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Abstract: In this paper, the problem of model equivalence between integer-order and
fractional-order systems with Caputo derivative is considered. Motivated by diverse studies that
show a connection between the diffusion model and its equivalent fractional diffusion models,
the construction of the integral transformation is presented that maps the solution of the one-
dimensional integer diffusion model to the equivalent solution of the fractional diffusion model.
It is demonstrated that the unique integral transformation between both models corresponds
to the integral of half-order. The derivation includes the inverse integral transformation, which
allows the validation of the equivalence and well-posedness of the models. Moreover, the explicit
analytic solution for the equivalent fractional partial differential equation is given through the
proposed transformation.
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1. INTRODUCTION

Current demands in science and technology require math-
ematical models for describing complex phenomena that
include many parameters and variables. Thus, the accu-
racy of the results and studies could be degraded when-
ever the effect of some of them are neglected or omitted.
The new trends in modelling indicate that the extra
parameter design of fractional-order models can improve
the system’s characterization [Kopka, 2015]. This is a
consequence of the non locality and memory effects as-
sociated with the derivatives and integrals of non-integer-
order; i.e. fractional-order operators (FOOs) Podlubny
[1998]; Ortigueira [2011]. Therefore, fractional calculus
(FC) has become an intensive field of study in areas such
as model-based fault detection [Azimi and Shandiz, 2020;
He et al., 2021], the modelling of materials [Bonfanti et al.,
2020; Biswas et al., 2017; Ortigueira, 2011], the mod-
elling of Susceptible-Infected-Recovered-Deceased (SIRD)
of COVID19 Nisar et al. [2021]; Jahanshahi et al. [2021]
and automatic control [Monje et al., 2010; Caponetto
et al., 2010; Modiri and Mobayen, 2020; Oustaloup, 2014;
Jajarmi and Baleanu, 2021]. On the other hand, partial
differential equations (PDEs) played an important role
in the early stages of FC. While some members of the
scientific community concentrated on justifying the use
of FOOs in applied sciences Oldham and Spanier [1974],
another part of the community developed important re-
sults by using physical models described by PDEs. The
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latter with the contributions of [Oldham and Spanier,
1974; Podlubny, 1998; Kilbas et al., 2006] laid groundwork
in the FC area. Inspired by the mathematical interest,
some research began looking for mathematical models
in the frequency domain that contained rational expo-
nents of the complex variable [Carlson and Halijak, 1964;
Nigmatullin, 1986; Machado, 2001; Radwan and Salama,
2012; Valsa and Vlach, 2013]. Because the exponents in
this framework did not correspond to those described by
derivatives and integrals with an integer-order, the math-
ematical models were analytically manipulated to obtain
equations involving functions of FOOs. The first con-
tribution that introduced the fractional diffusion model
(FDM) was published in [Oldham and Spanier, 1974], and
it was obtained from the solution of the one-dimensional
(1D) diffusion model vt(x, t) =

1
bvxx(x, t) via the Laplace

transform method with b as the diffusion’s constant. Thus,
one could interpret that the fractional partial equation
D0.5

t v(x, t) = − 1√
b
vx(x, t) with D0.5

t as the half-order

derivative is enclosed in the standard 1D diffusion model
(1DDM), see Section 5.1 for more details. Motivated by
this result, diverse works were published by considering
variations of the idea published by Oldham and Spanier
and looked for the fractional diffusion models enclosed
in the standard one. Many authors [Metzler et al., 1994;
Zhang and Xue, 2007; Kulish and Lage, 2002; Sierociuk
et al., 2013] proposed a systematic procedure, however,
to obtain the respective fractional model enclosed in the
diffusion model, some conditions between both models
were missing. One can identify the following deficiencies
and disadvantages below.
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• The equivalence between boundary conditions for
the FDM cannot be computed by these methods.

• The FOOs are determined by the original model
assuming zero initial conditions, which is not the case
in a practical application with disturbances.

• The link between both models is unidirectional.
This means the inverse transformation between the
solutions of the FDM and the 1DDM is missing. This
limitation is outlined in Fig.1 where the operator is
represented by the solid line with only one direction.

• To return to the original model, additional partial
derivatives of the functions with respect to the spa-
tial variable are required, in addition to the Laplace
inversion of the functions.

• The Laplace solution of the integer-order system
must be known.

Therefore, to have an strong impact on the FC in the
analysis of PDE, it is necessary to have general method-
ologies to transform an integer-order PDE to its equiva-
lent fractional partial differential equation (FPDE), which
guarantees its existence and that can be applied for any
initial and boundary conditions of the system. Moreover,
one should have the possibility of transforming the solu-
tion of the FPDE to the PDE solution. This requirement
motivated this work in which as a first case study the
whole equivalent operator between the integer diffusion
model and its fractional description is introduced via an
integral transformation with a specific kernel.
The principal characteristic of this insight is a precise for-
mulation of the fractional-order transformation problem,
which is inspired by the works published by Colton [1977]
and Seidman [1984] for integer partial differential equa-
tions by using integer-order operators defined in terms of
an unknown kernel. The demonstration of the equivalence
between both models is achieved via Caputo’s fractional-
order derivative maintaining the same initial conditions
as in the integer order case. Specifically, the definition
of a fractional-order integral transformation (FOIT) and
its inverse fractional-order transformation (IFOIT) for
the 1DDM is proposed. Moreover, it is found that the
unique FOIT corresponds to a half-order one, so the
equivalence between both models is valid only whenever
the fractional-order derivative corresponds to one-half.
The bidirectional property of this operator is indicated by
the dotted arrows of the drawing of Fig. 1. Since the well-
posedness of the integer 1DDM with general boundary
and initial conditions is guaranteed [Evans, 1997], the
existence and uniqueness of the solution for any boundary
and initial conditions for the FDM is guaranteed as well.

The paper is organized as follows: Preliminaries and
properties of FOO are given in Section 2. The main result
related to the model equivalence for the 1DDM and FDM
is obtained in Section 3. A numerical example of the FDM
solution is presented in Section 4. Finally, the concluding
remarks are presented in Section 5.

Fig. 1. Commutative diagram for the diffusion model
transformation.

2. PRELIMINARIES OF FRACTIONAL CALCULUS

Notation. N, R, R+ denote the set of natural, real and
positive real numbers, respectively. Let [a, b] ⊂ R and
[c, d] ⊂ R denote compact intervals on the real line, and
g : [a, b] → R and f : [a, b] × [c, d] → R are real-valued
functions of a single variable or two variables, respectively.
C1[a, b] denotes the space of continuous differentiable
functions on [a, b] such that if g ∈ C1[a, b], then its
derivative g′ is continuous on [a, b]; L1[a, b] denotes the
space of integrable functions over [a, b]. AC[a, b] denotes
the space of absolutely continuous functions. Note that if
g ∈ AC[a, b], then g has a derivative g′ almost everywhere
and g′ ∈ L1[a, b]. Let f(x, t) be a differentiable function on
(x, t) ∈ [a, b]× [c, d], i.e., f(·, t) ∈ C1[a, b] for all x ∈ [a, b]
and each t ∈ [c, d] as well as f(x, ·) ∈ C1[a, b] for all
t ∈ [c, d] and each x ∈ [a, b]. The integer-order partial
derivative of the function f(x, t) with respect to the time t

and the spatial variable x are denoted as ft(x, t) :=
∂f(x,t)

∂t

and fx(x, t) :=
∂f(x,t)

∂x , respectively. The symbol ◦ denotes
the function composition. The following definitions and
auxiliary results are immediate extensions of the results
found in Kilbas et al. [2006]; Diethelm [2010]; Ishteva
[2005].

Definition 1. Diethelm [2010] Euler’s Gamma function
Γ : R+ → R+ is defined by

Γ(z) :=

∫ ∞

0

tz−1e−tdt.

Definition 2. [Kilbas et al., 2006] The Beta function is
defined by the Euler integral of the first kind:

B(y, p) =

∫ 1

0

ξy−1(1− ξ)p−1dξ, (1)

with y, p ∈ R+.

Property 1. [Kilbas et al., 2006] The Beta function satis-
fies

B(y, p) =
Γ(p)Γ(y)

Γ(y + p)
. (2)

where Γ(·) denotes the Gamma function.

Definition 3. [Kilbas et al., 2006] Given ℓ, T ∈ R+ and
with f : [0, ℓ]× [0, T ] → R, f(x, ·) ∈ L1[0, T ] for each x ∈
[0, ℓ], the Riemann-Liouville fractional integral (RLFI) of
order α with respect to t is defined by

Iαt f(x, t) :=
1

Γ(α)

∫ t

0

f(x, τ)(t− τ)α−1dτ, (3)
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where Γ(·) denotes the Gamma function and α ∈ (0, 1).
△

Definition 4. [Kilbas et al., 2006] Given ℓ, T ∈ R+ and
with f : [0, ℓ] × [0, T ] → R, f(x, ·) ∈ AC[0, T ] for each
x ∈ [0, ℓ], the Caputo fractional partial derivative (CFPD)
of order α with respect to t is defined by

Dα
t f(x, t) :=

1

Γ(1− α)

∫ t

0

fτ (x, τ)

(t− τ)α
dτ, (4)

where Γ(·) denotes the Gamma function and α ∈ (0, 1).
△

Property 2. Ishteva [2005] Let ℓ, T ∈ R+, if f(x, ·) ∈
AC[0, T ] for each x ∈ [0, ℓ]. Thus,

lim
α→1

Dα
t f(x, t) = ft(x, t). (5)

Property 3. According to [Diethelm, 2010], the CFPD
satisfies the following semigroup property. Let ℓ, T ∈ R+,
consider f(x, ·) ∈ C1[0, T ] for almost all x ∈ [0, ℓ], and let
α, β > 0 be such that [α, α+ β] ∈ [0, 1], then

Dα
t D

β
t f(x, t) = Dβ+α

t f(x, t). (6)

Property 4. Theorem 3.7 [Diethelm, 2010]. Let ℓ, T ∈ R+

and (x, t) ∈ [0, ℓ] × [0, T ]. If f(x, ·) ∈ C[0, T ], and α ≥ 0
for each x ∈ [0, ℓ], then

Dα
t I

α
t f(x, t) = f(x, t). (7)

By a generalization of the fundamental theorem of calcu-
lus, the CFPD can be understood as the left inverse of
the RLFI operator. The CFPD, however, is not the right
inverse for the RLFI as the following property indicates.

Property 5. Theorem 3.8 [Diethelm, 2010]. Let (x, t) ∈
[0, ℓ] × [0, T ]. If f(x, ·) ∈ AC[0, T ], α ∈ (0, 1) for each
x ∈ [0, ℓ] then

Iαt D
α
t f(x, t) = f(x, t)− f(x, 0). (8)

Property 6. Lemma 2.24 [Kilbas et al., 2006]. Let ℓ, T ∈
R+, α ∈ (0, 1), f : [0, ℓ] × [0, T ] → R, if f(x, ·) ∈ L1[0, T ]
and f(x, ·) ∈ AC[0, T ] for each x ∈ [0, ℓ), then the Laplace
transform of the CFPD s given by

L{Dα
t f(x, t)} = sαF (x, s)− sα−1f(x, 0), (9)

where F (x, s) =
∫∞
0

f(x, t)e−stdt is the Laplace transform
with respect to time of f(x, t) for all x ∈ [0, ℓ].

3. PROBLEM FORMULATION AND MAIN RESULT

This section focuses on the search for the integral trans-
formation that establishes the equivalence between the
FDM and the integer-order 1DDM. Specifically, the nec-
essary and sufficient conditions for the construction of the
integral transformations are given.

3.1 Problem formulation

Consider without a loss of generality the non dimensional
1DDM

vxx(x, t) = vt(x, t) (10)

and the functions φ : [0, ℓ] → R and ρ : [0, T ] → R

associated with the boundary and initial conditions

v(x, 0) = φ(x); v(0, t) = ρ(t); v(ℓ, t) < ∞. (11)

such that (10) is well-posed, i.e., the solution v(x, t) exists
and is unique for all (x, t) ∈ [0, ℓ]× [0, T ].

It is claimed that the solution w(x, t) of the FDM of order
0 < α < 1

Dα
t w(x, t) = −wx(x, t), (12)

on the same bounded domain of (10), is one-time contin-
uously differentiable with respect to x and t, respectively,
and it can be expressed as the FOIT

w(x, t) = v(x, t)−
∫ t

0

k(t− τ)vx(x, τ)dτ, (13)

where the fraction α and the kernel function k(t, τ) :=
k(t − τ) are unknown and must be determined together
with the initial and boundary conditions of the equivalent
FDM.
To establish the existence of (13) and that its integral
converges, the functions k(t, τ) and vx(x, t) are assumed
L1[0, T ] for each fixed x. Note that the integral in (13)
corresponds to the convolution of k(t) with vx(x, t). As
a consequence of the above guess, if the function k(t)
and the rational α are determined, one can look for the
IFOIT that allows obtaining the solution v(x, t) from
w(x, t). Hence, the transformation and its inverse validate
the equivalence between the models; see the commutative
diagram of Fig. 1.

3.2 Main result

The following two propositions establish the conditions
of the above claims. This means the direct and inverse
integral transformations for the integer and fractional
diffusion models are assigned. Firstly the parameter α and
the function k(t) are determined, and later on, by using
this characterization, the inverse integral transformation
is obtained.

Direct integral transformation

Proposition 1. Let v(x, t) be the solution of the 1DDM
(10) on the bounded domain (x, t) ∈ [0, ℓ] × [0, T ] with
initial and boundary conditions given by (11), and con-
sider that kernel function k(t) and vx(x, t) are L1[0, T ]
functions for each x. Therefore, the FOIT (13) is the
unique solution of (12) on the same bounded domain of
(10) with its boundary and initial conditions given by

w(x, 0) = φ(x);w(0, t) = ρ(t)− Iαt vx(0, t);w(ℓ, t) < ∞,
(14)

if and only if the kernel function is k(t − τ) = 1√
π

1
(t−τ)α

and the fractional order is α = 1
2 .

Proof 1. Necessary condition: To determine the unique
transformation, it is necessary to replace (13) in the target
system (12) and find k(t, τ) and α as follows.
By taking the derivative of the transformation (13) with
respect to x and by using the model (10) with the inte-
gration by parts of the last term, one can write
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wx(x, t) = vx(x, t)−
∫ t

0

k(t, τ)vxx(x, τ)dτ, (15)

= vx(x, t)−
[

k(t, τ)v(x, τ)

]t

τ=0

+

∫ t

0

kτ (t, τ)v(x, τ)dτ.

By using Property 4, the first term of (15) can be written
by

vx(x, t) = Dα
t I

α
t vx(x, t) (16)

=
1

Γ(α)Γ(1− α)

∫ t

0

(t− τ)−α ∂

∂τ

∫ τ

0

vx(x, ξ)

(τ − ξ)1−α
dξdτ

Now by differentiating the term into the integral, one
gets

=
1

Γ(α)Γ(1− α)

∫ t

0

(t− τ)−α vx(x, ξ)

(τ − ξ)1−α

∣

∣

∣

ξ=τ

dτ +

+
α− 1

Γ(α)Γ(1− α)

∫ t

0

(t− τ)−α

∫ τ

0

vx(x, ξ)

(τ − ξ)2−α
dξdτ (17)

Therefore, the right-hand side of the target system (12)
is given by

wx(x, t) = −
[

k(t, τ)v(x, τ)

]t

τ=0

+

∫ t

0

kτ (t, τ)v(x, τ)dτ

+
1

Γ(α)Γ(1− α)

∫ t

0

(t− τ)−α vx(x, ξ)

(τ − ξ)1−α

∣

∣

∣

∣

ξ=τ

dτ (18)

+
α− 1

Γ(α)Γ(1− α)

∫ t

0

(t− τ)−α

∫ τ

0

vx(x, ξ)

(τ − ξ)2−α
dξdτ

On the other hand, according to Definition 4, the CFPD
(4) of w(x, τ) is a function of

wτ (x, τ) =
∂

∂τ

(

v(x, τ)−
∫ τ

0

k(τ, ξ)vx(x, ξ)dξ

)

(19)

= vτ (x, τ)− k(τ, τ)vx(x, τ)−
∫ τ

0

kτ (τ, ξ)vx(x, ξ)dξ.

Thus, by (19), the CFPD of w(x, t) can be written

Dα
t w(x, t) =

1

Γ(1− α)

∫ t

0

(t− τ)−αvτ (x, τ)dτ

− 1

Γ(1− α)

∫ t

0

(t− τ)−αk(τ, τ)vx(x, τ)dτ (20)

− 1

Γ(1− α)

∫ t

0

(t− τ)−α

∫ τ

0

kτ (t, ξ)vx(x, ξ)dξdτ.

By integrating by parts the first term in (20), by adding
(18) and by factorizing similar terms one gest

wx(x, t) +Dα
t w(x, t) =

1

Γ(1− α)

(

∫ t

0

(t− τ)−α

[

1

Γ(α)(τ − ξ)1−α
− k(τ, ξ)

]

ξ=τ

vx(x, τ)dτ

)

+
1

Γ(1− α)

∫ t

0

(t− τ)−α

(

∫ τ

0

[

α− 1

Γ(α)(τ − ξ)2−α
− kτ (τ, ξ)

]

vx(x, ξ)dξdτ

)

−
[(

k(t, τ)− (t− τ)−α

Γ(1− α)

)

v(x, τ)

]t

τ=0

(21)

+

∫ t

0

[

kτ (t, τ)−
α(t− τ)−α−1

Γ(1− α)

]

v(x, τ)dτ

Then w(x, t) is a solution of (12) only if the right-hand
side of (21) is equal to 0 for all v(x, t) on its bounded
domain. As a consequence, to satisfy the summation equal
to zero for all v(x, t) on the domain [0, ℓ]× [0, T ], the four
conditions

Condition 1 : k(τ, ξ) =
1

Γ(α)(τ − ξ)1−α
.

Condition 2 : kτ (τ, ξ) =
α− 1

Γ(α)(τ − ξ)2−α
.

Condition 3 : k(t, τ) =
1

Γ(1− α)(t− τ)α
. and

Condition 4 : kτ (t, τ) =
α

Γ(1− α)(t− τ)α+1
.

must be satisfied.

One can see from the above conditions that

• Conditions 1 and 3 are the anti derivative of Condi-
tions 2 and 4 respectively;

• Conditions 2 and 4 are the derivative of Conditions
1 and 3 respectively.

Thus, it remains to obtain the function k(t − τ) and the
parameter α such that Condition 1 implies Condition 3. A
dummy change of variables in Condition 1 and Condition
3 yields

k(t, τ) =
1

Γ(α)(t− τ)1−α
=

1

Γ(1− α)(t− τ)α
,

which can be rewritten as

Γ(α)

(t− τ)α
=

Γ(1− α)

(t− τ)1−α
. (22)

Thus, this equality holds when α = 1− α, i.e., α = 1/2.

In summary, if α = 1/2, the kernel function

k(t) =
1

Γ( 12 )(t)
1

2

=
1√
πt

is assigned into the direct integral transformation
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w(x, t) = v(x, t)− 1√
π

∫ t

0

1

(t− τ)1/2
vx(x, τ)dτ, (23)

then the fractional diffusion model

D
1/2
t w(x, t) = −wx(x, t) (24)

is obtained.

Since, vx(x, t) and k(t, τ) 1 are L1[0, T ]. functions, the
integral term in (23) is well defined for all fixed x ∈ [0, ℓ],
and the initial and boundary conditions of (24) can
be fixed by evaluating the integral transformation (23).
Thus, one gets the conditions

• For t = 0, w(x, 0) = v(x, 0) = φ(x),
• For x = 0,

w(0, t) = ρ(t)− 1√
π

∫ t

0
1

(t−τ)1/2
vx(x, τ)|x=0dτ,

• For x = ℓ < ∞,

w(0, t) = v(ℓ, t)− 1√
π

∫ t

0
1

(t−τ)1/2
vx(x, τ)|x=ℓdτ < ∞.

Sufficient condition: This condition is trivial, and it
follows by substituting the FOIT (13) with α = 1/2 and

k(t, τ) =
1√

π(t− τ)1/2
into the 1DDM in (10), which

yields to FDM (12). �

Inverse integral transformation To guarantee the equiv-
alent relation between (10) and (24), the transformation
such that the solution of (10) can be expressed by the
inverse of (23) is presented. For simplicity, the following
sufficient condition is given as an IFOIT.

Proposition 2. Let w(x, t) be the solution of the FDM
(24) on the bounded domain (x, t) ∈ [0, ℓ] × [0, T ] with
initial and boundary conditions given by (14) and the
wx(x, t) be L1[0, T ] function for all x. If the inverse
integral transformation is given by

v(x, t) = w(x, t) +
1

2
√
π

∫ t

0

1

(t− τ)1/2
wx(x, τ)dτ, (25)

then the IFOIT (25) is the right inverse of the FOIT (23).
Moreover, v(x, t) is the solution of the 1DDM (10) on the
same bounded domain and conditions given by (11).

Proof 2. The proof consists of two steps. First, by sub-
stituting (25) into (23), it is shown that the IFOIT (25)
is the right inverse of the FOIT (23). Second, the IFOIT
(25) is substituted into 1DDM (10) to obtain the FDM
(24).

4. EXAMPLE FOR SPECIFIC BOUNDARY
CONDITIONS

As mentioned before, the previous works on the 1DDM
did not obtain the initial and boundary conditions of the
FDM. The goal of this section is to exemplify that there is
no need to impose arbitrary or un realistic boundary and
initial conditions for obtaining the solution of the FDM.
Instead, the results here determine that the solution of the

1 Note that 1
√

π

∫ T

0
|t− 1

2 |dt = − 2
√

π

√
T < ∞

FDM through the transformation based on a well-posed
problem of the 1DDM that actually obeys the physical
rules.

4.1 Boundary condition evaluation

Consider the particular case of the 1DDM (10), e.g.,
a leakage-free non-inductive cable with the following
boundary and initial conditions [Cheng, 1959]:

v(x, 0) = 0

v(0, t) = u(t)

v(ℓ, t) < ∞
(26)

By considering Proposition 1, one can say that the so-
lution of the target system (24) exists and is unique.
Moreover, the boundary and initial conditions

w(x, 0) = 0,

w(0, t) = 2u(t), (27)

w(ℓ, t)<∞.

can be obtained from the transformation (23).

To show the effectiveness of the result once the boundary
and initial conditions (27) have been determined, the
FDM solution through the direct FOIT is obtained with
the knowledge of the solution of v(x, t).

4.2 Solution of FDM

The solution of the FDM (24) can be found through
the direct FOIT (23) by considering the solution of the
1DDM (10) with boundary and initial conditions (26),

v(x, t) = erfc

(

x

2
√
t

)

, and its partial derivative with

respect to x,

vx(x, t) =
−e−z2

√
πt

(28)

where z =
x

2
√
t
. By substituting v(x, t) and vx(x, t) into

direct FOIT (23), one gets

w(x, t) = erfc

(

x

2
√
t

)

− 1√
π

∫ t

0

1

(t− τ)1/2

(

−e−z2

√
πτ

)

dτ.

(29)

It is left to reduce the integral term in (29), which fulfills
the following equality (as in [Bateman, 1954], on page
187, Eq. 18):

1√
π

∫ t

0

1

(t− τ)1/2
−e−z2

√
πτ

dτ =

(

x2

4

)−1/4

t1/4exp(−x2

8t
)W−1/4,1/4

(

x2

4t

)

(30)

where W(·) is the Whittaker function. From the relation-
ship of the Whittaker function and the error function
found on Bateman [1954] pag. 431, one can find that
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1√
π

(

△
2
)−1/4

exp

(

−1

2
△

2

)

W−1/4,1/4

(

△
2
)

= Erfc(△)

(31)

where △=
x

2
√
t
. Finally, from (29), (30) and (31) the

solution of the FDM is given by

w(x, t) = 2erfc

(

x

2
√
t

)

. (32)

Fig. 2 shows the behavior of the solution of the (24)
with the boundary and initial conditions (27) given in
(32). This result coincides with the solution that can be
obtained by the Fourier transform method for (24) and
(27).

0 0.2 0.4 0.6 0.8 1
0

0.5

1

0

0.5

1

1.5

2

tx

w
(x
,
t)

Fig. 2. Solution profile of w(x, t)
.

5. DISCUSSION AND CONCLUSION

5.1 Discussion

The importance of the proposed transformations is that
there exist a bidirectional link between the two integer
and fractional order diffusion models (see right loop
in Fig. 3). This is not the case in the methodology
commonly found in the literature based on the Laplace
transform (see unidirectional left path in Fig. 3). Even if
the common methodology is simple (see dotted red line in
Fig. 3), this requires the explicit solution of the diffusion
model obtained from zero initial conditions, which is not
the case in the proposed approach in this paper.

A limitation in this work is that the proposed transfor-
mation is valid for the diffusion equation. However, for
n ∈ N \ {0}, the transformation can be easily generalized
for the equation

∂v(x, t)

∂t
=

∂2nv(x, t)

∂x2n

that can be transformed to

D
1/2
t w(x, t) =

∂nw(x, t)

∂xn

where only for the case n = 1 the diffusion equation has
physical and practical importance.

Fig. 3. Method comparison diagram.
.

In the authors’ opinion, the framework introduced here
to deal with the equivalence between integer-order and
fractional-order partial equations offers new opportunities
for research:

• By means of the introduction of model equivalence,
the application of fractional order models to real
problems is possible.

• Model order reduction, specifically to reduce the
space derivatives included in the models.

• To find some physical interpretation of fractional
order models.

Future directions of this work consider the study of model
equivalence of more classes of PDEs.

5.2 Conclusion

A new insight for studying the equivalence between first-
order PDEs and FPDEs has been addressed. In par-
ticular, the equivalence between a 1DDM and a FDM
through the use of fractional-order integral transforma-
tions is introduced. For the first time, the equivalence is
formally obtained through an integral transformation and
its inverse. Furthermore, it is possible to show that the
FDM corresponds to the equivalent 1DDM for α = 1/2
by using the proposed integral transformations based on
the Caputo derivative. Moreover, the well-posedness of
the FDM of order α = 1/2 is trivially determined by this
technique. It is worth mentioning that this transformation
is not general. This means, the integral transformation
is found according to the systems’s order and structure,
the specific definition of the fractional derivative and
boundary conditions.
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Metzler, R., Glöckle, W.G., and Nonnenmacher, T.F.
(1994). Fractional model equation for anomalous diffu-
sion. Physica A: Statistical Mechanics and its Applica-
tions, 211(1), 13–24.

Modiri, A. and Mobayen, S. (2020). Adaptive termi-
nal sliding mode control scheme for synchronization of
fractional-order uncertain chaotic systems. ISA trans-
actions, 105, 33–50.

Monje, C.A., Chen, Y., Vinagre, B.M., Xue, D., and Feliu-
Batlle, V. (2010). Fractional-order systems and con-
trols: fundamentals and applications. Springer Science
& Business Media.

Nigmatullin, R. (1986). The realization of the generalized
transfer equation in a medium with fractal geometry.
physica status solidi (b), 133(1), 425–430.

Nisar, K.S., Ahmad, S., Ullah, A., Shah, K., Alrabaiah,
H., and Arfan, M. (2021). Mathematical analysis of
sird model of covid-19 with caputo fractional derivative
based on real data. Results in Physics, 21, 103772.

Oldham, K. and Spanier, J. (1974). The fractional
calculus theory and applications of differentiation and
integration to arbitrary order, volume 111. Elsevier.

Ortigueira, M.D. (2011). Fractional calculus for scientists
and engineers, volume 84. Springer Science & Business
Media.

Oustaloup, A. (2014). On the crone control. Diversity
and Non-Integer Differentiation for System Dynamics,
139–164.

Podlubny, I. (1998). Fractional differential equations: an
introduction to fractional derivatives, fractional differ-
ential equations, to methods of their solution and some
of their applications, volume 198. Elsevier.

Radwan, A.G. and Salama, K.N. (2012). Fractional-
order rc and rl circuits. Circuits, Systems, and Signal
Processing, 31(6), 1901–1915.

Seidman, T.I. (1984). Two results on exact boundary
control of parabolic equations. Applied Mathematics
and Optimization, 11(1), 145–152.
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