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Abstract: In this paper, the Autoregressive Moving Average (ARMA) model is used for the
time series prediction with chaotic dynamic. The estimation of the weights vector of ARMA
model can be obtained through an adaptive algorithm based on stochastic gradient descent,
such that the prediction performance of a chaotic time series performed through ARMA model
is influenced by the value of the step size. For this, in this paper, a new version of Normalized
Least Mean Square (NLMS) algorithm is proposed with the step size adapted by a Mamdani
Fuzzy Inference System (MFIS) used for estimation of the weights vector of ARMA model, for
the time series prediction with chaotic dynamic.
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1. INTRODUCTION

A time series can be defined as a samples set ordered and
obtained at given time instants (Dong and Pedrycz, 2008).
One application that is very popular and of great interest
to academic community and in general is the time series
prediction, which is applied in various areas of knowledge
as in biological systems (Gharehbaghi and Lindén, 2017),
econometrics (Nonejad, 2021), control systems theory
(Lee et al., 2018), meteorology (Lorenz and Brunke,
2021), and others. Due to possibility of outliers and
interdependence in the observed samples, to obtain a
satisfactory prediction based on a training data set is
not a simple task. Furthermore, one complexity that a
time series may present is the presence of chaotic dynamic
(Farmer and Sidorowich, 1987). The main characteristics
that define a time series as chaotic are that its behavior
must have a stationary nature and it must be sensitive to
variations in initial conditions, such that a small variation
in its initial conditions makes that the observed values at
each time instant evolve dramatically.

The Autoregressive Moving Average (ARMA) model has
been applied in the time series prediction of a stationary
nature (Ansari et al., 2019). To perform of time series
prediction based on an ARMA model, initially it is
necessary to obtain a model for a previously collected
data set and then predict t steps ahead the next time
observations based on the obtained model. Since a chaotic
time series exhibits stationary behavior, then it is justified
the use of an ARMA model for prediction. To estimate
the weights vector of an ARMA model, several adaptive

algorithms based on stochastic gradient descent have been
used, where it is possible to cite the most traditional
such as the Least Mean Square (LMS) (Rahman et al.,
2019) and the Normalized Least Mean Square (NLMS)
(Garroppo and Callegari, 2020). This work is limited
to study only the NLMS adaptive algorithm for the
estimation of the weights vector of an ARMAmodel, since
it presents a lower sensitivity to variations of the input
signal power and has a good performance in correlated
signals. In Golshan and Samet (2009); Samet et al. (2013),
an ARMA model with the weight vector estimated by the
NLMS adaptive algorithm with the fixed step size was
used for prediction of reactive power required for electric
arc furnace operation.

For a good performance of NLMS adaptive algorithm
during the update of the estimate of the weight vector
of ARMA model, it is necessary to perform a good choice
of step size (Strutz, 2019; Shin et al., 2004). The step size
is so important for the performance of NLMS adaptive
algorithm such that, a fast convergence speed of the
weights vector will be obtained if the step size is large,
but the steady-state Mean Square Error (MSE) will be
large. On the other hand, a slow convergence speed of
the weights vector will be obtained if the step size is
small, but the steady-state MSE will be small Aslam et al.
(2021). A possible solution to obtain a good performance
of NLMS adaptive algorithm is to make the step size be
variable at each time instant Strutz (2019); Aslam et al.
(2021); Casco-Sanchez et al. (2019); Peng et al. (2020).
A disadvantage to the methodologies cited above is that
the adjustment of the step size at each time instant is

Guanajuato, México, 13-15 de Octubre, 2021 Copyright©AMCA. Todos los Derechos Reservados www.amca.mx

Memorias del Congreso Nacional de Control Automático
ISSN: 2594-2492



performed dependent on high-order statistical measures.
Furthermore, the performance of these methodologies
is dependent on the choice of weighting parameters,
damping factor, and others.

Since the Mamdani Fuzzy Inference System (MFIS) has
been used to solve problems of difficult mathematical
formulation in various areas of knowledge (Iancu, 2012;
Ahmadi et al., 2020), its use is a possible alternative for
adaptation of the step size of NLMS adaptive algorithm
at each time instant. It is important to mention, according
to the bibliographic studies performed in the specialized
literature by the author of this paper, few works have
proposed the use of a MFIS to adapt the step size
of NLMS adaptive algorithm. In Orozco-Tupacyupanqui
et al. (2015), a neuro-fuzzy system was used for tuning a
non-adaptive optimal step size, according to the learning
curve obtained for different step sizes. The methodology
proposed in Ng et al. (2009) is closer to the proposal in
this paper, where an MFIS is used to adapt the step size as
a function of the error used to update the estimate of the
weights vector of an adaptive equalizer of communication
channels. A disadvantage of the methodology proposed in
Ng et al. (2009), is that the step size is not adapted as a
function of the time instant, such that the quantity of time
instant is an important parameter for the convergence of
the weights vector.

This paper aims to propose the chaotic time series predic-
tion based on ARMA model with updated of the estimate
of the weights vector performed through NLMS adaptive
algorithm, with variable step size adapted by a MFIS.
This new version of NLMS adaptive algorithm is namely
Fuzzy Variable Step Size - Normalized Least Mean Square
(FVSS-NLMS) algorithm. Unlike the proposed methodol-
ogy in Ng et al. (2009), this paper proposes the adaption
of the step size as a function of the squared value of the
error used to update the estimate of the weights vector
of ARMA model and of the normalized time instant by
the Min-Max method. Through a linguistic description
implemented in a fuzzy rule base, it is possible to obtain
a good performance of ARMA model in the training stage
and, consequently, in the prediction stage, when com-
pared to the use of a fixed step size. Thus, the contribution
proposed in this work is clear and justified. In order
to compare the performance of FVSS-NLMS algorithm,
the results obtained in the training stage and in the
prediction stage were compared with the results obtained
by the methodology proposed in Ng et al. (2009) and
by the traditional versions of LMS and NLMS adaptive
algorithms. This paper is organized as follows: in Section
2, the structure of ARMA model is presented; in Section
3, the FVSS-NLMS algorithm is presented; in Section 4,
the procedure for time series prediction based on ARMA
model via FVSS-NLMS algorithm is presented; in Section
5, the computational results obtained are presented.

2. AUTOREGRESSIVE MOVING AVERAGE MODEL

Box and Jenkis (Makridakis and Hibon, 1997) described
that an Autoregressive Moving Average (ARMA) model
can represent a stationary stochastic process, where the
sample y(k) observed at time k not only depends on
the samples observed at past instants y(k − 1), y(k −
2), . . . , y(k − n), but also has an interdependent rela-
tionship with the observed noises ǫ(k), ǫ(k − 1), ǫ(k −
2), . . . , ǫ(k − n). After the parameterization of ARMA
model based on a training data set, then it is possible to
obtain the future estimates from y(k) by the prediction t
steps ahead.

For a stationary time series represented by a samples
set {y(k)}, the ARMA(p, q) model can be expressed as
follows:
ŷ(k) = ψ1ŷ(k − 1) + ψ2ŷ(k − 2) + . . .+ ψpŷ(k − p)
+ǫ(k) + ϑ1ǫ(k − 1) + ϑ2ǫ(k − 2) + . . .+ ϑqǫ(k − q),

(1)
where p indicates that there are p delayed versions of the
sample ŷ(k) estimated by the ARMA model and q indi-
cates that there are q delayed versions of ǫ(k). Further-
more, ψu for u = 1, 2, . . . , p and ϑv for v = 1, 2, 3 . . . , q,
are the coefficients or weights of ARMA(p, q) model that
satisfy the stationarity and invertibility conditions, and
ǫ(k) is a noise described by a stochastic process with
zero mean and constant variance σ2

ǫ . Another manner of
rewriting (1) is given in vector form, as follows:

ŷ(k) = ΘT (k)Γ(k) = ΓT (k)Θ(k), (2)

where Γ(k) = [y(k − 1) y(k − 2) . . . y(k − p) ǫ(k) ǫ(k −
1) ǫ(k − 2) . . . ǫ(k − q)] ∈ R

(p+q+1)×1 is the regressors
vector and Θ(k) = [ψ1 . . . ψp 1 ϑ1 . . . ϑq] ∈ R

(p+q+1)×1

is the weights vector of ARMA(p, q) model. According to
Wiener criterion Prasad and Patil (2016), the update of
the estimate of the weights vector of ARMA(p, q) model
can be obtained as follows:

Θ(k + 1) = Θ(k)−
1

2
µ∇Θ(k)(E[e

2(k)]), (3)

where J = ∇Θ(k)(E[e
2(k)]) is the cost functional de-

scribed by the stochastic gradient of the squared error
e2(k) = (y(k) − ŷ(k))2 and µ is the step size used to
update the estimate of the weights vector. For real-time
application, it is quite expensive to accumulate samples
to work with the expectation E[•] of the squared error.
Instead of working with the mathematical expectation,
one can work with instantaneous values of the squared
error, thus emerging the LMS adaptive algorithm. In this
manner, the cost functional is rewritten as:

J = ∇Θ(k)(e
2(k)), (4)

substituting (4) into (3) is obtained that:

Θ(k + 1) = Θ(k)−
1

2
µ∇Θ(k)(e

2(k))

= Θ(k)−
1

2
µ∇Θ(k)[(d(k)−ΘT (k)Γ(k))2]

= Θ(k) + µe(k)Γ(k),
(5)
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where ∇Θ(k)(e
2(k)) = −2e(k)Γ(k). To obtain the NLMS

adaptive algorithm, it is necessary to normalize the LMS
adaptive algorithm by the input signal power, as follows:

Θ(k + 1) = Θ(k) + µ
e(k)Γ(k)

ΓT (k)Γ(k)
(6)

3. FVSS-NLMS ALGORITHM

So that the ARMA(p, q) model can track the dynamic of
the training data set of a time series, it is necessary that
the estimative of the weights vector Θ(k) be updated at
each time instant. In this work, the update of the estimate
of the weights vector Θ(k) is performed by the FVSS-
NLMS algorithm, as follows:

FVSS-NLMS
µ(k) = MFIS(e2(k),K(k))

Θ(k + 1) =







Θ(k) + µ(k)
e(k)Γ(k)

h(k)
, if h(k) 6= 0

Θ(k), if h(k) = 0
k ∈ [1,K],

(7)
where µ(k) is the step size adapted by the MFIS, h(k) =
ΓT (k)Γ(k), Θ(k) is the weights vector of ARMA (p, q)
model, e2(k) is the squared error, Γ(k) is the regressors
vector, K(k) is the time instant k normalized by the Min-
Max method, and K is the total number of time instants.
It is important to note that e2(k) and K(k) are the input
variables of MFIS.

Definition 1 (Membership Function) (Wang, 1999).
Let be the variable x and a universe of discourse U ⊂ R,
such that x ∈ U . Let be also a set F ⊂ U also known
as fuzzy set, which is characterized by a Membership
Function (MBF) that, through a mapping, associates x
to the fuzzy set F with a membership degree belonging to
the interval [0, 1], given by:

m(x) : U → [0, 1], (8)

in which m(•) is a Membership Function (MBF) of the
fuzzy set F.

Definition 2 (Linguistic Variable) (Wang, 1999).
Since numeric variable receives numeric values, a lin-
guistic variable x defined in the universe of discourse U
receives linguistic values representing fuzzy sets defined in
U. For example, x is a linguistic variable defined as the
“speed” that can be assigned the linguistic values “low”,
“medium” or “high”.

Definition 3 (Fuzzy Rule) (Wang, 1999). The expert’s
knowledge about how to solve a given problem inserted in a
linguistic context, is represented in a fuzzy rule base of the
type If propositions of the antecedent then propositions of
the consequent. In the fuzzy rule base, the antecedent and
consequent are defined by fuzzy propositions of the type x
is A, where A is a linguistic value.

The input variables of MFIS are defined as linguistic
variables of the antecedent, which receive linguistic val-
ues due to fuzzification, through the following mappings

performed by the j-ths MBFs mj(K(k)) : U → [0, 1] and
mj(e

2(k)) : V → [0, 1], with the universes of discourse
U = [0, 1] and V = [0.1 × 10−5, 3 × 10−5]. For each lin-
guistic variable of the antecedent, three linguistic values
were defined, which are small (S) for j = 1, medium (M)
for j = 2 and large (L) for j = 3, whose parameters of
MBFs are shown in Table 1.

Table 1. Interval of triangular MBFs.

K(k) e2(k) µ̄(k)

Interval Interval Interval

S [0 0.2 0.3] S [0.001 0.01 0.3] S [0.1 0.5 1.0]

M [0.2 0.3 0.5] M [0.01 0.3 0.9] M [0.5 1.0 1.5]

L [0.3 0.5 1.0] L [0.3 0.9 1.3] L [1.0 1.5 2.0]

The linguistic variable of the consequent µ̄ receives lin-
guistic values through mapping performed by the j-th.
MBFmj(µ̄(k)) : Z → [0, 1], with the universe of discourse
Z = [0, 0.1]. For the linguistic variable of the consequent,
three linguistic values were defined, which are small (S)
for j = 1, medium (M) for j = 2 and large (L) for j = 3,
whose parameters das MBFS are shown in Table 1.

R1 : If K(k) is S and e2(k) is S then µ̄(k) is M
R2 : If K(k) is S and e2(k) is M then µ̄(k) is M
R3 : If K(k) is S and e2(k) is L then µ̄(k) is M
R4 : If K(k) is M and e2(k) is S then µ̄(k) is S
R5 : If K(k) is M and e2(k) is M then µ̄(k) is S
R6 : If K(k) is M and e2(k) is L then µ̄(k) is L
R7 : If K(k) is L and e2(k) is S then µ̄(k) is S
R8 : If K(k) is L and e2(k) is M then µ̄(k) is M
R9 : If K(k) is L and e2(k) is L then µ̄(k) is L

(9)

The parameters of MBFs presented in Table 1 and the
fuzzy rule base presented in (9), were defined according
to the expert’s knowledge about how the adaptation
of the step size of NLMS adaptive algorithm should
be performed. The expert’s knowledge is obtained, for
example, during simulations of the analyzed problem.
In (9), the fuzzy propositions of the antecedent and
consequent are related through the fuzzy implication,
such that its input is the degree of activation of i-th fuzzy
rule, characterized by the following MBF:

αi = t[mj(K(k)),mj(e
2(k))] = min[mj(K(k)),mj(e

2(k))],
(10)

where t[mj(K(k)),mj(e
2(k))] is the t-norm, which is used

due to fuzzy propositions of the antecedent forming com-
pound fuzzy propositions through the logical connective
“and”. The t-norm is defined as the minimal value be-
tween the j-ths MBFsmj(K(k)) andmj(e

2(k)), such that
t : [0, 1]× [0, 1] → [0, 1]. After obtained αi, it is obtained
the output of the fuzzy implication, which is an MBF,
given by:

mRi = min[αi,mj(µ̄(k))] (11)
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As can be seen in (10) and (11), the fuzzy implication is
performed for each fuzzy rule. To combine all the MBFs
mR with the objective of obtaining a single MBF that
represents the total response of the fuzzy implication, it
is performed the fuzzy aggregation, as follows:

mTotal = max[mR1 ,mR2 , . . . ,mR9 ] (12)

After to obtain mTotal, in order for the step size µ(k)
receive a numerical value, it is necessary to defuzzify
mTotal. To perform the defuzzification, in this paper the
centroid method is used, given by:

µ(k) =

∑9
i=1 µ̄(k)mTotal(µ̄(k))
∑9

i=1mTotal(µ̄(k))
(13)

4. PREDICTION PROCEDURE BASED ON ARMA
MODEL VIA FVSS-NLMS ALGORITHM

The procedures for identification of ARMA model based
on training data set via FVSS-NLMS algorithm and the
performing the prediction are presented below:

• Step 1: Define the model order: it is necessary to
define the parameters p and q of ARMA(p, q) model.
The definition can be performed by trial and error
or based on some optimality criterion.

• Step 2: Parameterize the ARMA(p, q) model: at
each sample of a training data set it is performed
the update of the estimate of the weights vector
Θ(k), according to (7). It is important to note that
at each sample of the training data set the step size
is adapted through the FVSS-NLMS algorithm.

• Step 3: Evaluate the obtained model: after obtained
the ARMA(p, q) model for the training data set, it is
necessary to evaluate it through statistical metrics.
If the model performance is unsatisfactory, it is
necessary to go back to Step 1 and parameterize
the ARMA(p, q) model again.

• Step 4: Perform the prediction: it is used the model
obtained in Step 2 to perform the prediction t steps
ahead based on the samples observed in the previous
instants.

5. COMPUTATIONAL RESULTS

In this section, are presented the computational results
obtained through the implementation of FASS-NLMS
algorithm for chaotic time series prediction based on
ARMA model. The results obtained are divided into two
stages, the first stage is referring to the training stage and
the second stage is referring to the prediction stage based
on the ARMA(p, q) model obtained in the training stage.
The performance of ARMA(p, q) model obtained for the
two stages was evaluated using the following metrics:

• Variance Accounted For (VAF):

VAF(%) =

[

1−
var(y − ŷ)

var(y)

]

× 100, (14)

where var(•) is the variance, y is the data vector
from a time series, ŷ is the data vector estimated by
the ARMA(p, q) model.

• Mean Square Error (MSE):

MSE =
1

N

N
∑

k=1

(y(k)− ŷ(k)), (15)

where N is the number of samples from the data
vector.

• Normalized Root Mean Square Error (NRMSE):

NRMSE =

√

√

√

√

1

N

N
∑

k=1

[

(y(k)− ŷ(k))2

max(y)−min(y)

]

(16)

• Non-Dimensional Error Index (NDEI):

NDEI =
RMSE

std(y)
, (17)

where std(•) is the standard deviation.
• Best Fit Criterea (FIT):

FIT(%) =

(

1−
||y − ŷ||

||y − ȳ||

)

× 100, (18)

where ȳ is the mean value of y and || • || is the
Euclidean norm operator.

In this work, the Mackey-Glass chaotic time series
(Mackey and Glass, 1977) was chosen to evaluate the
predictive ability performed by the ARMA(p, q) model
with the weights vector estimated by the FVSS-NLMS
algorithm. The mathematical model of Mackey-Glass se-
ries is presented below:

y(k) = y(k − 1) +
βyτ

1 + ynτ
− γx(k − 1), (19)

where the parameters β, γ, n > 0, β/γ > 1 and yτ = y(k−
τ). For values starting at yτ ≥ 17, the Mackey-Glass series
exhibits chaotic dynamic. The parameters β and γ are
defined, respectively, as the production and decay rates of
variable y. The parameters that define the Mackey-Glass
series were set equal to β = 0, 1, γ = 0, 2 and τ = 20,
and the initial conditions set equal to y(k − τ) = 0. In
order to compare results obtained through FVSS-NLMS
algorithm, the step size for the LMS and NLMS adaptive
algorithms was set equal to µ = 0.6. For performing
the training and prediction stages, 3000 samples were
obtained in (19), where the first 2500 samples were used to
obtain the ARMA(p, q) for the training stage and the 500
samples remaining were used to evaluate the prediction
ability of ARMA(p, q) model referring to the prediction
stage. The prediction stage was performed for t = 2 steps
forward. The parameters (p, q) were set equal to p = 4
and q = 2, by trial and error. In Fig. 1, it is shown
the outputs estimated by the ARMA(4, 2) model for the
training and prediction stages. Since the Mackey-Glass
series has a rather chaotic dynamic behavior, to better
visualize the tracking ability in the training stage and
prediction stage of ARMA model, two preview zoom were
performed which are seen in Figs. 2 and 3.
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Table 2. Results of the statistical metrics obtained for the prediction stage.

Métricas LMS NLMS FVSS-NLMS Ng et al. (2009)

VAF(%) 78.1885 88.4505 90.7802 89.1223
MSE 0.0133 0.0104 0.0056 0.0076

NRMSE 0.0712 0.0698 0.0545 0.0613
NDEI 0.2717 0.2691 0.1983 0.2115
FIT(%) 53.2510 69.9854 73.6132 71.9912

Table 3. Results of the statistical metrics obtained for the prediction stage.

Métricas LMS NLMS FVSS-NLMS Ng et al. (2009)

VAF(%) 92.8175 95.6731 97.3738 96.4563
MSE 0.0060 0.0056 0.0028 0.0041

NRMSE 0.0639 0.0539 0.0239 0.0313
NDEI 0.2126 0.2028 0.1829 0.1945
FIT(%) 90.3929 91.4956 97.9852 96.2352

0 500 1000 1500 2000 2500 3000

k

0

0.5

1

1.5

y
(k

)

Fig. 1. Estimated outputs for the training stage (red
color) and for the prediction stage (blue color).
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k
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Fig. 2. Preview zoom performed at the estimated output
for the training stage.
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k
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y
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)

Fig. 3. Preview zoom performed at the estimated output
for the prediction stage.

The temporal evolution of the variable step size adapted
by the MFIS is shown in Fig. 4. The comparison of results
obtained using the statistical metrics for the training
and prediction stages can be seen in Tables 2 and 3,
respectively. It can be seen that the ARMA(4, 2) model
with the weights vector estimated by the FVSS-NLMS
algorithm obtained the best results with respect to the
statistical metrics VAF(%), MSE, NRMSE, NDEI and
FIT(%), for both training and prediction stages. When
compared to methodology proposed in Ng et al. (2009) for
adaptation of the step size of NLMS adaptive algorithm
through an MFIS, it is possible to note the superior per-
formance obtained by the FVSS-NLMS algorithm, for the
training and prediction stages. The superior performance
of FVSS-NLMS algorithm, when compared to proposed
methodology in Ng et al. (2009), is due to the step size be
adapted as a function of the squared error used to update
the estimate of the weights vector of ARMA model and
of the normalized time instant by the Min-Max method.

0 500 1000 1500 2000 2500

k

0

0.25

0.5

0.75

1

1.25

µ
(k

)

Fig. 4. Step size for FVSS-NLMS algorithm.

6. CONCLUSION

It was observed that the ARMA model with the weights
vector estimated by the FVSS-NLMS algorithm, for both
training and prediction stages, obtained the best results
with respect to statistical metrics used, when compared
to proposed methodology in Ng et al. (2009), LMS and
NLMS adaptive algorithms with a fixed step size. Thus,
it is possible to note that the linguistic description based
on the expert’s knowledge implemented in a rule base
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allowed a satisfactory ability to adapt the step size and,
consequently, a satisfactory tracking of chaotic dynamic
presented by the Mackey-Glass time series. Finally, it is
noted that the step size adaptation by MFIS is inde-
pendent of high-order statistical measures. On the other
hand, a disadvantage of the proposed methodology is the
tuning of the parameters of MBFs, which is dependent on
the expert’s knowledge.
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