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Abstract: This paper aims to propose a new hybridization involving the Genetic Algorithm
(GA) and the Particle Optimization Swarm (PSO). The objective of the proposed optimization
algorithm is to perform the search process for optimal solutions in complex problems with a
fast and non-premature convergence. Since the satisfactory convergence of the search process
is a result of a good trade-off between global and local search, in order to achieve the objective
of the proposed optimization algorithm, a Mamdani Fuzzy Inference System (MFIS) is used
for fuzzy parametric adaptation of the acceleration coefficients and inertial weight of PSO.
Through this parametric adaptation, which is performed using a linguistic description based
on the expert’s knowledge and implemented in a fuzzy rule base, it is possible to obtain a good
trade-off between global and local search in complex optimization problems.
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1. INTRODUCTION

Various real-world problems are solved by the fitness func-
tion optimization with various natures of complexity, such
as multidimensionality, the presence of local and global
optimal (multimodality), non-linearity, discontinuity in
the search space, and others. Through the evolution-
ary computation theory, various stochastic optimization
algorithms based on population and bio-inspired have
been used to solve complex optimization problems that
would be infeasible or quite costly through, for example,
methods based on gradient. In evolutionary computation
theory, the optimization methods have been used to solve
problems in time series prediction (Panigrahi and Behera,
2020), and others. More specific to the topic addressed
in this paper, the Genetic Algorithm (GA) and Particle
Swarm Optimization (PSO) have been widely used for
solving problems in various fields of knowledge, which is
due to its efficient performance in finding optimal solu-
tions and easy computational implementation.

The GA is a bio-inspired optimization algorithm based on
the genetic evolution theory, proposed by Holland et al.
(1992). In the GA, the genetic evolution of individuals
from a population is simulated through the use of genetic
operators that insert a large diversity of positions in the
search space to each generation or iteration, making the
process multidirectional. Naturally, the search process
performed by the GA, when compared to the PSO, has
an great facility to avoid premature convergence in multi-

modal problems. However, the search process performed
by the GA converges slowly due to large diversity of
positions in the search space (Ghoshal et al., 2019). The
PSO is an optimization algorithm belonging to family of
swarm intelligence algorithms proposed by Kennedy and
Eberhart (1995). The PSO is an optimization algorithm
bio-inspired by the interaction between social and indi-
vidual behavior developed by various species of flocking
animals, such as the interaction of birds during flight in
search of satisfying some goal, as an example, the search
for food. Since its the search behavior is unidirectional,
the search process quickly converges to optimal solution
in unimodal problems. However, as described in Kennedy
and Eberhart (1995), due to unidirectionality and the lack
of a mechanism to insert diversity of positions, the pre-
mature convergence may occur in multimodal problems.

Through the above paragraph, it is possible to note that
the undesirable characteristic of GA is the slow conver-
gence and that the undesirable characteristic of PSO is
the premature convergence, which occur due to the ineffi-
cient trade-off between global and local search (Kennedy
and Eberhart, 1995; Shi and Eberhart, 1998). A possibile
solution to solve these problems is through hybridization
of these algorithms. The original purpose of GA-PSO
hybridization is to perform a search process in complex
optimization problems with a fast convergence and with
a large diversity of positions inserted in the search space
(Gandelli et al., 2007). In the literature some contribu-
tions to GA-PSO hybridization have been proposed. In
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Kang et al. (2021), it was proposed the optimization for
filament cylinders using GA-PSO hybridization coupled
with local sensitivity analysis. In Roy and Das (2021),
it was proposed a GA-PSO hybridization for demand
management of electric power for cost optimization.

Although the GA-PSO hybridization has a better per-
formance than GA and PSO, due to large diversity of
positions inserted by the genetic operators, the search
process performed by this hybridization may converge
slowly. Although the search process performed by this
hybridization has a great facility to avoid premature con-
vergence in multimodal problems, just inserting diversity
of positions in the search space may not be enough to
avoid it. Furthermore, in complex optimization problems
the premature convergence may occur due to excess or
insufficiency of diversity in the search space. It is impor-
tant to note that performing a trade-off between global
and local search is nothing more than controlling the
update of the particle positions between global and local
search. Since the diversity of positions in the search space
can be defined as a measure of distance between the
particle positions, it is possible to note that through a
good trade-off it is possible to insert diversity efficiently
in the search space and, therefore perform a search process
that converges quickly and non-prematurely.

However, it is not trivial to obtain a good trade-off be-
tween global and local search. According to Kennedy and
Eberhart (1995), since the acceleration coefficients pon-
dering respectively the individual and social knowledge
sharing acquired by the particles in the search space,
through the parametric adaptation of the acceleration
coefficients of PSO it is possible to control the individual
and social knowledge sharing about the individual and
global best positions in the search space. According Shi
and Eberhart (1998), since the velocity orientates the
update of the position of each particle and that in the
equation of update of the velocity the inertial weight has
the function of to ponder the contribution of velocity of
the previous iteration in the current iteration, through
the parametric adaptation of the inertial weight of PSO,
it is possible to control the update of the position of each
particle. Thus, through the parametric adaptation of the
acceleration coefficients and inertial weight, it is possible
to obtain a good trade-off between the global and local
search.

Aiming to propose a new optimization algorithm referring
to GA-PSO hybridization, this work proposes the use of
a Mamdani Fuzzy Inference System (MFIS) to perform
the fuzzy parametric adpatation of the acceleration coef-
ficients and inertial weight of PSO. The use of a fuzzy
system to parametrically adapt the acceleration coeffi-
cients and the inertial weight is justified due to ability of
an MFIS to represent the expert’s subjective knowledge
in a fuzzy rule base using linguistic descriptions. The
inputs of MFIS are a diversity measure and the iteration
normalizeds by the Min-Max method; the outputs are
the acceleration coefficients and the inertial weight. The

motivation for using the diversity as input of MFIS is
due it provides information about the distance of the
particles positions in the search space, making it possible
to infer whether the particles are performing a global or
local search. The motivation for using the iteration as
another input of MFIS is due to the iterations number
be an important parameter for convergence, since it is
expected that the convergence occurs at the end of the to-
tal iterations number. This paper is organized as follows:
in Section 2 the statements of the optimization problem
are presented; in Section 3 the proposed optimization
methodology is presented; in Section 4 the computational
results obtained through benchmark functions optimiza-
tion are presented.

2. OPTIMIZATION PROBLEM STATEMENTS

The proposed optimization methodology aims to perform
the search for solutions in an n-dimensional search space
that maximize or minimize a fitness function:

{

J = J(xi,1[k], xi,2[k], . . . , xi,n[k]), subject to :
min(xi) ≤ xi[k] ≤ max(xi)
min(vi) ≤ vi[k] ≤ max(vi),

(1)

where J : R
n → R is the fitness function, vi[k] =

[vi,1[k], vi,2[k], . . . , vi,n[k]] ∈ R
1×n is the velocity vector

and xi[k] = [xi,1[k], xi,2[k], . . . , xi,n[k]] ∈ R
1×n is the po-

sition vector of the i-th particle belonging to a population
containing N particles. The population of N particles is
evaluated at each iteration k ∈ [1,K], where K is the
total iterations number. For a minimization problem, the
vector of best position pi[k] of the i-th particle is updated
as follows:

pi[k + 1] =

{

pi[k] if J(xi[k + 1]) ≥ J(pi[k])
xi[k + 1] if J(xi[k + 1]) < J(pi[k]),

(2)

for a maximization problem, the update of the vector of
best position pi[k] of the i-th particle is given by:

pi[k + 1] =

{

pi[k] if J(xi[k + 1] ≤ J(pi[k])
xi[k + 1] if J(xi[k + 1]) > J(pi[k])

(3)

For a minimization problem, the vector of best global
position pg[k] of the N particles is updated as follows:

pg[k + 1] ∈ {p1[k + 1],p2[k + 1], . . . ,pN [k + 1]}
pg[k + 1] = argmin

1≤i≤N

J(pi[k + 1]), (4)

for a maximization problem, the update of the vector of
best global position pg[k] of the N particles is given by:

pg[k + 1] ∈ {p1[k + 1],p2[k + 1], . . . ,pN [k + 1]}
pg[k + 1] = argmax

1≤i≤N

J(pi[k + 1]) (5)

3. PROPOSED OPTIMIZATION METHODOLOGY

In this section, the proposed optimization methodology
referring to GA-PSO hybridization with fuzzy parametric
adpatation of the acceleration coefficients and inertial
weight is presented. The position vector xi[k] of the i-th
particle, at each iteration k, is updated by the genetic
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operators of parent selection, crossover and mutation.
Right after, the new position vectors are evaluated by the
fitness function J . After this, the vector of best position
pi[k] of the i-th particle and the vector of best global
position pg[k] of the N particles are updated. After this,
the diversity and iteration normalizeds by the Min-Max
method are calculated, which are the inputs of MFIS.
After performing the fuzzy parametric adpatation of the
acceleration coefficients and inertial weight, the velocity
vector vi[k] and the position vector xi[k] of the i-th
particle are updated. After this, the vector of best position
pi[k] of the i-th particle and vector of best global position
pg[k] of the N particles are updated. If the stopping
condition is satisfied, then the solution to the problem
is obtained; otherwise, the search for the optimal solution
is continued until the stopping condition be satisfied.

3.1 Genetic Operator of Parent Selection

According to the crossover rate rc, the genetic operator
of parent selection is used with the objective of selecting
the particles with best fitness J to be reproduced by the
genetic operator of crossover. The selected particles will
be the parent particles of the next generation of particles.
For selecting the particles, in this methodology it is used
the operator genetic of parents selection of tournament
type, given by following pseudocode:

Algorithm 1 Tournament Method

1: Set the crossover rate rc;
2: for g = 1 to Nrc do
3: for l = 1 to 2 do
4: Choose randomly m particles;
5: parentl = the particle with fitness best J ;
6: end for
7: end for

3.2 Genetic Operator of Crossover

After selecting the particles with best fitness, according
to the crossover rate rc ∈ [0.5, 1], the particles selected
(parent particles) will be reproduced by the genetic op-
erator of crossover. Thus, the new generation of particles
will have a greater quantity of characteristics of the parent
particles, which will facilitate the search by the optimal
solution of the problem. For reproduction of particles,
in this methodology it is used the operator genetic of
uniform type, given by the pseudocode Algorithm 2.

3.3 Genetic Operator of Mutation

The genetic mutation of particles of a population is per-
formed by the genetic operator of mutation. The genetic
operator of mutation is used during the search process
for optimal solutions, with the objective of exploring new
regions in the search space. According to the mutation

Algorithm 2 Uniform Crossover Method

1: for g = 1 to Nrc/2 do
2: Choose two particles randomly and obtain ran-

domly α ∈ [0, 1];
3: Obtain randomly α ∈ [0, 1];
4: son1 = αparent1 + (1− α)parent2;
5: son2 = αparent2 + (1− α)parent1;
6: end for

rate rm ∈ [0.005, 0.05], some characteristic of the par-
ticle are modified by the genetic mutation. For genetic
mutation of particles, in this methodology it is used the
operator genetic of mutation of random type, given by
the following pseudocode:

Algorithm 3 Random Mutation Method

1: for i = 1 to N do
2: Obtain randomly β ∈ [0, 1];
3: if β < rm then
4: Obtain randomly γ ∈ {1, 2, . . . , n};
5: Perform the gene mutation:
6: xi,γ [k] = max(xi,γ) + β(max(xi,γ)−min(xi,γ));
7: end if
8: end for

3.4 Fuzzy Parametric Adaptation of the Acceleration
Coefficients and Inertial Weight

According to the Section 3, after performing the genetic
operators, the next step of the proposed optimization
methodology is to perform the fuzzy parametric adap-
tation of the acceleration coefficients and inertial weight,
through an MFIS. The fuzzy parametric adpatation of the
acceleration coefficients and inertial weight is described as
follows:

[ω[k], C1[k], C2[k]] = MFIS(D[k],K[k])

D[k] =
D[k]− dmin[k]

dmax[k]− dmin[k]
and K[k] =

k − 1

K − 1
,

(6)

where ω[k], C1[k] and C2[k] are the output variables
of MFIS. The variable D[k] is the diversity measure
obtained through the mean Euclidean distance between
the position vector xi[k] of the i-th particle and the
vector of best global position pg[k] of the N particles.
The variables dmin[k] and dmax[k] are, respectively, the
smallest and largest value obtained by the diversity until
the iteration k. The variables D[k] and K[k], which are
the inputs of MFIS, are, respectively, the diversity and
the iteration normalizeds by the Min-Max method. It is
important to note that the inputs variables of MFIS are
the linguistic variables of the antecedent of the r-th fuzzy
rule.

A fuzzy rule is defined as If fuzzy propositions of the
antecedent then propositions of the consequent, where the
fuzzy propositions of the antecedent and consequent are
formed by linguistic values, which are associated to lin-
guistic variables of the antecedent and consequent (Wang,
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Table 1. Fuzzy rule for parametric adaptation of the acceleration coefficients and inertial weight.

R1 : If (K[k] is S) and (D[k] is S) then (ω̄[k] is L)(C̄1[k] is L)(C̄2[k] is S)

R2 : If (K[k] is S) and (D[k] is M) then(ω̄[k] is M)(C̄1[k] is ML)(C̄2[k] is M)

R3 : If (K[k] is S) and (D[k] is L) then (ω̄[k] is S)(C̄1[k] is ML)(C̄2[k] is MS)

R4 : If (K[k] is M) and (D[k] is S) then (ω̄[k] is M)(C̄1[k] is ML)(C̄2[k] is MS)

R5 : If (K[k] is M) and (D[k] is M) then (ω̄[k] is M)(C̄1[k] is M)(C̄2[k] is M)

R6 : If (K[k] is M) and (D[k] is L) then (ω̄[k] is M)(C̄1[k] is MS)(C̄2[k] is ML)

R7 : If (K[k] is L) and (D[k] is S) then (ω̄[k] is M)(C̄1[k] is M)(C̄2[k] is L)

R8 : If (K[k] is L) and (D[k] is M) then (ω̄[k] is S)(C̄1[k] is MS)(C̄2[k] is L)

R9 : If (K[k] is L) and (D[k] is L) then (ω̄[k] is S)(C̄1[k] is S)(C̄2[k] is L)

1999). It is important to note that a linguistic value repre-
sents a fuzzy set, which is characterized by a Membership
Function (MBF). Due to the use of fuzzy propositions,
each linguistic variable of the antecedent and consequent
receives each linguistic value of the antecedent and con-
sequent with a certain membership degree, through the
following mappings performed by the MBFs µu(K[k]) :
U → [0, 1], µv(D[k]) : V → [0, 1], µz(C̄1[k]) : Z → [0, 1],
µq(C̄2[k]) : Q → [0, 1] and µw(ω̄[k]) : W → [0, 1]. The
universes of discourse, in which each MBF is defined, were
set equal to U, V = [0, 1], Z,Q = [0, 3] and W = [0, 0.9].

For the fuzzy propositions of the antecedent, three MBFs
of the triangular type were defined with the linguistic
values Small (S) for u, v = 1, Medium (M) for u, v = 2
and Large (L) for u, v = 3. The parametric intervals of
MBFs of the antecedent can be seen in Table 2. For the
fuzzy propositions of the consequent, three MBFs of the
triangular type were defined for the linguistic variable ω̄
of the consequent, with the linguistic values Small (S) for
w = 1, Medium (M) for w = 2 and Large (L) for w = 3.
For the linguistic variables C̄1[k] and C̄2[k], five MBFs of
the triangular type were defined with the linguistic values
Small (S) for z, q = 1, Medium Small (MS) for z, q = 2,
Medium (M) for z, q = 3, Medium Large (ML) for z, q = 4
and Large (L) for z, q = 5. The parametric intervals of
MBFs of the consequent can be seen in Table 2.

µRr

C̄
′

1

= min[µu(K[k]), µv(D[k]), µz(C̄1[k])]

µRr

C̄
′

2

= min[µu(K[k]), µv(D[k]), µq(C̄2[k])]

µRr

ω̄
′
= min[µu(K[k]), µv(D[k]), µw(ω̄[k])]

(7)

According to expert’s knowledge about how the trade-off
between global and local search should be performed, the
fuzzy rule base and the MBFs were defined. The expert’s
knowledge can be obtained through past experiences dur-
ing simulations and analysis of the problem. The fuzzy
rule base developed for fuzzy parametric adaptation of the
acceleration coefficients and inertial weight can be seen
in Table 1. The fuzzy propositions of the antecedente and
consequent are related through conditional fuzzy propo-
sitions, which are modeled by the fuzzy relations between
the universes of discourse U × V of the antecedent and
Z,Q,W of the consequent, given by the fuzzy implication
(7).

For each fuzzy rule, due to performing of the fuzzy
implications, are obtained the MBFs described in (7).
All the MBFs obtained through the fuzzy implication
are combined through the fuzzy aggregation in order to
obtain a single MBF, which represents a total response,
for each linguistic variable of the consequent, given by:

µTotal
C̄

′

1

= max[µR1

C̄
′

1

, µR2

C̄
′

1

, . . . , µR9

C̄
′

1

]

µTotal
C̄

′

2

= max[µR1

C̄
′

2

, µR2

C̄
′

2

, . . . , µR9

C̄
′

2

]

µTotal
ω̄
′
= max[µR1

ω̄
′

, µR2

ω̄
′

, . . . , µR9

ω̄
′

]

(8)

After obtained (8), it is necessary to obtain a numer-
ical value for the acceleration coefficients and for the
inertial weight, through the defuzzification of each MBF
described in (8). In this methodology, the defuzzification
method used is centroid type, such that the output vari-
ables of MFIS are given by:

C1[k] =

∑

9

r=1
C̄1[k]µTotal

C̄
′

1

(C̄1[k])

∑

9

r=1
µTotal

C̄
′

1

(C̄1[k])

C2[k] =

∑

9

r=1
C̄2[k]µTotal

C̄
′

2

(C̄2[k])

∑

9

r=1
µTotal

C̄
′

2

(C̄2[k])

ω[k] =

∑

9

r=1
ω̄[k]µTotal

ω̄
′
(ω̄[k])

∑

9

r=1
µTotal

ω̄
′
(ω̄[k])

(9)

3.5 Velocity Vector and Position Vector Update Equations

In (10), it is presented the velocity vector update equation
of the i-th particle. It is important to note that the
velocity vector update equation is composed by r1, r2 ∈
[0, 1], which introduce the stochastic nature to PSO. The
update of the j-th dimension of velocity vector of the i-th
particle is given by:

vi,j [k + 1] = ω[k]vi,j [k] + C1[k]r1(pi,j [k]− xi,j [k])
+C2[k]r2(pg,j [k]− xi,j [k]),

(10)

where C1[k], C2[k] ∈ [0, 3] and ω[k] ∈ [0, 1]. According
to Kennedy and Eberhart (1995), the acceleration coeffi-
cients C1[k] and C2[k] control the individual and global
knowledge sharing about the best positions obtained un-
til the current iteration, respectively, by the pondering
with the terms (pi,j [k] − xi,j [k]) and (pg,j [k] − xi,j [k]).
According to Shi and Eberhart (1998), in (11) the inertial
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Table 2. Parametric intervals of triangular MBFs.

K[k] D[k] C1[k] C2[k] ω[k]

Linguistic Value Interval Interval Interval Interval Interval

Small [0 0 0.1] [0 0 0.5] [0 0.5 1.0] [0 0.5 1.0] [0.001 0.09 0.15]
Medium Small ——— ——— [0.5 1.0 1.5] [0.5 1.0 1.5] ———

Medium [0 0.1 0.3] [0 0.5 1] [1.0 1.5 2.0] [1.0 1.5 2.0] [0.09 0.5 0.35]
Medium Large ——— ——— [1.5 2.0 2.5] [1.5 2.0 2.5] ———

Large [0.1 0.3 1.0] [0.5 1.0 1.0] [2.0 2.5 3.0] [2.0 2.5 3.0] [0.15 0.35 0.9]

weight ω[k] has the function to ponder the j-th dimension
of velocity vector obtained in previous iteration in the
current iteration. So, by the correctly selection of values
for the acceleration coefficients and inertial weight, it is
possible to obtain a good trade-off between the global and
local search. After this, the position vector is updated,
given by:

xi[k + 1] = xi[k] + vi[k + 1] (11)

4. COMPUTATIONAL RESULTS

In this section, it is performed the minimization of four
benchmark functions described in Table 4 and given
below:

f1(x[k]) =
K
∑

k=1

(x[k]2)

f2(x[k]) =
K−1
∑

k=1

[

100(x[k + 1]− x[k]2)2 + (x[k]− 1)2
]

f3(x[k]) = 10K +

K
∑

k=1

(

x[k]2 − 10cos2πx[k]
)

f4(x[k]) = 1 +
1

4000

k
∑

K=1

x[k]2 −
K
∏

k=1

cos
x[k]√
k

(12)

The results obtained by the optimization of benchmark
functions through the proposed optimization methodol-
ogy were compared with the results obtained by the GA,
PSO and GA-PSO algorithms. In Table 3, are shown
the results obtained by the optimization of benchmark
functions through the algorithms mentioned above, with
the crossover rate set equal to rc = 0.9, mutation rate
set equal to rm = 0.1, acceleration coefficient set equal to
C1 = C2 = 2 and inertial weight set equal to ω = 1 for
the GA, PSO and GA-PSO algorithms. The parameter
m, used to select the parent particles by the tournament
method, was set equal to m = 3. The initial position
vectors xi[1] were initialized randomly for all algorithms.
The velocity vectors and the vectors of best position were
initialized with pi[1] = xi[1] and vi[1] = 0. The particle
population size was set equal to N = 100 and, for each
benchmark function, its positions were evaluated during
K = 300 iterations.

Since all the algorithms evaluated in this section are
stochastic, then the number of Monte Carlo simulations
referring to optimization of each benchmark function was
set equal to 100. In addition to multimodal problems,

the proposed optimization methodology was evaluated
on multidimensional problems, where the dimension of
the search space was set equal to n = 20. Due to the
optimization algorithms have developed the worst results
in the optimization of benchmark f3(x[k]) as presented in
the Table 3, thus the performance analysis was performed
only for the worst case, i.e., for the results obtained for
the benchmark f3(x[k]).

In Fig. 1 (a), it is possible to observe that the search pro-
cess performed by the PSO converged prematurely, which
is due to the benchmark f3(x[k]) be multimodal, since the
its search process is performed in a unidirectional manner.
Through the statistical metrics shown in Table 3, it is pos-
sible to confirm the unsatisfactory performance of PSO.
In Fig. 1 (a), when compared to GA-PSO hybridization,
it can be seen that the GA converged slower, which is due
to its search process be performed in a multidirectional
manner through the use of genetic operators. When com-
pared to the GA, the GA-PSO hybridization obtained
a more fast convergence than the GA, which is due to
its search process be performed in both multidirectional
and unidirectional manner, since it is a hybridization and,
consequently, develops optimization features belonging to
the GA and PSO. With respect to performance of the
proposed optimization algorithm, it is noted that, besides
to avoid premature convergence, a fastest convergence
and the best results in the optimization of the benchmark
f3(x[k]) were obtained.

As shown in Fig. 1 (c), through the fuzzy parametric
adaptation of the acceleration coefficients by the MFIS,
it is possible to note that during the first iterations,
aiming a larger pondering in the sharing of individual
knowledge, the acceleration coefficient C1[k] > C2[k] so
that particles can explore taking into considering the
its individual learning about the regions in the search
space with the best fitness. As the iterations advance,
aiming at a larger pondering in the sharing of social
knowledge for performing a local search near the particle
with better fitness, it is observed that C2[k] > C1[k].
As shown in Fig. 1 (b), through the fuzzy parametric
adaptation of the inertial weight by the MFIS, it is
possible to note that during the first iterations, so that
the particles can perform a global search, the inertial
weight have a large value. As the iterations advance,
so that the particles can perform a local search and,
thus, convergence occurs, the value of the inertial weight
was decreased. It is important to note that the fuzzy
parametric adaptation of the acceleration coefficients and
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Table 3. Results obtained through the Monte Carlo simulations of the search process.

Algorithm Results f1(x[k]) f2(x[k]) f3(x[k]) f4(x[k])

PSO
Mean Fitness 0.0213 1.0740× 10−10 163.0306 0.0017

Standard Deviation 0.0328 3.3789× 10−10 162.1489 0.0028

GA
Mean Fitness 4.8759× 10−4 0.0725 8.0351 0.0069

Standard Deviation 4.1236× 10−4 0.1640 8.1492 0.0032

GA-PSO
Mean Fitness 4.3499× 10−12 0 3.9898 0

Standard Deviation 1.3724× 10−11 0 4.9871 0

Proposed
Mean Fitness 1.0936× 10−21 0 1.2919× 10−15 0

Standard Deviation 3.4432× 10−21 0 4.2848× 10−15 0

Table 4. Description of benchmark functions.

Function Name Search Space Modes

f1(x[k]) Sphere [-5.12, 5.12] Unimodal
f2(x[k]) Rosenbrock [-5, 10] Multimodal
f3(x[k]) Rastrigin [-5.12, 5.12] Multimodal
f4(x[k]) Griewank [-600, 600] Multimodal

inertial weight was not performed in a linear manner,
since the behavior of the particles in the search space
is non-linear. Through the fuzzy parametric adaptation
of the acceleration coefficients and inertial weight, it was
possible to obtain a good trade-off between the global
and local search and, consequently, to perform a search
process with a fast and not premature convergence.
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Fig. 1. Fitness curve obtained for the benchmark f3(x[k])
(a), Adaptive inertial weight for optimization of
the benchmark f3(x[k]) (b) and Adaptive accelera-
tion coefficients for optimization of the benchmark
f3(x[k]) (c).

5. CONCLUSION

Through the fuzzy parametric adaptation of the accel-
eration coefficients and inertial weight through MFIS, a
good trade-off between the global and local search was
obtained. It was observed that the variations of values
obtained during the parametric adaptation of the accel-
eration coefficients and inertial weight were performed
with objective of providing better conditions so that the
particles may balance the trade-off between global and
local search. However, the variations of values obtained
for the acceleration coefficients and inertial weight were
not performed in a linear manner, which is a coherent
result, since the search process, which is stochastic, does
not allow the particles to develop a linear search behav-
ior. The non-linear behavior of the values obtained for

the acceleration coefficients and inertial weight allowed
that, due to information provided about the distances
between the particles and about the temporal advance
of the search process, when stuck in local optimal, the
particles would jump to better positions; thus, avoiding a
premature convergence and developing a fast convergence.
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