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Abstract: To reduce errors while tracking a moving object trajectory with a colored speed
noise, the Kalman and unbiased finite impulse response filtering algorithms are modified
assuming the Gauss-Markov noise nature. The state differencing approach is employed, requires
solving a nonsymmetric algebraic Riccati equation to avoid matrix augmentation. In this way,
the system matrix is modified for colored process noise (CPN). The higher accuracy of the
modified algorithms are validated using a simulated tracking model.
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1. INTRODUCTION

In tracking moving objects Bar-Shalom et al. (2004);
Liang et al. (2015) and speech processing Ki Yong Lee
et al. (1997); You et al. (2011); Zao and Coelho (2011), the
process noise becomes colored when a control mechanism
is ignored and not included in the state equation. An
example is the human’s speed, which was shown to be
colored in many investigations Sieranoja and Kinnunen
(2016); Chen et al. (1995). A state estimator should
thus be used such that its algorithm is modified for
CPN. There are three approaches on how to induce the
colourless to the estimation algorithm.

The state augmentation can be provided as proposed by
Bryson in Bryson and Johansen (1965); Bryson and Hen-
rikson (1968). The measurement differencing can be em-
ployed using the Bryson algorithm Bryson and Johansen
(1965); Bryson and Henrikson (1968), which makes noise
white in two phases (smoothing and filtering), or by
the Petovello algorithm algorithm Petovello et al. (2009),
which makes noise white in one phase (filtering). Yet the
state differencing can be used to provide estimation under
the CPN as shown in Shmaliy et al. (2019).

For CPN, state augmentation does not make the Kalman
filter (KF) ill-conditioned. Therefore, this approach is
considered as a standard solution Gibbs (2011); Gelb and
Corporation (1974); Simon (2006). A common mistake is
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that the KF can cause extra errors and singularities may
appear in the unbiased finite impulse response (UFIR)
filter Shmaliy (2011); Shmaliy et al. (2017) as a result of
the state augmentation. Moreover, in the UFIR filter, an
increased number K of the states may make the optimal
horizon Nopt smaller than K that leads to errors.

Measurement and state differencing hence still attract
the attention of the researches. In Kalman filtering, the
problem with colored and time-correlated noise is solved
by either re-deriving the Kalman gain Brown and Hwang
(1997) or de-correlating noise vectors Bar-Shalom et al.
(2004) and it was shown that the Bryson, Pelovello,
and alternative Pelovello algorithm derived by Chang
are equivalent Chang (2014). Applications of the state
estimation algorithms modified for colored noise and
other developments can be found in Kim and Suk (2012);
Chen and Ma (2011); Chang (2014); Liu (2015); Lee and
Johnson (2017); Tong and Ye (2017); Chang et al. (2018).

In this paper, we are focused on the moving object
state estimation with colored speed noise. Therefore, we
first introduce the KF and UFIR filter modifications
for the CPN using state differencing and then apply
the algorithms to the Global Positioning System (GPS)
measurements of humans walking assuming colored speed
noise.
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2. MOVING OBJECT STATE-SPACE MODEL WITH
CPN

A moving object can be modeled in discrete-time state-
space with a set of polynomial state equations, where
the first value in the vector state is the distance, the
second is the velocity, the third is the acceleration, and
so on. If the measurement is also linear and the object
noise is colored, one may assume that the CPN is Gauss-
Markov and represent an object with the following state
and observation equations

xn =Anxn−1 +Bnwn , (1)

wn =Θnwn−1 + µn , (2)

yn =Hnxn + vn , (3)

where xn ∈ R
K , yn ∈ R

M , Hn ∈ R
M×K , wn ∈ R

K is the
colored Gauss-Markov noise, matrices An ∈ R

K×K , Bn ∈
R

K×K , and Θn ∈ R
K×K are square and nonsingular, and

matrix Θn is such that the colored noise wn is stationary.
It is supposed that noise vectors µn ∼ N (0,Qn) ∈ R

K

and vn ∼ N (0,Rn) ∈ R
M are zero mean, E{µn} = 0

and E{vn} = 0, and white Gaussian with the covariances
E{µnµ

T
k } = Qnδn−k and E{vnv

T
k } = Rnδn−k and the

property E{µnv
T
k } = 0 for all n and k.

2.1 Modification for CPN Using State Differencing

Similarly to measurement differencing Bryson and Hen-
rikson (1968) and aimed at avoiding colored noise wn

in xn, the state-space model (1)–(3) can be modified as
shown in Appendix A to attain the following form of

χn =Fnχn−1 +Bnµn , (4)

zn =Hnχn + vn , (5)

where χn is a new state defined by the state difference as

χn = xn −Πn−1xn−1 , (6)

zn = yn −HnΠnxn−1 is a new observation, matrix Πn is
specified by

Πn = F−1
n+1Θ̄n+1An , (7)

where Θ̄n = BnΘnB
−1
n−1 is a weighted Θn, and matrix Fn

is given by the recursions (A.9) and (A.10).

Now observe that Fn becomes An for white noise if
Πn = 0 and Θ̄n = 0 that follows from (A.9). Therefore,
choosing the initial F0 is a critical issue. Let us consider
this point in more detail. If we suppose that F0 = A0,
then (A.9) gives F1 = Θ̄1A0Θ̄

−1
0 , which may range far

from a proper matrix. In the other extreme, F0 = Θ̄0

produces F1 = Θ̄1, which is impractical. As has been
shown in Shmaliy et al. (2019), F0 can be specified if we
think that the process before the initial point at zero is
time-invariant and transform (A.10) to the nonsymmetric
algebraic Riccati equation (NARE)

F2 − F(A+ Θ̄) + Θ̄A = 0 . (8)

A solution to (8) for F = F0 could be a proper matrix
to run (A.9). However, the problem is that the NARE

solution is generally not unique Lancaster and Rodman
(2002). Thus, efforts must be made to select a proper
solution method, which will be further illustrated with
an example.

Example 1: Consider the modified state equation (4) with
white Gaussian µn and matrix Fn provided recursively
by (A.9) for a proper F0 selected from possible solutions
to (8). To specify the initial χ0, consider (6) at n = 0
as χ0 = x0 − Π0x−1. Because x−1 is unavailable, let
x−1 = x0 and accept χ0 = (I−Π0)x0 = (I−F−1

1 Θ̄1A0)x0

as a reasonable initial state to run (A.10).

Provided a modified state-space model (4) and (5) for
uncorrelated white Gaussian noise sources µn and vn, the
KF and UFIR state estimators can be modified as in the
following.

2.2 KF Algorithm for CPN

There are no special comments on how to modify the KF
filtering algorithm for CPN if matrix Fn is previously
determined via (A.10). A pseudo code of the relevant KF
algorithm, which is termed as cKF, is listed as Algorithm
1.

Algorithm 1 cKF Algorithm for CPN

Data: yn, x̂0, P0, Qn, Rn, Θn

Result: x̂n, Pn

begin

χ̂0 = (I− F−1
1 Θ̄1A0)x̂0

for n = 1, 2, · · · do

zn = yn −HnF
−1
n+1Θ̄n+1Anx̂n−1

P−

n = FnPn−1F
T
n +BnQnB

T
n

Sn = HnP
−

nH
T
n +Rn

Kn = P−

nH
T
nS

−1
n

χ̂−

n = Fnχ̂n−1

χ̂n = χ̂−

n +Kn(zn −Hnχ̂
−

n )
x̂n = χ̂n + F−1

n+1Θ̄n+1Anx̂n−1

Pn = (I−KnHn)P
−

n

end

end

Here, Fn is obtained recursively via (A.10) for F0 given by
a proper solution of (8). It can easily be observed that, by
Θn = 0 and Fn = An, algorithm 1 becomes the standard
KF and therefore, can be universally applied to processes
with and without Gauss-Markov colored noise.

2.3 UFIR Filtering Algorithm

Another option to provided state estimation based on
model (4) and (5) is to use the UFIR filter Shmaliy (2011),
which does not require any information about zero-mean
noise and is more robust than the KF Shmaliy et al.
(2017). The UFIR filter provides state estimation over
an averaging horizon [m,n] of N points, from m = n −
N+1 to n. To produce a near-optimal estimate, this filter
requires an optimal averaging horizon Nopt to minimize

Memorias del Congreso Nacional de Control Automático ISSN: 2594-2492 

2 Copyright©AMCA. Todos los Derechos Reservados www.amca.mxNúmero Especial 2020



the mean square error (MSE). A pseudo-code of the UFIR
algorithm named for CPN as cUFIR is listed as Algorithm
2. To operate on [m, k] and initialize iterations without

Algorithm 2 cUFIR Filter Algorithm for CPN

Data: N , yn, Θn

Result: x̂n

begin
for k = N − 1, N, · · · do

m = k −N + 1 , s = k −N +K
Gs = (CT

m,sCm,s)
−1

x̄s = GsC
T
m,sYm,s

for l = s+ 1 : n do

zl = yl −HlF
−1
l+1

Θ̄l+1Alx̂l−1

Gl = [HT
l Hl + (FlGl−1F

T
l )

−1]−1

Kl = GlH
T
l

χ̄−

l = Flχ̄l−1

χ̄l = χ̄−

l +Kl(zl −Hlχ̄
−

l )
end

x̂n = χ̄n + F−1
n+1Θ̄n+1Anx̂n−1

end

end

singularities, algorithm 2 requires a short data vector
Ym,s = [ym . . . ys ]

T and matrix

Cm,s =











Hm(Fs . . .Fm+1)
−1

...
Hs−1F

−1
s

Hs











. (9)

By Θ̄n = 0 and Fn = An, Algorithm 2 becomes the
standard UFIR filter Shmaliy et al. (2017) and therefore
can also be applied to processes with and without Gauss-
Markov color noise.

The error covariance Pn = {(xn− x̂n)(xn− x̂n)
T } for the

cUFIR filter can be determined knowing that εn = xn −
x̂n = ǫnΠnǫn−1, where ǫn = χn − χ̂n.

Now we can refer to an identity FnΠn−1A
−1
n−1Θ̄

−1
n = I

and transformation error ǫn as

ǫn =Fnχn−1 + µn − Fnχ̂n−1 −Kn(zn −HnFnχ̂n−1)

= (I−KnHn)Fnǫn−1 + (I−KnHn)µn −Knvn .

Accordingly, the covariance P̄n = E{ǫnǫ
T
n} can be repre-

sented recursively with

P̄n = (I−KnHn)(FnP̄n−1F
T
n +BnQnB

T
n )

×(I−KnHn)
T +KnRnK

T
n (10)

and we obtain

Pn = P̄n +ΠnPn−1Π
T
n , (11)

where P̄n is computed recursively by (10).

2.4 Simulation of the tracking of a moving object

Concerted of tracking for moving objects, we now simu-
late a process with a tracking state equation. To inves-
tigate state estimation errors produced by the KF, cKF,
UFIR filter, and cUFIR filter, we consider a two-state,
K = 2, a polynomial process described by model (1)–(3)
with

A =

[

1 τ
0 1

]

,B =

[ τ

2
0

0 1

]

,H = [ 1 0 ] ,

Θ =

[

θ 0
0 θ

]

,Cm,s =

[

HF−1

H

]

,

and τ = 1. We suppose that white Gaussian µn ∼
N [0, diag(σ2

µ σ
2
µ)] and vn ∼ N (0, σ2

v) have the standard
deviations of σµ = 0.8 and σv = 1. For each discrete value
of the color factor 0 < θ < 1, we find optimal ζopt. We
also determine Nopt by minimizing the MSE. What was
inferred is that ζopt varies from 1.79 for θ = 0.05 to 0.65
for θ = 0.99, while Nopt = 4 holds for θ < 1 in both FIR
filters.

Given K = 2, we represent (8) with four algebraic
equations corresponding to components of F ∈ R

2×2.
Next, we find solutions and choose the one Fn = F =
[

θ ζ
0 1

]

, in which θ is given and ζ is arbitrary, and notice

that other solutions improperly project χn−1 to χn. Of
importance is that further update of F by (A.10) is not
required, because the model is time-invariant.

The most critical question now is how the modified
algorithms improve performance. We, therefore, compute
the root MSEs (RMSEs) produced by all four filters and
sketch the results in Fig. 1 as functions of θ. What follows
from this simulation can be summarized as follows:

• Under the ideal conditions when the model and noise
are completely known, the KF and cKF perform
more accurately than the UFIR and cUFIR filter,
respectively, for all 0 < θ < 1.

• The modified cKF and cUFIR filter both improve the
performance. However, the improvement appears to
be essential only when θ > 0.5. Otherwise, the cKF
and cUFIR filters may not demonstrate efficiency.

• When θ approaches unity associated with the Gauss-
Markov noise stationarity, the cKF and cUFIR filter
perform much better than the KF and UFIR filters.
That means that the filters modified for Gauss-
Markov CPN are efficient when the process noise is
highly colored.

3. TRACKING OF A WALKING HUMAN

Referring to the above, we now consider several human
walking trajectories measured each second, τ = 1 s, using
the GPS loggers and phones as described in Zheng et al.
(2009) and notice that data are available from Zheng et al.
(2012). Our goal is to estimate the human speed using the
standard KF and UFIR filter and the cKF and cUFIR
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Fig. 1. RMSEs produced by the KF, cKF, UFIR, and
cUFIR for a two-state polynomial model with CPN
as functions of θ.

filter modified for CPN. Therefore, we refer to Sieranoja
and Kinnunen (2016) and suppose that the human speed
noise is colored. Under such a supposition, we consider a
tracking problem along with the coordinate x employing
the same model as in simulations.

Because the ground truth is not available in our ex-
periment, we will analyze the results by comparing the
filter outputs. Measurement data do not contain sufficient
information about the process and noise. We therefore
refer to the average human speed of 5 km/hour or 1.4m/s
and assign σµ = 0.8m/s. We also notice that the GPS
standard positioning service is available with errors less
than 15m with the probability of 95% in the 2σ sense
and accept σv = 3.75m. Although these values are not
exact for the model and the measurement, they affect
all filtering algorithms equivalently that allows comparing
errors.

Provided the filters tuning, we next run Algorithm 2.2 and
Algorithm 2.3 for several measured trajectories. At a test
stage, we have found θ = 0.99 and ζ = 2.9 for the KF.
For the UFIR filter, the optimal averaging horizon was
measured as Nopt = 6. A bit smaller value of Nopt = 4
was found for the cUFIR filter (Algorithm 2.3) to produce
visually minimum possible errors. Extensive investiga-
tions of the human trajectories were then conducted.
Accordingly, in Fig. 2 we show different human speeds
(data), which were computed by applying the derivatives
to the measured trajectories.

Estimates provided by all filters are also shown here that
allows making the following conclusions:

• It is neatly seen (Fig. 2a) that noise in both experi-
ments is definitely not white. This confirms that the
human speed noise is colored, although its colored-
ness is a topic for special investigations.

• The KF and UFIR filter produce consistent esti-
mates, although the UFIR filter generates a bit larger
excursions, as expected Shmaliy et al. (2017).

• The cKF and cUFIR estimates also appear to be
consistent, although with a bit smaller CPN weights
at the outputs.

Several particular observations can also be made. As
can be seen in Fig. 1a, the human speed varies quasi
harmonically and it follows that the cKF and cUFIR filter
both have smaller sensitivities to the colored speed noise.
The impulsive speed changes are shown in Fig. 2b, which
are reminiscent of the unit pulses and impulse responses.
What we see here is that the cKF and cUFIR filter
generate shorter excursions and are thus less sensitive to
the colored speed noise.

4. CONCLUSIONS

Estimates of the walking human speed provided by the
cKF and cUFIR filter modified for Gauss-Markov CPN
have shown a better performance of the estimation al-
gorithms, especially when the speed noise color factor is
large. The results were achieved by applying the state
differencing for the square and nonsingular system ma-
trix, process noise matrix, and noise color matrix. That
allowed providing an accurate state estimation by solving
the NARE to specify the modified system matrix. Exten-
sive investigations of GPS-based data have confirmed the
efficiency of the modified algorithms.

Appendix A. MODIFICATION OF THE
STATE-SPACE MODEL USING STATE

DIFFERENCING

Consider a new state χn represented with state differ-
ences,

χn = xn −Πnxn−1 (A.1a)

=Anxn−1 +Bnwn −Πnxn−1

=Fnχn−1 + w̄n − Fnχn−1 − w̄n

+(An −Πn)xn−1 +Bnwn , (A.1b)

where Πn, Fn, and w̄n are still to be determined.

Rewrite the state equation as

χn = Fnχn−1 + w̄n , (A.2)

where claim that noise w̄n ∼ N (0, Q̄n) ∈ R
K must

be zero mean and white Gaussian. To make it possible,
define matrix Fn such that the remaining part of (A.1b)
becomes zero,

−Fnχn−1 − w̄n + (An −Πn)xn−1 +Bnwn = 0 . (A.3)

To find Fn, substitute (A.1a) into (A.2), combine with
xn−2 = A−1

n−1(xn−1 − Bn−1wn−1) taken from (1) and
write
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Fig. 2. Different walking human speeds measured by GPS (data) and estimated by the KF, UFIR filter, cKF, and
cUFIR filter assuming CPN: (a) quasi harmonic variations and (b) impulsive changes.

(An −Πn − Fn + FnΠn−1A
−1
n−1)xn−1

= w̄n −Bnµn − (BnΘn − FnΠn−1A
−1
n−1Bn−1)wn−1 .

(A.4)

Because the case of xn−1 = 0 is isolated for arbitrary n,
find a solution to (A.4) by considering three equations

Fn =An −Πn + FnΠn−1A
−1
n−1 , (A.5)

BnΘn =FnΠn−1A
−1
n−1Bn−1 , (A.6)

w̄n =Bnµn , (A.7)

where (A.7) suggests that w̄n is white Gaussian, as
required. Now, for nonsingular Fn, An, and Θn, (A.6)
yields

Πn = F−1
n+1Θ̄n+1An , (A.8)

where Θ̄n = BnΘnB
−1
n−1 is a weighted Θn.

Substitute (A.8) into (A.5), providing the transforma-
tions, and arrive at recursions for Fn,

Fn =An − F−1
n+1Θ̄n+1An + Θ̄n , (A.9)

Fn−1 =An−1 − F−1
n Θ̄nAn−1 + Θ̄n−1 ,

F−1
n Θ̄nAn−1 =An−1 − Fn−1 + Θ̄n−1 ,

F−1
n Θ̄n = I− (Fn−1 − Θ̄n−1)A

−1
n−1 ,

Fn = Θ̄n[I− (Fn−1 − Θ̄n−1)A
−1
n−1]

−1 .

(A.10)
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