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Abstract: Amethodology is developed to obtain Bond Graph models from the position vectors
of centers of mass and rotation matrices in mechanical systems. In this methodology, the
equations of tangential velocity, the rotation matrix and the inertia associated with the centers
of mass and potential energy of the physical system are used. This method is applied to the
mechanical part of a small fixed blade wind turbine and a Rotational-Rotational (RR) robot.
The objectives are to model the yaw dynamics and the rotational speed of the rotor in the wind
turbine and the rotational angles of the RR robot. The implementation and comparison of the
results is carried out, both in 20-sim and in Matlab-Simulink from the Lagrange equations
and Simscape Toolbox, these results are compared to verify the proposed models. For the yaw
angle model, the wind turbine steering vane is removed and a mechanism is proposed that
allows the wind turbine to move to the desired angle, around the vertical axis.

Keywords: Bond Graph Methodology, Tangential Speed, Rotation Matrix, Inertia, Wind
Turbine.

1. INTRODUCTION

In this work, a methodology is proposed that allows the
construction of the Bond Graph model through the posi-
tion of the centers of mass of physical systems, for which it
is proposed to use the equations of tangential and angular
velocities and the inertia associated with these centers
of mass. The methodology can be applied to mechanical
systems, in the specific case of this article it is applied
as an example to the mechanical part of small fixed-
blade wind turbines and a RR robot. This methodology
is intended to validate through computational simulations
and compare them with simulations obtained through the
Euler-Lagrange equations, Goldstein et al. (2001) and
Simscape Toolbox. In addition, there are publications
on the modeling of Bond Graph from position vectors
for two-dimensional systems, Mukherjee and Karmakar
(2000) and three-dimensional systems where Newton-

Euler equations are used for the construction of the Bond
Graph model, Zeid and Chung (1992) . The proposed
methodology does not require the transformations of the
Euler angle between rigid bodies as in the work of Agarwal
et al. (2012). The increase in the demand for electrical
energy, the decrease in fossil fuels and the damage to
the environment, have considerably increased the use of
renewable energies, including the production of electricity
through wind energy, this has given the need to achieve
more efficient systems through new simplified models,
to this need is added the obtaining of models through
Bond Graph as one of the existing modeling techniques.
In the literature there are different Bond Graph models
for wind turbines, most of them are focused on obtaining
the relationships that exist between the blades, the hub
and the generator torque, Gonzalez and Lopez (2017),
Khaouch et al. (2016), where the ratio of the yaw angle
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is obtained mathematically, Bakka and Karimi (2011),
Agarwal et al. (2012).

This article is developed as follows, first in section 2 the
proposed methodology is developed step by step, second
in section 3 and 4 it is applied to the mechanical part of
the wind turbine and the RR robot, respectively and as a
finally the comparisons between the results are made, by
computational simulations.

2. METHODOLOGY

The proposed methodology is built on a basic procedure
to obtain the Bond Graph diagram of the desired system
from the position vectors of the centers of mass and
rotation matrices; tangential velocity equations, rotation
matrices, and inertia associated with centers of mass, as
well as the potential energy of the physical system, are
used. For this methodology, a Force-Voltage analogy is
selected (F-V) Karnopp et al. (2012), but it is applicable
for the Force-Current analogy (F-i), it is only necessary
to readapt each analogy to the generalized variables of
our system as shown in Table 1

Table 1. Bond Graph Analogies

System ”e” ”f” ”p” ”q”

F-V

Translational Mechanic F v ρ x

Rotational Mechanic τ ω ρω θ

Electric V i λ qe
F-i

Traslational Mechanic v F x ρ

Rotational Mechanic ω τ θ ρω
Electric V i λ qe

e-Effort τ -Torque x-Position

f-Flow V-Voltage θ-Angle

ρ-Moment v -Linear velocity qe-Electric charge

q-Displacement ω- Angular Velocity λ-Flow

F-Force i-Current ρω-Angular Momentum

Other considerations are that in the F-V analogy, the
1-junctions are a summation of forces, the inertias are
related to masses (I:m) and the capacitances are related
to the stiffness constants (C:1/k), but in the F-i analogy
the 1-junctions are summations of velocities, the inertias
are related to the stiffness constants (I:1/k) and the
capacitances are related to the masses (C:m).

2.1 Steps of the Methodology.

The steps of the proposed methodology are listed below:

Step 1: Identification of the centers of mass and
obtaining the position vectors of each one.

Analyzing the desired physical system to identify their
centers of mass to get their position vectors, which can
be obtained in the following ways:

a) Denavit-Hartenberg Convention (Includes rotation
matrices)

b) System geometry

The use of the two methodologies varies depending on
the complexity of the system and user familiarity with
the convention or system geometry. The position vectors
are represented by:

ri = [xi (q) yi (q) zi (q)]
T

(1)

where: q = [q1, ..., qn]
T
being q the time-dependent gener-

alized variable and i is the i−th center of mass, n is the
number of generalized variables.

Step 2: Obtaining Tangential velocities from the
position vectors, where the transformer modules
(MTF) are identified.

ṙi =
dri

dt
= [ẋi (q, q̇) ẏi (q, q̇) żi (q, q̇)]

T
(2)

[ẋi (q, q̇) ẏi (q, q̇) żi (q, q̇)]
T
=

n
∑

j=1

MTFij q̇j (3)

MTFij =
∂ri

∂qj
, where MTF ij ∈ ℜ

3×1. (4)

Step 3: Identification of the 1-junctions represent-
ing angular velocities associated with the motion
variables.

First, we identify the angular velocities associated with
the 1-junctions, are identified, and their representation in
Bond Graph is shown in Fig. 1

1q̇j (5)

Step 4: Identification of 0-junction, if necessary
(associated with ”+” or ”-”, in the vector of
tangential velocities).

Expanding (3) for ẋi (q, q̇) we have (6) where its represen-
tation in Bond Graph is shown in Fig. 1, being analogous
for ẏi and for żi.

ẋi (q, q̇) = MTF i1k q̇1 ± . . .±MTF ink q̇n. (6)

where: k is the k-th MTF ijk being MTF ijk ∈ ℜ1×1

Step 5: Representation of the 1-junction associ-
ated with each tangential velocity vector (ẋ , ẏ
, ż), and the inertia related to the mass of that
position vector (Ii : mi).

1ẋi
, 1ẏi

, 1żi (7)

1ẋi
⇀ Ii : mi , 1ẏi

⇀ Ii : mi , 1żi ⇀ Ii : mi (8)

To these 1-junctions converge the previous steps, from (2)
to (8) the representation in Bond Graph associated with
each tangential velocity is obtained. The representation
of ẋi can be seen in Fig. 1, being analogous to the
representations for ẏi and żi.

Step 6: Determine if there are external or internal
forces acting on the 1-junctions of the steps 3 or
5, representing themselves as sources of effort or
flow (”Se” or ”Sf”).

The external forces acting on each axis (x, y, z) of the
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system are analyzed, which are represented as sources of
effort or flow, according to the analogy used, among these
external forces is the force of gravity, this representation
is shown in Fig. 1, where only the force acting on the
x-axis is shown, being analogous those of y and z.

1q̇j MTF

ijk

0

±

1

q̇n

MTF

ijk

∫

∫

1 ẋi

I mi

Se

Se

qj

...

qn

qj ...qn

qj ...qn

Step 3

Step 6

Step 4 Step 5

Step 6

Fig. 1. Steps 3 to 6 representation in Bond Graph with a
Se associated with the x-axis.

Step 7: Determine the absolute angular velocity
through the Rotation Matrices.

The absolute angular velocities are determined as follows:

wi =
(

Ri
0

)T
wi

0 (9)

where: Ri
0 is the Rotation Matrix, wi

0 is the relative
angular velocity concerning the inertial reference frame:

wi
0 = ρiw

1
0 +R1

0w
2
1 + · · ·+Ri−1

0 wi
i−1 (10)

where: ρi = 1 if there are rotations else ρi = 0.

wi = [wix wiy wiz]
T
=

n
∑

j=1

(MTFw−ij q̇j) . (11)

being MTFw−ij ∈ ℜ3×1

Step 8: Representation of the 1-junction related
to the absolute angular velocity.

1wi
, where this 1-junction is a 3× 1 vector (12)

Step 9: Identification of 0-junction, if necessary
(associated with ”+” or ”-”, in the vector of
absolute angular velocities).

Analyzing (11) each row of the MTFw−ij vector can
be rewritten as shown in (13); its representation in
Bond Graph is shown in Fig. 2, being analogous to the
representation of each of its components in y and z.

wix = MTF i1k q̇1 ± . . .±MTF ijk q̇n (13)

where: k is consecutive of the MTFs of the previous steps
for the combination ij being MTF ijk ∈ ℜ1×1

Step 10: Associate the 1-junction of the previous
step with the inertia of that center of mass. (”I:J”)

As the absolute angular velocity in each axis is scalar
and the inertia is a matrix, Ji ∈ R3×3, it is necessary

to built the vector of absolute angular velocity, using
“PowerMux” as shown in Fig. 2. Although inertia is a

1q̇j MTF

ijk
0

±

1q̇n MTF

ijk

∫

∫

qj

...

qn

qj ...qn

qj ...qn

1
wix

1
wiy

1
wiz

1
wi

IJi

Step 9

Step 10

Fig. 2. Step 9 and 10 represented in Bond Graph with
absolute angular velocity.

matrix, if the angular velocity has zero in two of its 3
components then it is represented in scalar form, that is,

if wi = [0 wiy 0]
T

then, wi
TJiwi = Jiyw

2
iy , where the

relationship with rotational kinetic energy is maintained.

Step 11: Calculate the Potential Energy.

The potential energy in each of the centers of mass is
related to gravity or elasticities.

Ep =
m
∑

i=1

migzi (q) +
1

2
βs2 (14)

where: m is the number of centers of mass, zi (q) is the
position of the height of the i-th center of mass and β is
the stiffness constant, s is the effective displacement.

The two terms of Ep are analyzed independently, the first
term indicates on which center of mass the force of gravity
acts, for this objective we must make use of (15)

Fg =
∂(
∑m=i

i=1 migzi (q))

∂qj
(15)

From this result we would obtain the centers of mass
that are affected by the force of gravity, which are
those that are affected by the generalized variables, its
implementation in Bond Graph, is given by a source of
effort, with the value of −mg, as shown later in the
application section of the methodology.

The second term indicates the capacitive elements ”C”
that influence the generalized variables product of the
elasticity of some element of the system as shown in
Figures 3 (a) and 3 (b) when the elastic or capacitive
element has velocity q̇j and is between two centers of
mass where its generalized variables have different speeds,
respectively.

The following step is recommended to verify the Bond
Graph model and to select the simplest equations for
implementations in Bond Graph

Step 12: Determine the Euler-Lagrange equations
of motion and compare them in simulations with
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1q̇j C

T

(a) (b)

1

q̇j

1 q̇n0

T

CT

Fig. 3. Representation of capacitive elements related to
potential energy a) one centers of mass b) Between
two centers of mass.

the obtained Bond Graph model.

The Euler-Lagrange equations of motion are calculated,
as shown below.

∂

∂t

(

∂L

∂q̇

)

−
∂L

∂q
= τ − bq̇ (16)

where: L = (Ekt
+ Ekr

) − Ep, Ekt
=

∑m

i=1
1
2miṙ

T
i ṙi is

the Translational Kinetic Energy, Ekr
=

∑m

i=1
1
2w

T
i Jiwi

is the Rotational Kinetic Energy and b is the Viscous
Coefficient of Friction.

3. BOND GRAPH MODEL OF THE WIND TURBINE

This model is based only on the mechanical part of the
wind turbine, to obtain the model in Bond Graph we will
use the methodology proposed in section 2, using a force-
voltage analogy.

STEP 1: Analyzing the physical system in Fig. 4, ob-
tained from modeling the wind turbine in SolidWorks, five
centers of mass are localized, where Dc are the distances
to reach each center of mass, Ω and γ are the angles of
rotation around the horizontal or hub axis and vertical
(Yaw) axis, respectively. In the specific case of our ap-

Fig. 4. Location of wind turbine centers of mass

plication we use the Denavit-Hartenberg convention as
shown in Table 2. In this analysis the blades have a
distribution of 120 degrees, so the angular velocity of each
one presents this lag. where: h = 1, 2, 3 and

Table 2. Denavit-Hartenberg parameters

Tij θij Dij αij dij

Nacelle T01 γ D1 0 D2

Hub T12 0 D3 0 D4

T23 0 0 0 D5

Bladeh T34 0 0 Ωh 0

T45 0 D6 0 0

Ω1 = Ω ; Ω2 = Ω−
2π

3
; Ω3 = Ω+

2π

3
(17)

The position vectors are:
Nacelle

r1 =

[

D2 cos (γ)
D2 sin (γ)

D1

]

(18)

Hub

r2 =

[

D2 cos (γ) + D4 cos (γ )
D2 sin (γ ) +D4 sin (γ )

D1 +D3

]

(19)

Bladeh

r(h+2) =
[

(D2 +D4 +D5) cos (γ ) + D6 sin (Ωh ) sin (γ )
(D2 +D4 +D5) sin (γ )−D6 sin (Ωh ) cos (γ )

D1 +D3 +D6 cos (Ωh )

]

(20)

STEP 2: From the position vectors of each center of
mass given (17) to (20) and applying (2), (3), and (17)
we obtain:

Nacelle ṙ1 =

[

(MTF111) γ̇
(MTF112) γ̇

0

]

(21)

where: MTF111 = −D2 sin (γ) and MTF112 =
D2 cos (γ)

Hub ṙ2 =

[

(MTF211) γ̇
(MTF212) γ̇

0

]

(22)

where: MTF211 = −D2 sin (γ) − D4 sin (γ) and
MTF211 = D2 cos (γ) + D4 cos (γ)

Bladeh

ṙ(h+2) =




(

MTF(h+2)21

)

Ω̇ −
(

MTF(h+2)11

)

γ̇
(

MTF(h+2)22

)

Ω̇ +
(

MTF(h+2)12

)

γ̇
(

MTF(h+2)23

)

Ω̇





(23)

where: h = 1, 2, 3 , MTF(h+2)21 = D6 cos (Ωh) sin (γ),
MTF(h+2)22 = −D6 cos (Ωh) cos (γ), MTF(h+2)11 =
(D2 +D4 +D5) sin (γ) −D6 sin (Ωh) cos (γ),
MTF(h+2)12 = (D2+D4+D5) cos(γ)+D6 sin(Ωh) sin(γ),
MTF(h+2)23 = −D6 sin (Ωh)

STEP 3:
1Ω̇ and 1γ̇ (24)

STEP 4: In this case, there are zeros in all equations,
this will be represented in the following steps.

STEP 5:
1ẋ 1ẏ 1ż (25)
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1ẋ ⇀ Ii : mi 1ẏ ⇀ Ii : mi 1ż ⇀ Ii : mi (26)

Joining from (21) to (26) the representation in Bond
Graph associated with each tangential velocity is ob-
tained, Blade 2 is represented in Fig. 5, while Blades 1
and 3 are represented analogously.

STEP 6: In this case, there are external forces associated
with the force of the wind on the blades that generates
a torque applied on the hub axis, an applied torque on
the vertical axis due to the motor and mechanism added,
and the force of gravity acting (see below Step 11) on
the 1-junction related to the position in z (Semg) , being
represented in Bond Graph as shown in Fig. 5.

1Ω̇ MTF

422

0 1 γ̇MTF

412

∫

∫

1ẏ4 I

m4

Se

Ω

γ

MTF

421

0 MTF

411

1ẋ4 I

m4

Se
MTF

423

1

ż4

I
m4

Se mg

Ω− γ Ω− γ

Ω− γ Ω− γ

Ω− γ

Fig. 5. Example of Bond Graph of Blade 2.

STEP 7: Applying (9) to (11) the absolute angular
velocities of each center of mass are obtained:

Nacelle w1 = [0 0 γ̇]
T

(27)

Hub w2 = [0 0 γ̇]
T

(28)

Bladeh

w(h+2) =





Ω̇
(

MTF(h+2)13

)

γ̇
(

MTF(h+2)14

)

γ̇



 , being h = 1, 2, 3 (29)

where: MTF(h+2)13 = sin (Ωh) and MTF(h+2)14 =
cos (Ωh)

STEP 8:
1w1

, 1w2
, 1w3

, 1w4
, 1w5

(30)

STEP 9:This step does not apply to this system.

STEP 10: As the inertia of the blades are matrices, a
”PowerMux” is used, as shown in Fig. 6.

Although inertia is a matrix for all centers of mass, and
analyzing (27) or (28) it is evident that the representation
in Bond Graph of the angular velocity of the centers of
mass of the nacelle and the hub can be represented as
scalar.

w1
TJ1w1 = J1z γ̇

2 , w2
TJ2w2 = J2z γ̇

2 (31)

1

Ω̇

1

γ̇

MTF

413

MTF

414

1
w4x

1
w4y

1
w4z

1
w4

IJ4From Figure 5

Fig. 6. Bond Graph with the absolute angular velocity for
blade 2 (center of mass 4).

STEP 11: Obtaning zi(q) from (18) to (20) and applying
(14), the potential energy in each of the centers of
mass is related to gravity only (in this case elasticity is
disregarded).

Ep = m1gD1 +m2g (D1 +D3)

+ 3m3g

(

D1 +D3 +
∑ D6 cos (Ωh )

3

)

(32)

where: m3 = m4 = m5, h = 1, 2, 3, analyzing (15) and
(32) it is evident that the force of gravity is present in the
centers of mass 3 to 5, or what is the same is present in
the z-axis of the blades, as shown in Fig. 5 (Semg).

Figure 7 shows the extended model in Bond Graph of the
wind turbine (Nacelle, Hub and Blade), this representa-
tion covers the steps of the methodology (from steps 2 to
11).

Se τ21

Ω̇

Blade 1 Blade 2 Blade 3

1 γ̇

∫

∫

Ω

γ

1 Se

τ1

MTF 211MTF212MTF111 MTF 112

1 ẋ21ẏ21ẋ1 1 ẏ1

I m2Im2I m1Im1

I

J(2z+1z)

To all Blade and MTFΩ− γ

Fig. 7. Bond Graph (Extended) representation of the
Wind Turbine

STEP 12: Making use of (16) we obtain the Euler-
Lagrange equations of motion, for each generalized vari-
able.
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Equation of motion for γ
(

3J3y
2

+ J2z +
3J3z
2

+ J1z +D2
2m1 +m2(D

2
2 +D2

4

+2D2D4 ) + 3m3(D
2
2 +D2

4 +D2
5 +

D2
6

2
+ 2D2D4

+2D2D5 + 2D4D5)) γ̈ = Jeq1γ̈ = τ1 − b1γ̇

(33)

Equation of motion for Ω

3
(

m3D
2
6 + J3x

)

Ω̈ = Jeq2Ω̈ = τ2 − b2Ω̇ (34)

where b1 and b2 are coefficients of viscous friction. From
the equations of motion the accelerations are multiplied
by inertias, i.e., the equations of motion are expressed
analogously to Newton’s laws where for rotation the sum
of all torques is proportional to the acceleration, being
the constant of proportionality is the inertia associated
with the system:

∑

τ = Jθ̈ (35)

So it is possible to implement it directly in Bond Graph
Methodology, which is an advantage and particularity of
this system, where the Coriolis C(q, q̇) and Gravity G(q)
matrices are zero. In the specific case of this system, G(q)
in the Lagrange model is zero due to the balanced distri-
bution of 120 degrees between each blade, counteracting
the effect of gravity (mg) between each blade. This par-
ticularity allows an easier implementation and shows why
it is important to arrive at Euler Lagrange’s equations
Karnopp (1977) Karnopp (2012) in this methodology to
verify if it is possible to obtain a reduced system as shown
in Fig. 8.

Se
τ1

1

γ̇

I

Jeq1

Se
τ2

1

Ω̇

I

Jeq2

Fig. 8. Bond Graph (Simplified) representation of equa-
tions of motion

4. BOND GRAPH MODEL OF THE RR ROBOT

Step 1: Analyzing the physical system in Fig. 9, obtained
from the modeling of the Robot RR in SolidWorks, two
centers of mass are located, where l1 and l2 are the
distances to reach each center of mass, θ1 and θ2 are the
rotation angles around the vertical axis and horizontal
axis respectively.

Table 3. Denavit-Hartenberg parameters

Tij θij Dij αij dij

T01 θ1 l1 90 0

T12 θ2 l2 0 0

Analyzing the Fig. 9, the Denavit-Hartenberg parameters
are obtained. Thus with this obtaining Step 2, repre-

Fig. 9. Location of wind turbine centers of mass

sented by the tangential velocities and Step 7 for absolute
angular velocities.

ṙ1 =

[

0
0
l1

]

(36)

ṙ2 =

[

(MTF211) γ̇
(MTF212) γ̇

0

]

(37)

where: MTF211 = l2 cos (θ1) and MTF212 = l2 sin (θ1)

w1 =





0

θ̇1
0



 (38)

w2 =





(MTFw−21)θ̇1
(MTFw−22)θ̇1

θ̇2



 (39)

where: MTFw−21 = sin (θ2) and MTFw−22 = cos θ2

Analyzing Step 2 to 11 the representation is obtained
of Fig. 10 in Bond Graph:

1

θ̇1

MTF

211

MTF

212

MTF

w − 21

MTF

w − 22

1

ẋ2

1

ẏ2

I
m2

I
m2

I

J2x

I

J2y

I

J1y

R

b1
Se
τ1

θ1
∫

1

θ̇2

I

J1z

R

b2

Se
τ2

∫

θ2

θ1 θ1

θ2

θ2

Fig. 10. Bond Graph RR robot
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Developing STEP 12: we obtain the Euler-Lagrange
equations of motion, for each generalized variable.

Equation of motion for θ1

(J1y + J2y cos
2 θ2 + l22m2 + J2x sin

2 θ2)θ̈1

+ J2x sin 2θ2θ̇2θ̇1 − J2y sin 2θ2θ̇2θ̇1 = τ1 − b1θ̇1
(40)

Equation of motion for θ2

J2z θ̈2 −
tan θ2(J2x − J2y)θ̇2

2

2

tan2 θ2 + 1
= τ2 − b2θ̇1 (41)

Analyzing the equations of motion (40) and (41) , it can
be seen by simple inspection that their implementation in
Bond Graph is more complex than their implementation
developed in the previous steps as show in Fig. 10.

5. VERIFICATION OF THE METHODOLOGY BY
COMPUTATIONAL SIMULATIONS

Analyzing the developed examples and the proposed steps
of the methodology, the implementation in 20-Sim (Bond
Graph) of the simplified scheme of Fig. 8 for the wind
turbine and the scheme of Fig. 10 for the RR robot is
carried out. The parameters used for the simulation are
as shown below: Wind Turbine parameters: D1 = 1.817
m, D2 = 0.0657 m, D3 = 0.0057 m,D4 = 0.1217
m, D5 = 0.0186 m,D6 = 0.339 m, mass (kg):m1 =
11.6760, m2 = 0.5443, m3 = 0.5987, inertia (kg ∗ m2):
J1x = 0.0561910066, J1xy = 0.0091358265, J1xz =
−0.004245226677227853, J1y = 0.0732685013093770,
J1yz = 0.001842850879795179, J1z = 0.070677543101644,
J2x = 0.0013146135416260, J2xy = −2.41885235925522×
10−7, J2xz = −3.4916847045624 × 10−9, b1 = b2 = 0,
J2y = 0.00071655178635907, J2yz = −1.67485386331549×
10−7, J2z = 0.0006840017325117, J3x = 0.0370823154229,
J3xy = −0.000546246474237, J3xz = −0.00017857796137,
J3y = 0.000491678950127, J3yz = −0.00011382205662520,
J3z = 0.0373784203097498, τ1 = 20, τ2 = 60, RR Robot
parameters: l2 = 0.271, m1 = 11.5037, m2 = 3.23121,
b1 = 1.5, b2 = 1.5, J1y = 0.137159, J2x = 0.0323151,
J2y = 0.0338776, J2z = 0.015552, τ1 = 60, τ2 = 60, initial
parameters equal zero:

Figure 11 and 12 show the Matlab representation of the
wind turbine model and the RR robot respectively

Figures 13 and 14 show the comparison of the computa-
tional results of the implementation of Bond Graph and
Matlab (simscape, Lagrange) for the mechanical part of
the wind turbine.

The results show in Figures 13 and 14 are as expected
due to Eq. (35) and Fig. (8) when constant inputs are
applied.

Figures 15 and 16 show the comparison of the computa-
tional results of the implementation of Bond Graph and
Matlab (simscape, Lagrange) for the RR robot

Fig. 11. Implementation in Matlab Wind Turbine

Fig. 12. Implementation in Matlab RR Robot

Fig. 13. Comparison of the results of the Yaw-angle-
velocity (γ̇)

Figure 14 to 16 show that all the system outputs are
practically equals for the Simscape, Lagrange and Bond
Graph models with small differences as show in the zoom
boxes of these figure. These differences are due to the
numeric algorithms used in the simulations.
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Fig. 14. Comparison of the results of the speed of the
horizontal axis (Ω̇)

Fig. 15. Comparison of the results of the θ1

Fig. 16. Comparison of the results of the θ2

CONCLUSIONS

The proposed methodology allows obtaining Bond Graph
models based on the position vectors of the centers of
mass and rotational matrices and Lagrange equations. As
evidenced in the analyzes carried out, it can be concluded
that it is always necessary to carry out the 12 steps of
the methodology, since sometimes the implementation by
Lagrange (wind turbine) or based on the position vectors
(RR robot) is easier. A reduced Bond Graph model of
the small wind turbine with fixed blades was obtained
for the mechanical part, additionally, this reduced model

is verified by comparing it with the models obtained in
Lagrange and the Solidworks model exported to Matlab /
Simulink / Simscape. An advantage of this methodology
is that in some systems it is possible to obtain reduced
models, which allows reducing the computational calcula-
tion methods, as well as their implementation. Also, the
proposed methodology allows to obtain a simpler Bond
Graph model compared to other methods such as Newton-
Euler, which are more complex when obtaining Bond
Graph models for three-dimensional systems.
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