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Abstract: A well-known strategy for the control of robot manipulators consists in indepen-
dently controlling each joint. In this paper, we propose a class of time-delay based controllers
under this scheme, which ensures practical stability of the tracking position error dynamics
corresponding to each joint. In order to tune the controller, a simple methodology based on
the feasibility of a Linear Matrix Inequality derived from a proposed Lyapunov-Krasovskii
functional is provided. In contrast to classical control algorithms, the presented scheme does
not require estimators nor velocity measures but only measures of position at the present and
a given delayed time. Numerical simulations show the potential advantages of the proposed
class of controllers when position measures are corrupted by noise.
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1. INTRODUCTION

We consider robot manipulators with n links described by

M(q)q̈(t) + C(q, q̇)q̇ + G(q) = τ(t), (1)

where qT (t) = (q1(t) . . . qn(t)) ∈ R
n represents the posi-

tion vector of the joints, M(q) and C(q, q̇) are respectively
the inertia and Coriolis matrices in R

n×n, G(q) ∈ R
n is

the gravity vector, and τT (t) = (τ1(t) . . . τn(t)) ∈ R
n

is the joint torque vector. Each joint is considered to be
actuated by a DC motor and its dynamic to be modeled
by the second order differential equation

Jmiq̈i(t)+Bmiq̇i(t) = rmiKmivi(t)−r2
miτi(t), i = 1, . . . , n,

(2)
where Jmi is the total inertia of the motor and gear, Bmi

is the damping coefficient, Kmi is the torque constant, rmi

is the gear ratio of the coupling of the motor to the link,
and vi is the armature voltage. We assume throughout
this paper that all the functions t 7→ τi(t), i = 1, . . . , n,
are bounded.

A classical control scheme for robot manipulators de-
scribed by (1) consists in independently controlling the
actuator of each joint. Under this scheme, the control
of nonlinear system (1) is reduced to the control of n
linear systems of the form (2) with disturbance r2

miτi(t).
If the gear ratio rmi is small enough, then the effect of the
disturbance is small and classical PD or PID controllers
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are able to deal with it well enough (Lewis et al., 2003).
Advantages and disadvantages of this control scheme with
respect to others are well known and have been exten-
sively discussed in the literature (Lewis et al., 2003; Spong
et al., 2006; Kelly and Santibáñez, 2003).

Although classical controllers might be used in order to
achieve a desired performance by mitigating the effects of
r2

miτi(t) (Lewis et al., 2003), they still face well-known
problems when a derivative action is required. With
no velocity measures available, the implementation of a
derivative term requires state estimators or estimation of
the derivative from the measured position. Using state
estimators on the one hand increases the complexity of
the overall system, and estimation of the derivative by
using measures of the position on the other might result in
the amplification of high frequency noise. An alternative
to the previously mentioned approaches that has received
increasing attention in the last two decades consists in
introducing intentional delays in the control signal. Early
results on time-delay based controllers were presented by
(Suh and Bien, 1979), whereas recent results showing
their potential in addressing several classes of problems
including noise mitigation and fast convergence can be
found in (Villafuerte et al., 2012; Ramı́rez et al., 2015;
Sipahi et al., 2011; Niculescu and Michiels, 2004; Gomez
et al., 2019). This class of controllers has also been applied
to the control of a class of robot manipulators in (Ochoa-
Ortega et al., 2019), but the proposed scheme there is
different from the one considered in this work.
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In line with the above ideas, in this paper, we propose an
independent joint time-delay based control scheme aiming
at solving the tracking problem in robot manipulators
whose dynamics are described by (1). Clearly, under this
scheme, solving the tracking problem for (1) requires
addressing the tracking problem of each joint actuator.
The target of the proposed controller is thus to perform
the independent control of n systems of the form (2).
The main feature of the proposed control algorithm
is that it is able to mimic derivative-based controllers
without requiring the implementation of state estimators
or derivative computation from position measures, but
only requiring measures at present and delayed times.
Since a delay is induced in the control signal, the resulting
system in closed-loop corresponds to a perturbed time-
delay system.

We show that the proposed time-delay based controller
ensures the practical stability of the tracking position
error dynamics of the joints. This is carried out by propos-
ing a simple Lyapunov-Krasovskii functional that, as long
as a Linear Matrix Inequality (LMI) is satisfied, fulfills
the sufficient conditions for practical stability presented
in (Villafuerte et al., 2011). A distinctive feature of the
proposed functional with respect to the class proposed
by (Villafuerte et al., 2011) is that it enables a simple
tunning of the gains of the controller, despite the induced
complexity by the delayed term. Specifically, it allows
proving that, provided a delay-free system is stable, it
is always possible to find a controller that practically
stabilizes the system under study.

The manuscript is organized as follows: In Section 2, we
introduce results on practical stability for a class of second
order systems. There, the proposed Lyapunov-Krasovskii
functional is introduced and its main differences with
respect to others reported in the literature are pointed
out. In Section 3, the theoretical results of Section 2 are
applied to solve the tracking problem of joint actuators
described by (2). We illustrate the proposed approach by
some numerical simulations and compare its performance
with the performance of a classical PD when position
measures are corrupted by noise. We close the paper with
some concluding remarks in Section 4.

We adopt the following notation: The space of piecewise
continuous differentiable vector functions is denoted by
PC. For vector and matrices we use the Euclidian norm,
which is represented by ‖ · ‖. The space of piecewise
continuous functions is equipped with the supremum
norm defined as

‖ϕ‖h := sup
θ∈[−h,0]

‖ϕ(θ)‖.

The solution x(t, ϕ) of a retarded type system with delay
h > 0 restricted to the interval [t − h, t] is denoted by

xt : θ 7→ x(t + θ, ϕ).

Finally, the notation A > 0 means that matrix A is
symmetric and positive definite.

2. PRACTICAL STABILITY FOR SECOND ORDER
SYSTEMS

In this section, we consider the representation in state
space of second order systems of the form

ẋ(t) =Ax(t) + Bu(t) + η(t), (3)

where xT (t) = (x1(t) x2(t)) = (x1(t) ẋ1(t)) ∈ R
2, u ∈ R,

A =

(

0 1
a1 a2

)

, B =

(

0
b1

)

,

with a1, a2 and b1 real numbers, and η : R≥0 → R

satisfying ‖η(t)‖ ≤ m for all t ≥ 0 and for some positive
real number m. As we shall see in Section 3, the position
error dynamics of the ith joint under study can be written
as a system of the form (3).

Let us consider the control law

u(t) = k1x1(t) + k2x1(t − h), (4)

where h > 0 represents an intentionally introduced delay.
Notice that the proposed control law does not require the
state x2 but only x1 at the present and delayed time.
Closed-loop system (3),(4) is then a time-delay system
described by

ẋ(t) = A0x(t) + A1x(t − h) + η(t), t ≥ 0,

x(t) = ϕ(t) ∈ PC, t ∈ [−h, 0),
(5)

with

A0 =

(

0 1
a1 + b1k1 a2

)

and A1 =

(

0 0
b1k2 0

)

.

Before we continue, let us recall some basic definitions and
instrumental results. We start with the notion of practical
stability for system (5) formally defined in (Villafuerte
et al., 2011).

Definition 1. (Villafuerte et al., 2011) System (5) is
µ−practically stable if for some µ > 0 there exists T =
T (µ, ϕ) such that ‖x(t, ϕ)‖ ≤ µ ∀t ≥ T .

A sufficient condition for µ-practical stability based on
the existence of a Lyapunov-Krasovskii functional is also
presented in (Villafuerte et al., 2011):

Lemma 2. System (5) is µ-practically stable if there
exists a functional v(xt) satisfying

α1‖x(t)‖2 ≤ v(xt) ≤ α2‖xt‖2
h (6)

and
d

dt
v(xt) ≤ −2σv(xt) + κ

√

v(xt), (7)

where α1, α2, κ and σ are positive real numbers. More-

over, µ >
κ

2σ
√

α1
and

T =











0, if ‖ϕ‖h ≤ κ

2σ
√

α2
,

1

σ
ln

(

2σ
√

α2‖ϕ‖h − κ

2σ
√

α1µ − κ

)

, otherwise.

We consider the functional v : xt → R,
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v(xt) = xT (t)Px(t)+h

∫ t

t−h

(θ − t+h)x2
2(θ)k2

2re2σ(θ−t)dθ,

(8)
where R

2×2 ∋ P > 0, and σ and r are positive real
numbers. A particular feature of functional (8) is that the
integral term does not depend on neither the whole state
as in (Villafuerte et al., 2011) (but only on x2) nor ẋ2 as in
the recent work by (Fridman and Shaikhet, 2017). This
feature enables a simple tuning methodology of control
parameters (k1, k2, h).

The main result of this section, Theorem 4, is presented
after the following instrumental lemma.

Lemma 3. (Solomon and Fridman, 2013) Let f : [a, b] →
[0, ∞) and x ∈ R

n. Then, the following inequality holds
for any positive definite matrix R ∈ R

n×n:
(

∫ b

a

f(θ)x(θ)dθ

)T

R

(

∫ b

a

f(θ)x(θ)dθ

)

≤
∫ b

a

f(θ)dθ

∫ b

a

f(θ)xT (θ)Rx(θ)dθ.

Theorem 4. Let us define the matrices

M(P, r) :=

(

ET P + PE + R −PB
−BT P −re−2σh

)

,

with E := A0 + A1 and

R :=

(

0 0
0 h2rk2

2

)

.

If there exist a positive definite matrix P ∈ R
2×2 and a

real number r > 0 such that, for given k1, k2, σ and delay
h > 0, the LMI

M(P, r) + 2σ

(

P 0
0 0

)

< 0 (9)

is satisfied, then system (5) is µ-practically stable with

µ >
m‖P‖
σα1

. Moreover, the LMI (9) is always feasible for

a sufficiently small delay h > 0 provided that the matrix
E + σI is Hurwitz stable for some σ > 0.

Proof. Let us first prove that, if (9) holds, then func-
tional (8) satisfies the conditions of Lemma 2.

It is straightforward to see that, since P > 0 and r >
0, functional (8) satisfies (6) with α1 = λmin(P ) and
α2 = λmax(P ) + h2rk2

2. Let us focus on proving that it
satisfies the derivative condition (7). In order to do this,
we consider the transformation (Niculescu, 2001)

x1(t − h) = x1(t) −
∫ t

t−h

x2(θ)dθ,

which, by direct substitution, transforms system (5) into
a system of the form

ẋ(t) = Ex(t) − k2B

∫ t

t−h

x2(θ)dθ + η(t). (10)

By the step-by-step method it follows that any solution
of system (5) is also a solution of (10) (Niculescu, 2001).

The derivative of the functional along the solutions of (10)
yields

d

dt
v(xt) = xT (t)

(

ET P + PE
)

x(t)

− 2xT (t)PBk2

∫ t

t−h

x2(θ)dθ + 2xT (t)Pη(t) + h2x2
2(t)k2

2r

− h

∫ t

t−h

x2
2(θ)k2

2re2σ(θ−t)dθ − 2σv2(xt),

where

v2(xt) = h

∫ t

t−h

(θ − t + h)x2
2(θ)k2

2re2σ(θ−t)dθ.

Observe that

−h

∫ t

t−h

x2
2(θ)k2

2re2σ(θ−t)dθ = −h

∫ 0

−h

x2
2(t+θ)k2

2re2σθdθ

≤ −h

∫ 0

−h

x2
2(t + θ)k2

2re−2σhdθ

≤ −
(∫ t

t−h

x2(θ)dθ

)2

k2
2re−2σh,

where the last inequality follows from Lemma 3. Then, by
collecting terms with the same factors and writing them
in matrix form, we arrive at

d

dt
v(xt) ≤

(

xT (t) ξ(t)
)

M(P, r)

(

x(t)
ξ(t)

)

+ 2xT (t)Pη(t) − 2σv2(xt),

or, equivalently,

d

dt
v(xt) ≤

(

xT (t) ξ(t)
)

(

M(P, r) + 2σ

(

P 0
0 0

))(

x(t)
ξ(t)

)

+ 2xT (t)Pη(t) − 2σv(xt),

where ξ(t) =
∫ t

t−h
x2(θ)dθk2. Thus, as

2xT (t)Pη(t) ≤ 2‖P‖‖x(t)‖m ≤ 2√
α1

m‖P‖
√

v(xt),

fulfillment of (9) implies

d

dt
v(xt) ≤ −2σv(xt) + κ

√

v(xt)

with κ =
2√
α1

m‖P‖. By Lemma 2 we conclude that

system (3) is µ-practically stable with µ >
m‖P‖
σα1

.

It is left to prove that LMI (9) is always feasible for
a sufficiently small delay h. For some positive definite
matrix Q ∈ R

2×2, let P ∈ R
2×2 be a positive definite

matrix, solution of the Lyapunov equation

(E + σI)T P + P (E + σI) = −Q.

Since E + σI is Hurwitz stable for a given σ > 0,
there always exists such a matrix P . Then, by Schur
complement, LMI (9) is satisfied if and only if there exists
a real number r > 0 and

−Q + R +
1

r
PBBT Pe2σh < 0.
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By choosing r =
1

h
it is clear that the above condition is

satisfied for sufficiently small values of h. ✷

Remark 5. According to Theorem 4, time T = T (µ, ϕ)
of Definition 1 depends on the given gain k1, the found
matrix P and the bound on the uncertainty term m.
Furthermore, knowledge of κ enables establishing T = 0
by choosing a suitable initial condition.

3. DELAY-BASED CONTROLLER APPLIED TO
THE ROBOT JOINTS

As already mentioned in the introductory part, to tackle
the tracking control problem of (1) under the independent
joint control scheme, one requires to address the tracking
control problem of the actuators of each joint described
by (2). In this section, we use Theorem 4 in order to do
so.

In the forthcoming analysis, we do not index the states x1

and x2 nor matrices A, B and η according to the ith joint
to avoid proliferation of subscripts. Needless to say that
different coefficients in the system matrices are obtained
depending on the joint actuator under study.

The desired trajectory of the ith joint is represented by
qdi(t). Let ei(t) be the tracking position error and the
signal control v(t) in (2) respectively defined as

ei(t) := qdi(t) − qi(t)

and
v(t) := upr(t) + u(t), (11)

where

upr(t) =
Jmi

rmiKmi

q̈di(t) +
Bmi

rmiKmi

q̇di(t).

Then, by setting x1(t) = ei(t) and x2(t) = ėi(t), straight-
forward calculations lead to the state space representation
(3) with

A =

(

0 1

0 −Bmi

Jmi

)

, B =

(

0

−Kmirmi

Jmi

)

, η =





0
r2

mi

Jmi



 τi(t).

Considering the control signal u in (11) as in (4), namely

u(t) = k1ei(t) + k2ei(t − h), (12)

closed-loop system takes the form (5) with matrices

A0 =

(

0 1

−Kmirmi

Jmi

k1 −Bmi

Jmi

)

andA1 =

(

0 0

−Kmirmi

Jmi

k2 0

)

.

In view of Theorem 4, we adopt the following methodol-
ogy in order to tune the control law (11) corresponding
to each robot joint.

(1) Set σ > 0 and find gains k1 and k2 such that the
matrix E + σI = A0 + A1 + σI is Hurwitz stable.

(2) Set a small delay h and the gains k1 and k2 from the
previous step in matrix M(P, r).

(3) Solve the LMI (9) for P and r.

If a solution to the LMI (9) is found in the last step,
then control (12) with parameters (k1, k2, h) ensures that
‖ei(t)‖ ≤ µ ∀t ≥ T , with µ and T defined as in Theorem
4 and as in Definition 1, respectively.

Numerical experiment. The above methodology is ap-
plied next to solve the tracking problem in two joints of a
PUMA robot. Notice that the term τi(t) is time-varying
and depends on the states of the system. However, as
it is bounded and is factor of a small gear ratio rmi, for
illustration purposes of the presented approach we simply
consider that τi(t) = sin(10t).

We compare the performance of the delay based controller
(12) with a classical PD controller of the form

u(t) = kpei(t) + kdėi(t), (13)

where the derivative of the error is directly computed from
measures of the position. Noisy position measures are em-
ulated by adding a sine-wave chirp signal with increasing
frequency from 1Hz to 100Hz and scaled by a factor of
0.03 on some time intervals during the simulation.

The parameters corresponding to the two joints actuators
considered for simulation are taken from (Corke and
Armstrong-Helouvry, 1994; Armstrong et al., 1986) and
are shown in Table 1, with Jmi in kg−m2, coefficient Bmi

in Nms/rad and Kmi in Nm/A.

Table 1. Parameters corresponding to actua-
tors of two joints of a PUMA robot.

Joint Jmi Bmi Kmi rmi

1 1.1407 3.45 23.125 0.01597

2 4.7142 8.53 23.125 0.0093

For the tunning of the controller corresponding to actu-
ators of both Joint 1 and Joint 2, we set σ = 0.2 and
h = 0.1. Gains (k1, k2) = (3, 2) and (k1, k2) = (215, 53)
ensures that the corresponding matrix E + σI is Hurwitz
stable for Joint 1 and Joint 2, respectively. With the
given parameters (σ, h, k1, k2), the LMI (9) is found to
be feasible with

P =

(

1.550 0.5096
0.5096 0.4584

)

, and r = 1.0665.

for the motor parameters of Joint 1, and with

P =

(

4.3420 0.1300
0.1300 0.4258

)

, and r = 0.0265.

for the motor parameters of Joint 2.

A trapezoidal velocity profile trajectory is set as the
desired one. Figure 1 illustrates the simulation results of
position (left panel), velocity (central panel) and control
signal (right panel) corresponding to Joint 1. At the top,
the performance of (11) with the PD controller (13) with
kp = k1 and kd = k2 is shown. One observes that the PD
controller induces a not desired behavior in the velocity of
the joint, which directly induces an over-amplified control
signal on the time-intervals where the chirp signal is
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Fig. 1. Simlulation results for Joint 1 with PD controller (13) with kp = k1 and kd = k2 (top) and with controller (11)
(bottom). Position, velocity and signal control are respectively shown from left to right.

added. The latter is expected as the derivative term is
obtained from differentiation of the position error. At
the bottom, the performance of (11) with the delay-
based controller (12) is depicted. The performance of the
controller in tracking the desired trajectory is similar to
the PD controller with the noticeable difference that the
control signal is not over-amplified despite the emulated
noisy position measures.

The simulation results corresponding to the Joint 2 are
shown in Figure 2 for the sake of completeness. There, the
effect of the noisy position measures in the PD controller
is sharpest. This can be appreciated in the amplitude of
the control signal.

4. CONCLUDING REMARKS

A delay-based controller is proposed for the joint control
of robot manipulators. Based on a new proposed func-
tional, it is proved that with the class of controller (12) the
dynamics of each joint can be practically stabilized in the
sense of Definition 1. Simulation results show the benefit
of the proposed scheme in comparison with a classical PD
control when there is no access to velocity of the joint and
the position measures might be corrupted by noise.

Control law (12) requires measures of position of each
joint at present and delayed states. For the digital imple-
mentation of the control signal it is convenient to choose
the value of the delay h as a multiple of the discretization
step. Notice also that obtaining the delayed measure at
the given (small) delay demands few memory allocation,
which ease the implementation with commercial low-cost
hardware.

Finally, it is important to mention that functional (8)
belongs to the class of functionals that are at the basis of
the very recent results presented in (Gomez et al., 2021).

This enables taking the analysis performed in this paper
as the starting point of application of state of the art
techniques based on Sliding Mode Control for systems
with delays in order to achieve asymptotic stability of
the error dynamics. The latter is part of ongoing research
work.
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