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Abstract: In this paper, we propose a solution to the formation control problem with collision avoidance
for an arbitrary number of first-order agents by using repulsive vector fields with bounded magnitude.
When the agents are far enough from each other, e. i., there is no risk of collision, they move at some
known velocity determined by the application of a saturation function. It is assumed that every agent is
able to detect other robots or obstacles into a circular region and apply repulsive vector fields. Once an
agent detects any other agent or obstacle into its sensing radius, it regards that there exists an unstable
focus in the position of the surrounding object. These fields are such that the agents neither become
nearer than a predefined collision radius nor exceed a maximum control input magnitude. The application
of a reactive component of the control law is done by means of a continuous function which makes the
whole control law to be smooth. Simulations were carried out to verify the performance of the proposed
scheme.

Keywords: Multi-agent systems, formation control, collision avoidance, repulsive vector fields,
saturated control.

1. INTRODUCTION

Motion coordination of multi-agent systems has been an intense
research area in the last years because of its wide field of
applications. The main advantage of this kind of systems is
the ability to achieve goals that a single robot may not be able
to reach (Ramirez-Paredes et al. (2015), Bekirov and Asanov
(2017), Mouradian et al. (2017), Chikwanha et al. (2012)). One
problem that has attracted too much attention in this area is
the formation control problem, where a set of agents has the
objective of forming a specific geometrical pattern using only
information about nearing partners ((Deghat et al. (2016), Yang
et al. (2018)), Yu et al. (2018), Do (2014)). An additional issue
in formation control is the design of collision free transient be-
haviour (Hernandez-Martinez and Bricaire (2012), Do (2006),
Rodrı́guez-Seda et al. (2016)). There exist several solutions to
this problem which include the prediction of collisions from
initial conditions, is case these could be selected arbitrarily.
Another approach is the use of repulsive potential functions
as a common tool to avoid collisions, even when this type of
functions could lead to undesired equilibrium points or control
signals of high magnitude if a pair of agents get close enough.
Navigation functions have been proposed as an alternative to
the potential functions to guarantee trajectory tracking with-
out collisions. In Flores-Resendiz and Aranda-Bricaire (2019),
repulsive vector fields were applied to ensure a collision free
solution to the formation control problem. Such fields work in
a discontinuous manner which could provoke the appearance
of chattering phenomenon and no considerations were done
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about the control effort needed to, effectively, use the proposed
control strategy. In this paper we propose an strategy to solve
the formation control problem without collisions composed of
two components, each of them to attend the convergence and
the collision avoidance issue, respectively. Attractive vector
fields are applied to ensure the convergence of the agents to the
desired geometrical pattern regarding the most general case of
communication topology, that is, the existence of a spanning
tree in the communication graph. In order to avoid control
actions with high magnitude, a saturation function is applied
to this first component of the control law. Besides, we propose
the use of a continuous switching function to determine whether
the repulsive action is needed or not. We find conditions in the
selection of the design parameters to guarantee that there exists
a minimum safety distance among agents, and at the same time,
the control law satisfy input constraints. The rest of this paper
is organized as follows. In Section II, some antecedents and
definitions are reviewed. In Section III we state formally the
problem to be solved, while in Section IV, the main result is
presented. Simulation results of interesting cases were devel-
oped and are presented in Section V. Finally, some conclusions
and guidelines for future work are discussed in Section VI.

2. PRELIMINARIES

The communication among a set of agents can be modelled
by a graph G = {V,E,C} which consists of a set of vertices
V = {R1, . . . ,Rn} corresponding to each of the agents; a set
of edges E = {(R jRi) ∈ V ×V, i ̸= j}, which indicates that the
agent Ri receive information about R j and also a set C = {c ji ∈
R2 |(R jRi) ∈ V ×V, i ̸= j} of constant vectors that represent
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the relative desired position of agent Ri with respect to R j. A
formation graph is said to be undirected if (R jRi) ∈ E implies
that (RiR j) ∈ E, otherwise, it is called a directed graph. For
an edge (R jRi), R j is called the parent node and Ri is the
child node, then it is said R j is neighbour of Ri. The set of
all neighbours of Ri is denoted as Ni. A directed path from Ri

to R j is a sequence of edges of the form (RiRp), . . . ,(RqR j). A
directed tree is a directed graph in which every node has exactly
one parent, except for one single node called the root. The root
has no parent and has a directed path to a any other node. A
directed spanning tree of a directed graph G is a directed tree
involving every node in G. The Laplacian matrix associated
with a formation graph G is given by

L (G) = ∆−Ad (1)

where ∆ = diag{n1, . . . ,nN} is the in-degree matrix where ni is
the cardinality of Ni and Ad = [ai j] ∈ R

N×N is the adjacency
matrix of G whose entries are defined as follows

ai j =

{

1, if (R jRi) ∈ E
0, otherwise.

(2)

A real function φ(x) is said to be a saturation function if it
satisfy: φ(x) = 0 ⇔ x = 0; −r ≤ φ(x) ≤ r for some r > 0;

xφ(x) > 0, ∀x ̸= 0 and 0 <
dφ(x)

dx
< M1 < ∞. In the same

way, the function m(x) is a smooth switching function if the
next properties hold: m(x) = 1 if x ≤ a; m(x) = 0 if x ≥ b;

0<m(x)< 1 if a< x< b and −∞<
∂m(x)

∂x
< 0, where b> a> 0.

3. PROBLEM STATEMENT

Let N be a group of mobile robots denoted by R1, . . . ,RN which
are moving on a 2D plane. The agents are modelled by a single
integrator

żi = ui, i = 1, . . . ,N (3)

where zi(t) = [xi(t),yi(t)]
T ∈ R

2 are the position coordinates

of agent Ri and ui ∈ R
2 is the control input, which are the

velocities along the x and y axes. Assume that robot Ri is able
to determine, at every time instant, the position of a subset of
robots Ni ⊂ N which defines its desired position z∗i and is given
by

z∗i =
1

ni
∑
j∈Ni

(z j + c ji), (4)

where ni is the cardinality of Ni and c ji = [h ji,v ji]
T ∈ R

2,
∀ j ∈ Ni are constant vectors which specify the desired spatial
distribution of agents. Besides, assume that every agent is
equipped to sense the surrounding area and can measure the
position of any other agent within a circle of radius Di, defining
the set Mi(t) = {R j ∈ N | ∥zi(t)− z j(t)∥ ≤ Di}, where Di is
called the sensing radius. For simplicity, we consider the same
sensing radius for all the agents, that is, Di = D,∀i ∈ N. On the
other hand, regarding physical dimensions of agents, we define
the collision radius, which is the minimum safety distance
between any pair of agents and is denoted by d. Also assume
that 0 < d < D. The sensing and collision radii are illustrated in
Fig. 1.

The control objective is to design control laws ui = ui(zi,z
∗
i ,Ni∪

Mi), i = 1, . . . ,N such that:

i) The agents reach a desired formation, that is, lim
t→∞

(zi(t)−
z∗i (t)) = 0, i = 1, . . . ,N,

ii) the agents avoid collisions by remaining at some distance
greater than or equal to the collision radius d from each
other, i.e., ∥zi(t)− z j(t)∥ ≥ d, ∀t ≥ 0, i ̸= j, and

Fig. 1. Sensing and collision radii. The grey area is referred
as the influence region. Agents Ri and Rk are in conflict
and they can detect the position of each other. Meanwhile,
robot R j is not risk in conflict with any other agent.

iii) the control input in each agent is bounded, that is, ∥ui∥ ≤
umax, i = 1, . . . ,N, for some positive constant umax.

It is assumed that at the initial conditions all agents satisfy
∥zi(0)− z j(0)∥ ≥ d, ∀i ̸= j.

4. CONTROL STRATEGY

The proposed control scheme is designed in two steps. The first
one attends the convergence to the desired formation while the
second one regards the collision avoidance issue.

Theorem 1. Consider a group of N agents moving on a plane
modelled by (3) along with the saturated control law

ui =−µϕ(z̃i) (5)

where µ > 0, −1 ≤ ϕ(·) ≤ 1 is a saturation function and
z̃i = zi − z∗i is the position error of the i-th agent. If the com-
munication graph G contains a directed spanning tree, then, in
the closed-loop system the agents reach their desired formation
asymptotically.

Proof. Taking the error dynamics we have

˙̃zi = żi −
1

ni
∑
j∈Ni

ż j, (6)

which in closed-loop with (3) becomes

˙̃zi =−µ
1

ni

(Li(G)⊗ I2)φ(z̃) (7)

where Li(G) is the i−th row of the Laplacian matrix and ⊗
denotes the Kronecker matrix product, Zhang and Ding (2013).
In vector form, the whole system is represented as

˙̃z =−µ
(

∆−1
L (G)⊗ I2

)

φ(z̃), (8)

with ∆ defined previously, z̃= [z̃T
1 , z̃

T
2 , . . . , z̃

T
N ]

T and, correspond-

ingly, φ(z̃) = [φ(z̃1)
T ,φ(z̃2)

T , . . . ,φ(z̃N)
T ]T .

Taking the Lyapunov function candidate

V (z̃) =
N

∑
i=1

∫ z̃

0
φ(τ)dτ =

N

∑
i=1

(

∫ z̃i

0
φx(τ)dτ +

∫ z̃i

0
φy(τ)dτ

)

(9)

where, φ(z̃) = [φx(z̃i),φy(z̃i)]
T

. The time-derivative along the
trajectories of the cloosed-loop system is

V̇ (z̃) =
N

∑
i=1

(

φx(z̃i) ˙̃xi +φy(z̃i) ˙̃yi

)

=
N

∑
i=1

(

φ(z̃i) ˙̃zi

)

, (10)

which in vector form becomes

V̇ (z̃) =−µφ T (z̃)
(

∆−1
L (G)⊗ I2

)

φ(z̃). (11)

If every agent in the group defines its desired position with
respect to, at least, any other robot, that is, the scheme is
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leaderless, the matrix ∆−1 > 0. Even more, as the communi-
cation graph contains a spanning tree, the Laplacian matrix
have exactly one zero eigenvalue, say λn = 0, that implies,
rank(L (G)) = n − 1, while the rest of the eigenvalues have
positive real parts, that is, Re(λi) > 0, 1 = 1, . . . ,n− 1. Then,
we can only ensure that

V̇ (z̃)≤ 0. (12)

Now, to prove asymptotic convergence, consider the eigenvec-
tor associated to the zero eigenvalue which is 1n = [1,1, . . . ,1],
Ren and Beard (2008). Then, L (G)1n = 0, which implies that
φ(z̃1) = φ(z̃2) = · · · = φ(z̃n) and because of the properties of
saturation functions, z̃1 = z̃2 = · · ·= z̃n = z∗. On the other hand,
there exists a left eigenvector such that

[α1,α2, . . . ,αn]L (G) = 0, (13)

or, in other words, there exists a linear combination of the
position errors in such a way that

N

∑
i=1

αiz̃i = 0, (14)

with coefficients αi not all equal to zero, Ren and Beard (2008).
Moreover, the coefficients αi satisfy that ∑N

i=1 αi = 1. Finally,

N

∑
i=1

αiz̃i =
N

∑
i=1

αiz
∗ = 0 (15)

implies that z∗ = 0 which means that the largest invariant set
within the Lyapunov function is zero is the set where all the po-
sition errors are identically zero, then, z̃i = 0 is asymptotically
stable. Since the Lyapunov function is radially unbounded, the
convergence to the desired formation is global. ✷

In order to develop a smooth strategy to solve the formation
control problem for first order agents, we start by recalling
the collision avoidance strategy proposed in Flores-Resendiz
and Aranda-Bricaire (2014), Flores-Resendiz et al. (2015)
and Flores-Resendiz and Aranda-Bricaire (2019). There, every
agent considered any other robots or obstacles in its sensing
region as an unstable focus in such a way that a repulsive vector
field appeared between them. Then, the whole control law was
given by

ui = γi +βi =−µϕ(z̃i)− ε
n

∑
j=1, j ̸=i

δi j

[

pi j −qi j

pi j +qi j

]

, (16)

where ε > 0 and we have introduced the relative position
variables pi j = x j − xi and qi j = y j − yi which make up the
unstable focus. Distance-based parameters δi j are defined as

δi j =

{

1, if ∥zi − z j∥ ≤ d,
0, if ∥zi − z j∥> d.

(17)

Furthermore, According to Flores-Resendiz and Aranda-Bricaire
(2019), the control law (16)-(17) ensures collision avoidance
among agents as long as

ε >
2µ

d
. (18)

It is important to notice that the unstable focus structure of
the repulsive vector fields is useful to prevent the agents to get
stuck at undesired equilibrium points in the formation problem.
However, they should be scaled by the parameter ε to avoid the
agents to get nearer than a safety distance. In Fig. 2 the magni-
tude of the repulsive fields is shown. As it can be easily seen,
the vector fields vanishes when the relative position between a
pair of agents becomes zero. In the same way, Fig. 3 illustrates
the behaviour of the discontinuous component of the control
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Fig. 2. Magnitude of the repulsive vector fields with unstable
focus structure.

law (16), where the repulsive vector field is turned on when the
relative distance between a pair of agents reaches the minimum
one allowed. As it has been reported, the distance-based colli-
sion avoidance mechanism working in a discontinuous manner
could lead to the appearance of chattering phenomenon. In this
work, we propose a modified strategy, given by

βi =−ε
n

∑
j=1, j ̸=i

m(di j)

[

pi j −qi j

pi j +qi j

]

, (19)

where di j = ∥zi − z j∥ is the distance between the i−th and
the j−th agent and m(·) is a smooth switching function. The
basic idea is to apply the repulsive vector fields gradually,
regarding the sensing radius D which indicates the agents are
getting into the influence region of any other and ensuring that
agents never get nearer than the collision radius. Alternative
switching functions have been proposed in Do (2014), Li and
Yang (2017), and others. Of course, when di j > D the repulsive
vector field are deactivated and when d < di j < D the repul-
sive fields increase their magnitude but the distance between
them could still decrease. Finally, when di j ≤ d corresponds
to the condition presented in Flores-Resendiz and Aranda-
Bricaire (2019) which utilizes a discontinuous vector fields
activation/deactivation mechanism, wherein it was proved that
the agents remain at a distance greater than or equal to the
collision radius. Moreover, the conflicts between agents in risk
of collision were solved in finite-time.

0

5

2

4

5

6

8

0

10

0

-5 -5

Fig. 3. Magnitude of the distance-based discontinuous vector
fields. Turned on when the agents reach the minimum
allowed distance.
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Regarding smooth functions m(·) to mediate the application of
the repulsive vector fields, the reactive component of the control
law looks like the one illustrated in Fig. 4. Once the repulsive
vector fields are modified as in (19), each element of the sum
could be bounded as follows

βi =−ε
n

∑
j=1, j ̸=i

βi j ≤−ε
n

∑
j=1, j ̸=i

βi j (d
∗) , (20)

where d∗ = arg maxdi j
(βi j) depends on the selection of the

function m(di j) and can be estimated by solving the equation

d∗ =− m(d∗)
m′(d∗)

, (21)

which is easily stated by fundamental calculus theorem. Al-
though the last equation could imply the use of numerical
methods, this operation is done only once. Now we can state
our main result.

Theorem 2. Consider the N agents modelled by (3) along with
the control law (16) with βi defined as in (19). Suppose there
exists a maximum available control input ∥ui∥ < umax and that
every agent could get in risk of collision with, at most, p
other agents. If the communication graph G contains a directed
spanning tree and the design parameters are selected in such a
way that

2µ

d
< ε ≤ umax −µ√

2pd∗m(d∗)
(22)

holds, then the agents reach the desired formation without
collisions and no pair of agents get at a distance smaller than
the predefined collision radius.

Proof. If there exists a constraint in the control input magni-
tude, that is,

∥ui∥< umax, (23)

we have

∥ui∥ = ∥γi +βi∥ ≤ ∥γi∥+∥βi∥. (24)

By bounding each component of the control law,

∥γi∥ ≤ µ, (25)

and, for the repulsive vector fields

βi =−ε
n

∑
j=1, j ̸=i

m(di j)

[

pi j −qi j

pi j +qi j

]

=−ε
n

∑
j=1, j ̸=i

βi j (26)

where
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Fig. 4. Discontinuous vector fields activated by a smooth func-
tion

βi j = m(di j)

[

pi j −qi j

pi j +qi j

]

(27)

= m(di j)

([

1 −1
1 1

]

⊗ I2

)[

pi j

qi j

]

. (28)

Now, bounding each of the repulsive vector fields

∥βi j∥ ≤
(

√

λmax (FT F)

)∣

∣

∣

∣

∣

∣

∣

∣

[

pi j

qi j

]∣

∣

∣

∣

∣

∣

∣

∣

, (29)

where

F =

[

1 −1
1 1

]

. (30)

When the i-th robot is in risk of collision with exactly p other
agents, the same number of repulsive vector fields are activated,
and each of them is bounded as above, then

∥βi∥ ≤ ε
p

∑
j=1, j ̸=i

βi j ≤
√

2pεd∗m(d∗). (31)

Finally, in order to achieve the control goal regarding the
constraint in the input we have

µ +
√

2pεd∗m(d∗)≤ umax, (32)

and then,

ε ≤ umax −µ√
2pd∗m(d∗)

. (33)

The lower bound for ε is obtained in the same way than in
Flores-Resendiz and Aranda-Bricaire (2019). This completes
the proof. ✷

Remark 1. As a design consideration, in a reduced group of
agents the parameter p in (22) provides a degree of freedom
to select the gain ε . Regarding geometrical conditions, it has
been shown in (Flores-Resendiz and Aranda-Bricaire, 2019)
that a agent could not get in risk of collision with more than
six agents at the same time, that is, we can choose p = 6 to
cover all possible scenarios. This selection reduces (22) to

2µ

d
< ε ≤ umax −µ

6
√

2d∗m(d∗)
. (34)

5. SIMULATION RESULTS

In this Section, we present results of two different simulation
examples. In the first case, we deal with a reduced number
of agents with the objective of illustrating in detail the per-
formance of the proposed scheme. In the second simulation,
a system with five agents is presented and the main objective
of this example is to show the performance of the proposed
control law in a complex environment. In both these examples,
the function m(di j) is defined as,

m(di j) =
1

1+ ea(di j−b)
(35)

where the parameters have been selected as a = 10 and b = 2.4
which give a good approximation to D = 2.8 and d = 2. This
function is depicted in Fig. 5. By solving (21), it could be found
out that the repulsive vector field between a pair of agents has
its maximum magnitude when they are at a distance

d∗ ≈ 2.10041, (36)

using proper units.

Example 1: Two agents.

Consider the case of two agents which are located at z1(0) =
[3,3]T and z2(0) = [−3,−3]T with bidirectional communica-
tion, c21 = [−3,−3]T and c12 = −c21. This configuration is
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Fig. 5. Transition function

such that the agents will move straightforward each other to
exchange relative positions. Under this conditions, the use of
single potential functions could lead to undesired equilibrium
points. By using (16), regarding (19) and (22), with µ = 1,
ε = 1.1, d = 2, D = 2.8 and umax = 4.5, the agents reached
their desired position while avoiding each other, as shown in
Fig. 6. It is clear that the distance between them does not
become smaller than the collision radius. Both, the sensing and
the collision radius are depicted with dash-dotted lines. Even

-4 -2 0 2 4

-4

-2

0

2

4

Fig. 6. Agents’ behaviour under the smooth control law. The
dotted lines indicate the sensing and collision radius. “X”:
initial position, “O”: final position.

more, the control inputs are illustrated in Fig. 7 and Fig. 8
and is clear that the magnitude of this signal is much smaller
than the maximum value umax. This case illustrates the ability

0 1 2 3 4 5 6 7 8 9 10

-1.5

-1

-0.5

0

0.5

1

1.5

Fig. 7. Control input for agent 1. The solid line represents the
magnitude of the signal. “–” x-axis velocity, “-.” y-axis
velocity.

of our proposed scheme to avoid getting stuck at undesired
equilibriums points while is clear that the control objective is
reached.

0 1 2 3 4 5 6 7 8 9 10

-1

-0.5

0

0.5

1

1.5

Fig. 8. Control input for agent 2. The solid line represents the
magnitude of the signal. “–” x-axis velocity, “-.” y-axis
velocity.

Example 2: Five agents.

Although the previous case shows a good performance when
dealing with undesired equilibria, we now present a result sim-
ulation regarding a more complex environment with 5 agents.
Taking the initial conditions z1(0) = [8,8]T , z2(0) = [8,−8]T ,
z3(0) = [0,0]T , z4(0) = [−8,8]T and z5(0) = [−8,−8]T , the
objective is to reach the desired formation shown in Fig. 9,
where not only the communication among agents is provided
but also the spatial distribution. The trajectories followed by
the agents are depicted in Fig. 10

Fig. 9. Desired formation for example 2.

-10 -5 0 5 10

-8

-6

-4

-2

0

2

4

6

8

Fig. 10. Agents’ behaviour in example 2. “X”: initial position,
“O”: final position..

In Fig. 11, are shown the distances between any pair of agents as
well as the distances corresponding to the sensing and collision
radii. It is clear that the agents are always at a distance greater
than collision radius. Finally, the control effort needed by each
agent are shown in Fig. 12.

6. CONCLUSIONS

In this paper, we proposed a solution for the formation control
problem by using repulsive vector fields with unstable focus
structure and activated by a smooth function. We ensured that
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Fig. 11. Distance between any pair of agents in example 2. The
horizontal dashes lines represent the sensing and collision
radii.
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Fig. 12. Control input for agents in example 2.

the agents avoid collisions among them while there exist an
input constraint given as a maximum value. Conditions for the
selection of design parameters were found and the performance
of the scheme was shown by numerical simulations. This ap-
proach could be applied to systems with an arbitrary number of
agents while ensuring there will not exist undesired equilibrium
the agents could get stuck at. The use of continuous function to
mediate the application of the repulsive bounded component
encourage the study of second order systems using the well-
known backstepping technique.
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M.W. (2016). Guaranteed collision avoidance for
autonomous systems with acceleration constraints
and sensing uncertainties. Journal of Optimization
Theory and Applications, 168(3), 1014–1038. doi:
10.1007/s10957-015-0824-7. URL https://doi.org/

10.1007/s10957-015-0824-7.
Yang, Q., Cao, M., de Marina, H.G., Fang, H., and Chen,

J. (2018). Distributed formation tracking using lo-
cal coordinate systems. Systems & Control Letters,
111, 70 – 78. doi:https://doi.org/10.1016/j.sysconle.2017.
11.004. URL http://www.sciencedirect.com/

science/article/pii/S0167691117302128.
Yu, X., Xu, X., Liu, L., and Feng, G. (2018). Cir-

cular formation of networked dynamic unicycles by
a distributed dynamic control law. Automatica, 89,
1 – 7. doi:https://doi.org/10.1016/j.automatica.2017.11.
021. URL http://www.sciencedirect.com/

science/article/pii/S0005109817305629.
Zhang, H. and Ding, F. (2013). On the kronecker products and

their applications. Journal of Applied Mathematics, 2013.
doi:10.1155/2013/296185.

Memorias del Congreso Nacional de Control Automático ISSN: 2594-2492 

6 Copyright©AMCA. Todos los Derechos Reservados www.amca.mxNúmero Especial 2020


