in the final scenario, the con-
troller remains fixed. Considering that the node dynamics
are bounded by their error and that all admissible topolo-
gies are diffusive. We propose a solution to the pinning
synchronization problem for the switching network where
the controller is only applied to a single node with the
largest node degree in each admissible topology. For this
simplified design, we compare the control requirements of
the different scenarios.

In the following section, the pinning synchronization
problem for switching networks is described in detail.
While our proposed solution is presented in Section 3.
Our results are illustrated with numerical simulations in
Section 4. Then, the contribution is closed with some
comments and conclusions.

2. PRELIMINARIES

Consider a network of N diffusely coupled identical n-
dimensional dynamical systems described by

ẋi(t) = f(xi(t)) + c

N
∑

j=1

ℓ
σ(t)
ij Γxj(t) + ui(t), (1)

for i = 1, 2, . . . , N where xi(t) = [xi1(t), . . . , xin(t)]
⊤ ∈

Rn and ui(t) ∈ Rn are the state variable and controller
of the i-th node, respectively; f(·) : Rn → Rn is a
nonlinear Lipschitz function that describes the dynamics
of an isolated node, to have a solution for all nodes in the
network. We also assume that it satisfies the following
inequality:

[x− y]⊤(f(x)− f(y)) ≤ [x− y]⊤ǫ[x− y] (2)

with x, y ∈ RN and ǫ ∈ R.

The internal coupling is described by the matrix Γ =
diag(γ1, γ2, · · · , γn) ∈ Rn×n, with γi = 1 if the nodes are
coupled through their i-th state and γi = 0 otherwise.
The uniform coupling strength is given by c ∈ R. The
connection between nodes is described by the external

coupling matrix Lσ(t) = (ℓ
σ(t)
ij ) ∈ RN×N where ℓ

σ(t)
ij = 1

if the i-th and j-th nodes are coupled at time t, with

ℓ
σ(t)
ij = 0 if they are not connected. At each time

instant the outer coupling matrix Lσ(t) is one of a set
of admissible Laplacian matrices

M = {Lσ(t) = Lα ∈ RN×N , α ∈ M} (3)

with M = {1, 2, . . . ,m}.

The selection of the currently active Laplacian matrix is
given by the switching law:

σ(t) : [0,∞) → M (4)

which is a piecewise constant and continuous from the
right function (Kim & Hill, 2008).

Is important to remark that the external coupling topol-
ogy of (1) is given by a single Laplacian matrix at each
time instant which changes arbitrarily from one admis-
sible Laplacian to any other in M. Additionally, the
switching network is diffusive and connected at all times,
that is, for any value of σ(t) the sum of by row and by
columns of the entries is the active Laplacian matrix is
zero, and the following equation is satisfied (Du etal.,
2015):

ℓ
σ(t)
ii = −

N
∑

i=1,i 6=j

ℓ
σ(t)
ij , i = 1, 2, · · · , N. (5)

Therefore, the eigenspectrum of every admissible Lapla-
cian matrix in M can be order as:

0 = λ
σ(t)
1 > λ

σ(t)
2 ≤ · · · ≤ λ

σ(t)
N (6)

with λ
σ(t)
i the i-th eigenvalue of Lσ(t).

The network in (1) asymptotically becomes synchronized
if all nodes evolve towards the same dynamics. That is,
as t → ∞ all nodes move towards a synchronized state

x1(t) = x2(t) = · · · = xN (t) = s(t) (7)

where s(t) ∈ Rn is the solution of an isolated node; that
is,

ṡ(t) = f(s(t)). (8)

Let the controller ui(t) be a linear feedback controller of
the form

ui(t) = −cκ
νi(t)
i Γ(xi(t)− s(t)) (9)

where κ
νi(t)
i is one of a set of controller gains to be

designed

Ni = {κ
νi(t)
i = κ

β
i > 0 ∈ R, β ∈ M̄i} (10)

with M̄i = {1, 2, . . . , m̄i}.

The corresponding control gain is assigned according to
the controller switching law

νi(t) : [0,∞) → M̄i (11)

which is also a piecewise constant and continuous from
the right function.

We assume that the controller (9) is applied only to a
small fraction δ (δ ≪ N) of the nodes. That is, we use
a pinning controller approach. Therefore, synchronization
of the switching network becomes a problem in which the
number of nodes to control (δ), the controller gains (Ni),
and its corresponding switching laws (νi(t)) need to be
designed such that the closed-loop network (1)-(9) has
(7) as its asymptotically stable solution.

Without lost of generality, we assume that the first δ
nodes in (1) are controlled with (9), resulting in:
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ẋi(t) = f(xi(t))+ c
N
∑

j=1

ℓ
σ(t)
ij Γxj(t)

−cκ
νi(t)
i Γ(xi(t)− s(t))
i = 1, 2, . . . , δ

ẋi(t) = f(xi(t))+ c
N
∑

j=1

ℓ
σ(t)
ij Γxj(t)

i = δ + 1, δ + 2, . . . , N.

(12)

In the following section, we proposed designs for the
pinning controller under different switching law scenarios,
in which the design is a compromise between the number

of nodes to control (δ) and their gains (κ
νi(t)
i ), in order to

have S(t) = [s(t)⊤, s(t)⊤, . . . , s(t)⊤]⊤ ∈ RNn; as a stable
solution of (12).

3. PINNING DESIGNS FOR SYNCHRONIZATION

Lets define the synchronization errors as ei(t) = xi(t) −
s(t), then from (12) and (8) the error dynamics are given
by

ėi(t) =































f̄(ei(t))+ c
N
∑

j=1

ℓ
σ(t)
ij Γej(t)− cκ

νi(t)
i Γei(t)

i = 1, 2, . . . , δ.

f̄(ei(t))+ c
N
∑

j=1

ℓ
σ(t)
ij Γej(t)

i = δ + 1, δ + 2, . . . , N.

(13)
where f̄(ei(t)) = f(xi(t))− f(s(t)). Which in vector form
can be rewritten as:

Ė(t) = f̄(E(t)) + c([Lσ(t) −Kν(t)]⊗ Γ)E(t) (14)

where E(t) = [e1(t)
⊤, . . . , eN (t)⊤]⊤ ∈ RNn, f̄(·) =

[f̄(e1(t))
⊤, . . . , f̄(eN (t))⊤]⊤ ∈ RNn, with Kν(t) = diag([

κ
ν1(t)
1 , . . . , κ

νδ(t)
δ , 0, · · · , 0]) ∈ RN×N and ⊗ represents the

Kronecker product.

The stability of the null equilibrium point of error dynam-
ics ( Ē = 0) can be establish using the common Lyapunov
approach (Liberzon, 2003), with the following Lyapunov
candidate function

V (E(t)) =
1

2

N
∑

i=1

ei(t)
⊤ei(t). (15)

The time derivative of V (E(t)) along the trajectories of
(13) is given by

V̇ (E(t)) =
N
∑

i=1

ei(t)
⊤







































f̄(ei(t))+ c
N
∑

j=1

ℓ
σ(t)
ij Γej(t)

−cκ
νi(t)
i Γei(t)

i = 1, . . . , δ.

f̄(ei(t))+ c
N
∑

j=1

ℓ
σ(t)
ij Γej(t)

i = δ + 1, . . . , N.

which in vector form becomes

V̇ (E(t)) = E(t)⊤f̄(E(t))+
cE(t)⊤([Lσ(t) −Kν(t)]⊗ Γ)E(t)

Using the conditions (2) we have the following inequality

V̇ (E(t)) ≤ E(t)⊤QE(t) (16)

where Q = ǫINn + c[Lσ(t) −Kν(t)]⊗ Γ.

The network asymptotically achieves synchronization if
the matrix Q is negative definitive for all possible combi-
nations of the switching laws σ(t) and νi(t).

In this contribution we consider the following scenarios:

I. The controller gains κ
νi(t)
i and the Laplacian matrix

Lσ(t), have different switching laws, that is, ∃t, such
that σ(t) 6= νi(t) for at least one i, with i ∈
{1, 2, ..., δ}.

II. The controller gains κ
νi(t)
i and the Laplacian matrix

Lσ(t), all switch at the same time, that is, νi(t) =
σ(t), ∀t and ∀i ∈ {1, 2, ..., δ}.

III. All controller gains are identical for all time, that is

κ
νi(t)
i = κ, ∀t and ∀i ∈ {1, 2, ..., δ}.

Lets start by considering the first scenario, in it the result-
ing Q matrix has a large number of possible components,

since it can be different for every value of σ(t) and κ
νi(t)
i

with i ∈ {1, 2, ..., δ}.

From the definition above, we have that Lσ(t) is always
negative semidefinite with only a single zero eigenvalue,
while the diagonal controller matrix Kνi(t) is positive
semidefinite with δ ≥ 1 nonzero diagonal elements.
It follows that the matrices Lσ(t) − Kν(t) are negative
definitive. Then Q becomes negative definite if c is large
enough to overtake ǫINn. In that case, the switching
network (12) achieves synchronization.

Notice that in most of the previous results in the literature
it is assumed that both the topology and all controllers
switch at the same time (Du etal., 2015). Usually, a fur-
ther requirement is that all admissible Laplacian matrices
be simultaneously triangularizable so that a local linear
approach can be utilized for the switching system (Yao
etal., 2006; Zhao etal., 2009).

For Q to become negative definite there is a compromise
between the number of nodes to control and their corre-
sponding gains. In order to establish an appropriate value
for δ, we consider that as shown in (Chen etal , 2007), it
is sufficient to have a single controller (δ = 1) to make
Lσ(t) − Kν(t) negative definitive, yet one must have a

sufficiently large value of κ
ν1(t)
1 . Then, even for a fixed

c > 0 we get Q to be definitive negative.

In the following section we use a single controller with
both fixed and switching gains as described above.

4. NUMERICAL SIMULATIONS

Let us consider a switching network (1) where each node
is a Lorenz system of the form

Memorias del Congreso Nacional de Control Automático ISSN: 2594-2492 

3 Copyright©AMCA. Todos los Derechos Reservados www.amca.mxNúmero Especial 2020



Fig. 1. A time evolution of the arbitrary switching law
σ(t) (4).

[

ẋ1(t)
ẋ2(t)
ẋ3(t)

]

=

[

p1(x1(t)− x2(t))
(p2 − x3(t))x1(t)− x2(t)
x1(t)x2(t)− p3x3(t)

]

(17)

Which is chaotic for the parameter values p1 = 10,
p2 = 28, p3 = 8

3 .

We consider a switching network with fifteen nodes
connected in four different admissible topologies M =
{L1, L2, L3, L4} with a switching law σ(t) : (0,∞] →
{1, 2, 3, 4} which commutes arbitrarily as shown in Figure
1.

The objective is to design the controller gains in (9) such
that synchronization is achieved. The resulting pinned
controlled switching network is (12) with a fixed uniform
coupling strength c = 1.0, the inner connection matrix
Γ = diag([1, 0, 0]), and the single controller at the node
with the largest node degree (δ = 1).

For scenario I. As presented above (ν1(t) 6= σ(t)) the
switching law of the controller is ν(t) : (0,∞] → {1, 2, 3},
which also commutes arbitrarily between the gains. In our
numerical simulation, for the initial forty units of time
(t < 40) κ1

1 = κ2
1 = κ3

1 = 0}. After that time, the con-
troller gain switches between {κ1

1 = 275, κ2
1 = 250, κ3

1 =
175}, which are chosen such that Lσ(t)−Kν(t) for becomes
negative definite in all possible combinations. That is,
even for the admissible Laplacian matrix with the smallest

λ
σ(t)
2 eigenvalue the matrix Kν(t) = diag([175, 0, · · · , 0])

is sufficient to make ǫINn+c[Lσ(t)−Kν(t)]⊗Γ a negative
definite matrix. As shown in Figure 2, once the controller
gains are activated, the states of the network converge to
the synchronized solution describe by (7) and (8).

For scenario II. The controller switches at the same time
as the topology (ν1(t) = σ(t)). In this case, the controller
gains can be chosen as the minimum required for each
admissible Laplacian matrix. In this case, the smallest

λ
σ(t)
2 requires κ

σ(t)
1 = 175, while for the other values of

σ(t) it can be smaller. In this case, for the largest λ
σ(t)
2

is sufficient to have κ
σ(t)
1 = 100. In particular, in our

numerical simulation the controller gain switched between
the values {κ1

1 = 100, κ2
1 = 125, κ3

1 = 150, κ4
1 = 175}. The

resulting synchronization errors (13) for this scenario are
shown in Figure 3. In this case, the controller gains switch

Fig. 2. A time evolution of a switching (σ(t)) network of
Lorenz systems with arbitrary switching controller
law (ν(t)).

Fig. 3. A time evolution of synchronization errors for a
switching network of Lorenz systems with a switching
controller with the same switching law as the topol-
ogy (ν(t) = σ(t)).

at the same time as the topology starting after forty time
units (t > 40).

For scenario III, the controller does not switch. That

is, the gain κ
ν(t)
1 = κ is the same for all time. In this

case, we use the smallest λ
σ(t)
2 of the admissible Laplacian

matrices to place κ = 175 regardless of the value of σ(t).
The resulting states of the pinned synchronized switching
network of Lorenz systems are shown in Figure 4.

5. CONCLUSION

We investigate the synchronization of networks that com-
mutes instantaneously between a set of admissible con-
nections, which are connected and diffusive, as such, they
are irreducible, symmetric, and negative semidefinite at
each time instant. In this contribution, we investigate
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Fig. 4. A time evolution of a switching network of Lorenz

systems with a fixed controller (κ
ν(t)
1 = κ).

the pinning synchronization for switching networks under
three different scenarios. We consider that the controller
can switch arbitrarily, at the same time as the topology,
and finally as a fixed controller. Furthermore, to simplify
the comparisons between scenarios we consider that only
a single node is controlled, our choice is the node in
the network with the largest node degree. Based on our
results, as one compares the required controller gains for
each of these scenarios we have that in the scenario I the
smallest λ

σ(t)
2 results in a minimum acceptable controller

gain and the controller can switch arbitrarily amount
larger gain values. In scenario II, the minimum gain for
each admissible Laplacian pair can be used. While for
scenario III, the required controller gain for the smallest

λ
σ(t)
2 can be set as fixed for the entire switching network.

From the above, one can conclude that a single fixed con-
troller is more effective than a single arbitrary switching
controller, yet if both the gains and the topology commute
at the same time, is possible to use smaller gains since one
can use the minimum for each admissible Laplacian.

In future works, we will address comparisons where a
larger number of nodes are controlled (δ > 1). However, in
that case, the choice of which nodes to control will make

determining the required gains κ
ν(t)
i to make Q negative

definitive a very elaborate optimization problem.
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