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Metropolitana-Iztapalapa, CDMX, México (e-mail:
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Abstract: In this work, the problem of robustly controlling and monitoring the functioning
of an Hydrothermal Carbonization (HTC) batch reactor is addressed. First, the nominal
optimal operation is designed by means of dynamical inversion. Then, the application of
constructive control with passivity, optimality and detectability notions yields a nonlinear (NL)
robust estimator-based output-feedback (OF) tracking optimal controller. From an industrial
perspective, the proposed NL OF controller is a control-monitoring (CM) system that tracks
the nominal temperature, decides the batch duration, and provides estimates of the physical
states and the economic one. The problem is solved within a constructive framework, yielding a
CM system design methodology with: (i) systematic construction, (ii) robust functioning, and
(iii) a simple tuning scheme. The proposed design is illustrated and tested with a representative
example through numerical simulation.

Keywords: Hydrothermal Carbonization, constructive control, nonlinear dynamics,
output-feedback control, nonlinear observer, robust stability.

1. INTRODUCTION

In the last decades interest has grown about HTC reactors
which appeared as an alternative to produce hydrochar
from biomass waste. While the design and monitoring
of kinetic and chemical properties (Funke and Ziegler,
2011) has been extensively studied, estimation and con-
trol studies are lagging behind. The interaction between
control and optimal design leads to integrating models
based on control, optimization and numerical analysis
theories, including batch (Alvarez et al., 2004) and con-
tinuous (González and Alvarez, 2005) process applica-
tions. The preceding comments motivate the scope of this
work: the development of a non-autonomous finite time
joint process-control design methodology for batch HTC
reactors which combines NL geometric (Alvarez, 2000),
constructive (Sepulchre and Janković, 1997) and optimal
(Alvarez et al., 2005) control. Our point of departure is
our preliminary feasibility study (Andrade et al., 2020)
with emphasis on the construction of the CM system and
nominal functioning, without formal robust convergence
assessment.

In this work, the problem of robustly controlling and mon-
itoring an Hydrothermal Carbonization (HTC) batch re-
actor around its nominal operation is addressed. The com-
bination of passivity, optimality and detectability tools
leads to an estimator-based OF controller that maximizes
the economic profit of the process. Firstly, the optimal
operation is designed by means of dynamical inversion
(Hirschorn, 1979). Then, an estimator-based OF con-
troller which combines a tracking and event controllers
with a geometric state estimator is designed. Finally, the
robust functioning of the CM system is illustrated with a
representative example with numerical simulation.

2. HTC REACTOR AND CONTROL PROBLEM

Consider the reactor of Figure 1 where an exothermic
solid-solid carbonization reaction occurs. Wet biomass
(Mbho) [composed by biomass moisture (Mho) and dry
biomass (Mbo), hereinafter called biomass] and water
(Maeo) are fed. The total amount of water is (Mao =
Mho+Maeo). The mixture is heated up from an initial to a
preset temperature by means of heating steam to degrade
the biomass (Mb) in hydrochar (Mc) and water (Ma).
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The measurements are: reactor (T ) and surrounding (Ts)
temperatures, water inflow (Wae), steam outflow (Was)
and steam mass flow (Ws) rates. The economic profit
(hydrochar minus cost value) per unit time in [to, tf ] is
(Alvarez et al., 2005; Andrade et al., 2020)

J(t) =
ccMc(t)− cMM − cs

∫ tf

to
Wsdτ

t+ td
− co (1)

where cc and cM (or cs) are hydrochar value and raw
material (or steam) cost per unit mass respectively, co is
the operation cost, and td is dead time between batches.

From Arrhenius-type carbonization kinetics (Jatzwauck,
2015), three mass balances and an energy balance, and
applying theory of reaction networks and stoichiometric
invariants, the reactor dynamics consisting of 2 ODEs of:
biomass Mb (2a) and temperature T (2b), and 2 algebraic
equations of: hydrochar Mc (2d), and water Ma (2e), are
given. This system incorporates an economic performance
ODE (2c) which state is the batch utility per unit time
J (1). The combination of these dynamics results in the
following dynamical model (model parameters are shown
in table 1):

Ṁb = −K(T )Mb := fβ , Mb(0) = Mbo, t = [to, tf ] (2a)

Ṫ =fT (Mb, T ) + hT1(Mb, T )Wae + hT2(Mb, T )Was

+ hT3(Mb)Ts + gT (Mb, T )Ws := fτ , T (0) = To

(2b)

J̇ = fJ(Mb, T, J, t)−hJ(t)Wae + gJ(t)Ws := fJd ,

J(0) = −

(

cMM

td
+ co

)

:= Jo
(2c)

Mc = −scMb + scMbo := fc (2d)

Ma = Mb(sc − 1) +M − scMbo := fa (2e)

y = T (2f)

where

κ1 = scκac − κab, K(T ) = K0e
−

Ea
RgT ,

q(Mb) = κ1Mb + κaM − scκacMbo

= cpbMb + cpcMc + cpaMa

fT (Mb, T ) =
−UAT +K(T )(Qr + κ1T )Mb

q(Mb)
,

gT (Mb, T ) =
Qv1(T )

q(Mb)
, hT1(Mb, T ) =

κa(Tae − T )

q(Mb)

hT2(Mb, T ) =
κavT −Qv2(T )

q(Mb)
, hT3(Mb) =

UA

q(Mb)

fJ(Mb, T, J, t) =
1

t+ td
[−J + ccscK(T )Mb] ,

gJ(t) = −
cs

t+ td
, hJ(t) =

cM
t+ td

The dynamic states are x = [Mb, T, J ]. The quasi-static
states are z = [Mc,Ma]. The measured exogenous inputs
are d = [Ts,Wae,Was], the control input is u = Ws and
the measured output is y = T . The parameters are (p) =
[Qr, sc,Ko, Ea,M ]. [to, tf ] is the batch duration. In (2), fβ
is the decomposition rate of biomass, q(Mb) is the heat
capacity, fT (Mb, T ) is the balance between the heat given

Fig. 1. Hydrothermal Carbonization (HTC) batch reactor

by the carbonization reaction and the heat transferred
to the environment, gT (Mb, T ) is the convective heat
transfer energy of the heating source, hT1(Mb, T ) is the
heat exchange between the mixture and water inflow,
hT2(Mb, T ) is heat extraction through relief valve, and
hT3(Mb) is heat transferred by the environment.

In compact vector notation, system (2) is given by

ẋ =f(x, p, t)+H(x, p, t)d+

g(x, p, t)u := fd(x, d, u, p, t), x(0) = xo
(3a)

z = S x+R(p,xo), y = cx , t = [to, tf ] (3b)

where

x = [Mb, T, J ]
′, z = [Mc,Ma]

′, u = Ws > 0,

d = [Wae,Was, Ts], p = [Qr, sc,Ko, Ea,M ]′, c = [0, 1, 0],

f(x, p, t) =

[

fβ(x, p)
fT (x, p)
fJ(x, p, t)

]

, g(x, p, t) =

[

0
gT (x, p)
gJ(t)

]

,

H(x, p, t) =

[

0 0 0
hT1(x, p) hT2(x, p) hT3(x, p)
−hJ(t) 0 0

]

,

hT (x, p) = [hT1(x, p), hT2(x, p), hT3(x, p)], c = [0, 1, 0],

S =

[

−sc 0 0
sc − 1 0 0

]

, R(p,xo) =

[

scMbo

M − scMbo

]

System (3) is a non-linear and non-autonomous finite
time model, affine in the control input and in the mea-
sured exogenous inputs. Since fd(x,d, u,p, t) is Lipschitz
(Elsgotz, 1969) in [to, tf ] with respect to the data set
(x,d, u,p, t), the unique solution of system (3), for given
data (xo,d, u,p)

′, is the state motion x(t) and its respec-
tive quasi-static output trajectories [z(t), y(t)]

x(t) = τx[t, to,xo, d(t), u(t),p], (4a)

z(t) = τz[x(t)], y(t) = τy[x(t)] (4b)

where τx is the state motion transition map and τz (or τy)
is the quasi-static (or output measured) transition map.

Consider the nominal data vector: [x̄o, ȳ, d̄, p̄]
′ which

applied to system (3) yields the nominal operation (NO)
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Ō = [x̄(t), z̄(t), ū(t), ȳ(t)], t = [to, t̄f ] (5)

Accord to (3), let us add the error set (p̃, d̃, ũ) and
noise-like zero-mean state error (π) generated by faster
(λπ >> lx) robust stable parasitic dynamics driven by a
fluctuating input (ν), to set the ”actual” reactor model

π̇ = γ[x,d, u,p;π,ν], π(0) = πo, |ν(t)| ≤ ǫ+ν (6a)

ẋ = fd[x,d, u,p, t]+ e[x,d, u,p, t; d̃, p̃,π] (6b)

z = S x+R(p,xo) + hz(π), x(0) = xo (6c)

y = cx+ hy(π), t = [to, tf ] (6d)

γ[x,d(t), u(t),p; 0, 0] = 0, e[x,d, u,p, t; 0, 0, 0] = 0

|π(t)| ≤ aπe
−λπ + bνǫ

+
ν

The notation m(a; b) means that m vanishes with
the argument after the semicolon [i.e., m(a; 0) = 0].
From now, for simplicity, the explicit dependence on the
parameter vector p will be omitted and occasionally used.

2.1 Stability

Since (3) is NL and non-autonomous, the standard defini-
tions of stability cannot be used. In batch processes, these
definitions applies to a particular state motion and its
deviations caused by disturbances (Alvarez et al., 2005).
For this purpose, let us recall the input-to-state (IS)
(Sontag et al., 2004; Isidori, 1995) practical-like (LaSalle
and Lefschetz, 1961) non-local stability notion employed
before in polymer reactor control and estimation studies
(González and Alvarez, 2005; Alvarez, 2000).

Consider the nominal data vector [x̄o, d̄, ū, p̄]
′ that ap-

plied to (3) yields the following nominal dynamics
˙̄x = fd[x̄, d̄, ū, p̄], x̄(0) = x̄o, t = [to, t̄f ] (7)

System (7) has unique state motion solution

x̄(t) = τx[t, to, x̄o, d̄(t), ū(t), p̄] (8)

For admissibly perturbed data [x̄o + x̃o, d̄ + d̃, p̄ + p̃]′

with bounded deviation sizes

|x̃o| ≤ δo, |d̃(t)| := ǫd(t) ≤ ǫ+d , |p̃| ≤ δp (9)

The motion deviations are

x̃(t) = τx[t, to, x̄o + x̃o, d̄(t) + d̃(t), p̄+ p̃]− x̄(t) (10)

Definition 1. The nominal state motion (8) over [to, t̄f ] is
robustly (exponentially) stable if for given deviation sizes
(9), the motion deviations (10) are bounded as

|x̃(t)| ≤ axe
−lx(t)δo + bpδp + bdǫ

+
d

≤ axδo + bpδp + bdǫ
+
d := ǫx(δo, δp, δ

+
d ),

ǫx(0, 0, 0) = 0, (lx, ax, bp, bd) > 0. •

(11)

The nominal state motion (8) is non-locally practically
(Hahn, 1967) or robustly (V. Lakshmikantham, 1990) sta-
ble if admissible and preset disturbance sizes (δo, δp, ǫ

+
d )

produce admissible motion deviation size ǫx.

2.2 Control Problem

The design problem consists of: (i) the nominal operation
(5) with a suitable compromise between profit, control

effort, and robustness, and (ii) A CM system (with state
xc made by the estimate state x̂ and an integral state ι̂
of a geometric estimator (Álvarez and Fernández, 2009)

ẋc = fc[xc,d, y, ȳ, u], xc(0) = xco , (12a)

x̂ = cexc, xc = [x̂, ι]′, t = [to, tf ] (12b)

u(t) = µ[x̂, y, ȳ, d], tf = µf [x̂, u(tf ),d(tf ), y(tf )] (12c)

which driven by measured signals (y,d)(t) causes the
reactor temperature (y) to offsetlessly robustly track
(ȳ), and the state motion x(t) tracks up to admissible
deviations the nominal one x̄(t), by adjusting the steam
flow rate u, and on the basis of the state estimate x̂(t),
determines the batch duration tracks.

3. NOMINAL OPERATION

In this section, the nominal operation (5) is designed
via iterative dynamical inversion (Hirschorn, 1979) in the
sense that for given inverse data [xIo, ȳ(t),d], the nominal
state motion-input control pair [x(t), u(t)] is uniquely-
robustly determined.

Take the derivative of (2f) and substitute (2b) to obtain

ẏ = fT (Mb, T ) + hT (Mb, T )d+ gT (Mb, T )u (13)

whose unique solution for u yields the NL SF control

u =
˙̄y − fT [MbI , ȳ]− hT [MbI , ȳ]d

gT [MbI , ȳ]
:= µI [xI ,d, ȳ] (14)

The heat equation (13) is solvable for u if

(Qv1[ȳ], q[MbI ]) > 0 ⇒ gT [MbI , ȳ] =
Qv1[ȳ]

q(MbI)
> 0 (15)

where gT [MbI , ȳ] > 0 is the relative degree (RD=1)
condition which states that the convective heat transfer
energy of the heating source is positive. The application of
(14) to system (3) yields the dynamical inverse made by
the zero dynamics (16a) and its associated control (16c)

ẋI = fI{xI , ȳ,d, µI [xI ,d, ȳ]},xI = [Mb, J ]
′ (16a)

˙̄y = −λs[ȳ − T̄ ] := fN , ȳ(o) = T̄o (16b)

u(t) = µI [xI ,d, ȳ], xI(0) = xIo,fI = [fβ , fJd]
′ (16c)

with unique state solution motion

xI(t) = τxI
[t, to,xIo,d, ȳ] (17)

The application of the NL control (14) to the reactor (3)
yields the nominal operation dynamics, where fN : (16b)

˙̄x = fη[x̄, d̄, u, λs, t], x̄(0) = x̄o, t = [to, t̄f ] (18a)

fη[x̄, d̄, u, t] = [fβ , fN , fJd]
′, [fβ , fJd] : (2a, c). (18b)

Since the RD=1 condition (15) is robustly met, the ro-
bust stability (passivity) of the nominal state motion (8)
must be assessed through numerical simulation. For this
aim, apply (14) to the ”actual” model (6) to obtain the
”actual” nominal dynamics in deviation form with respect
to the nominal one (18), consisting of two subsystems: (i)
parasitic (19a), and (ii) CL reactor error (19b), dynamics

π̇ = γ[x̄, d̄, ū, p̄;π,ν], π(0) = πo, t = [to, t̄f ] (19a)

˙̃x =f̃(x̄, p, t; p̃)+ H̃(x̄, p,t; p̃)d̄+ g̃(x̄, p,t; p̃)ū

+ ε[x̄, d̄, ū,p, t; d̃, ũ, p̃,π], x̃(0) = x̃o
(19b)
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ε[x̄, d̄, ū,p,t; d̃, ũ, p̃,π] = e[x̄, d̄, ū,p; d̃, ũ, p̃,π]

+H(x̄, p + p̃, t) d̃+ g(x̄, p + p̃, t) ũ
(19c)

where ǫ[x̄, d̄, ū,p; d̃, ũ, p̃, π] is the error caused by devia-
tions on the nominal data vector [x̄, d̄, ū,p]. As we will see
in section 5, the state motion (18a) is non-locally robustly
practically stable and this behavior is the main objective
attainable by any temperature tracking controller.

4. ESTIMATOR-BASED OF CONTROL

In this section, the NL output-feedback (OF) controller
(12) is designed along the idea employed before in a batch
distillation column (Alvarez et al., 2005).

4.1 State Feedback Control

The enforcement of the output tracking dynamics

ėy = −kc[y − ȳ], ey(0) = eyo, ey(t) = y − ȳ (20)

to the reactor (3) yields the algebraic equation

fτ (Mb, y,d, u) = ˙̄y − kc[T − ȳ] (21)

whose unique solution for u yields the NL SF tracking
controller [where µI is defined in 14]

u(t) =
−kc(y − ȳ)

gT (Mb, y)
− µI(x,d, y) := µ[x,d, y, ȳ] (22)

The event controller that determines the batch end time
(tf ) is derived from the economic state ODE (2c) as

tf = µf [x, y(tf ),d(tf ), u(tf ), tf ] ∋ fJd = 0 (23)

where fJd (2c) is the batch stop criterion (i.e., J̇ = 0).

4.2 Control-Monitoring (CM) system

The estimation problem consists in infering the unknown
dynamic state (Mb, J) and the quasi-static state (Mc,Ma)
sets from knowledge of the data set (xo,d, y, u). Let
us rewrite the reactor model (3) in innovated (xι)-non-
innovated (xν) state partitioned form

ẋι =fdι(xι,d, u), xι(0) = xιo, t = [to, tf ]

xι = [Mb, T ]
′, x = [xι, xν ]

′
(24a)

ẋν = fJd(xι, xν ,d, u, t), xν(0) = xνo, xν = J (24b)

z = S x+R(xo), y = cιxι, cι = [0 1] (24c)

The observability map of the innovated state partition is

o(xι,d, u) = [y, ẏ]′ = [T, fτ (xι,d, u)]
′, fτ : (2b) (25)

whose Jacobian yields the NL estimation matrix

O(xι,d, u) =

[

0 1
∂fτ
∂Mb

∂fτ
∂T

]

(26a)

∂fτ
∂Mb

=
1

q(Mb)
[K(T )(Qr + k1T )

−k1fτ ] :=
fo(xι,d, u)

q(Mb)
:= fo

β

(26b)

∂fτ
∂T

=
1

q(Mb)

{

K(T )Mb

[

Ea

RgT 2
(Qr + k1T ) + k1

]

−UA+ kav −
∂Qv2(T )

∂T
Was +

∂Qv1(T )

∂T
u

}

:= fo
τ

(26c)

The innovated state motion xι(t) is robustly detectable if
(26a) is non-singular in t ∈ [to, tf ]. Since the heat capacity
q(Mb) in (26b) is positive, the next proposition follows.

Proposition 1. The nominal state motion x̄(t) is robustly
detectable in [to, tf ] if

∀t ∈ [to, tf ] : K(T ) [Qr/k1 + T ] 6= fτ , k1 : (2) (27)

and xν(t) is robustly stable •.

Since the stability of xν(t) follows from the one of the
nominal state motion x̄(t) (8), by proposition 1, x̄(t) is:
i) robustly observable in t = [to, tf ]− te, where

te = µe[xι,d(tn), u(tn), tn] ∋ |fo(xι,d, u)| ≤ ǫe (28a)

ts = µs[xι,d(ts), u(ts), ts] ∋ fo(xι,d, u) = 0 (28b)

with (tn) being a short time interval around (ts) when
the algebraic singularity map (26b) L2 norm is less than
a prescribed tolerance (ǫe), and ii) almost singular in (te).
Consequently: (i) x̄(t) is robustly detectable along [to, tf ],
and (ii) the measurement injection must be applied in
[to, tf ] − te with setting of injection to non-injection
mechanism (where P is Heaviside step function)

P (t− te) =

{

0, if |fo(xι,d, u)| < ǫe
1, if |fo(xι,d, u)| ≥ ǫe

, t = [to, tf ] (29)

The combination of the geometric estimator (30a-c) as-
sociated with the detectability property (27), with the
tracking (22)-event (23) SF control yields the CM system

˙̂xι =fdι(xι,d, µ[x̂,d, y, ȳ]) + P (t− te)
{

O−1[x̂ι,d, µ[x̂,d, y, ȳ]](ko[y − cιx̂ι]

+Πι̂)} := fι(x̂ι, ι̂,d, y, ȳ), x̂ι(0) = x̂ιo

(30a)

˙̂xν = fJd(x̂ι, x̂ν ,d, µ[x̂,d, y, ȳ], t), x̂ν(0) = x̂νo (30b)

˙̂ι = ω3[y − cιx̂ι], ι̂(0) = ι̂o, ẑ = Sx̂+ s (30c)

u(t) = µ[x̂,d, y, ȳ], t = [to, tf ] (30d)

tf = µf [x̂,d(tf ), y(tf ), u(tf ), tf ], x̂ = [x̂ι, x̂ν ]
′ (30e)

where

ko = [2ζω, ω2],Π = [0, 1]′, ζ ∈ [1, 3], η ∈ [5, 30], ω = ηωn

fι(x̂ι, ι̂,d, y, ȳ) = [f ι
β , f

ι
τ ]

′, (fo
β , f

o
τ ) : (26b, c)

f ι
β = fβ + P (t− te)

{

(fo
β)

−1
[

−2ζωfo
τ + ω2

]

(T − T̂ )
}

f ι
τ = ˙̄y − kc[T̂ − ȳ] + P (t− te)

{

2ζω(T − T̂ ) + ι̂
}

ι̂ is an integral action state that eliminates output mis-
match, ko (or kι) is the estimation gain matrix (or integral
action gain), η is a speed parameter, ζ is the damping
factor, ωn (or ω) is the natural reactor (or estimator)
frequency. The commuter P (t − te) ensures the non-
local practical convergence, provided the pair [ζ, ω] are

adequately chosen (Álvarez and Fernández, 2009).
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The application of the CM system (30) to (6) yields the
”actual” CL dynamics

π̇ = γ(x,d;π,ν, x̃ψ, x̃ν), π(0) = πo, t = [to, tf ] (32a)

˙̃xψ = P (t− te)Aψ(t)x̃ψ

+ εψ(x,d,p; x̃ψ, d̃, p̃,π), x̃ψ(0) = ˜xψo
(32b)

˙̃xν = ˜fJd[x̃ψ, x̃ν ,p, t]

+ εν(xψ, xν ,d,p, t; x̃ψ, x̃ν , d̃, p̃,π), x̃ν(0) = x̃νo

(32c)

ẋ− ˙̄x = f̃d[x̄, ȳ, µ(x̄, ȳ, d̄; x̃, d̃), d̃, t; x̃, d̃, p̃]

+ εx(x̄, ȳ, d̄, u(t), p̄, t; x̃, d̃, p̃,π), x̃(0) = x̃o
(32d)

Aψ(t) =

[

−O−1{x̂ι,d, µ[x̂ι, ŷ, ȳ,d]ko cι
0 −ω3

]

(32e)

where

x̃ψ = x̂ψ − xψ, xψ = [xι, ι]
′, x̃ν = x̂ν − xν

εψ[x,d,p; x̃ψ, d̃, p̃,π] =

[

ει(xι,d,p; x̃ι, x̃ν , d̃, p̃,π)
ω3hy(π)

]

ει(xι,d,p; x̃ι, x̃ν , d̃, p̃,π) = f̃ι[xι, y,d,p; x̃ι, ỹ]

− eι[xι,d, u(t),p; d̃, p̃,π]−Hι[xι, y,p + p̃]d̃

− gι(xι, y,p + p̃)µ̃[xι, y, ȳ,d; x̃ι, d̃]

εν(xψ, xν ,d,p, t; x̃ψ, x̃ν , d̃, p̃,π) =

− eν [xι, xν ,d, u(t),p; d̃, p̃,π]− gJ(t)µ̃[xι, y, ȳ,d; x̃ι, d̃]

εx(x̄, ȳ, d̄, u, p̄, t; x̃, d̃, p̃,π) = H[x̄, ȳ, p̄+ p̃, t]d̃

e[x, y,d, u,p; x̃ι, x̃ν , d̃, p̃,π] + g[x̄, ȳ,p+ p̃, t]ũ

which has 4 subsystems arranged in fast to slow order:
(i) parasitic dynamics (32a), (ii) fast (or slow) estimation
dynamics (32b) [or (32c)], and (iii) CL dynamics (32d).

The corresponding robust stability proof can in principle
be done with standard (Lyapunov function or small gain)
techniques, with emphasis in drawing gain conditions.
This task goes beyond the scope of the present study,
and here we circumscribe ourselves to verify (in the next
section) basic robust functioning features with numerical
simulation for the case example.

5. APPLICATION EXAMPLE

Here, the on-line robust functioning of the CM system
(30) is tested through numerical simulation of a case ex-
ample, with (cc, cM , cs) = [10, 0.1, 2x10−6Qv1(T )]($/Kg),
co = 1.1x10−3($/s) and td = 1800(s) (reactor model
parameters are listed in Table 1). The third order poly-
nomial function Qv1,2(T ) was obtained with regression
from the data of latent heat of vaporization of water at
saturation pressure between (273− 573 ◦K):

f(T ) = −2.4x10−5T 3+2.3x10−2T 2−9, 8T+3958, 6 (34)

For the execution of robust tests, the ”actual”: (i) nominal
operation (19), and (ii) CL reactor (32), dynamics, were
subjected to input disturbances, initial state deviation,
and measurement noise. The parasitic dynamics (6a) was
emulated with linear oscillators. Both systems were tested
with respect to the deviated parameter vector (p̃) as

Table 1. HTC reactor parameters obtained
from Libra et al. (2011)*, Jatzwauck (2015)**.

Sym. Description Value Unit

κab Difference between specific heat 2.78 KJ
Kg ◦K

of liquid water and biomass

κac Difference between specific heat 2.92 KJ
Kg ◦K

of liquid water and hydrochar

κav Difference between specific heat 2.34 KJ
Kg ◦K

of liquid water and water steam

Qv(T ) Latent heat of vaporization f(T ) KJ
Kg

M Total mass 10000 Kg

U Heat transport to ambient 2.5 W
◦Km2

A Reactor surface exchange area 19.981 m2

sc Hydrochar stoichiometric coef. 72

162
-

Qr∗ Exothermic heat per unit mass 1600 KJ
Kg

Ea ∗ ∗ Activation energy 5250 KJ
mol

Ko ∗ ∗ Reaction’s rate constant 0.1516 1

s

p̃+ = 0.05[Qr, sc,Ko, Ea,M ], |p̃| ≤ p̃+. (35)

The estimator innovated states (30a) were set with a
5% deviation with respect to their nominal initial values.
The biomass (or temperature) fluctuating input error eβ
(or eτ ) was emulated by a second order linear oscillator
with characteristic frequency λβ (or λτ ) driven by high-
frequency and low-amplitude sinusoidal input νβ (or ντ )

λβ = 50λx, νβ = 20 sin(0.03t),ν = [νβ , ντ ]
′ (36a)

λτ = 100λx, ντ = 0.02 sin(0.06t), ν : (6a) (36b)

Steam outflow (dae) and surrounding temperature (ds)
input disturbances, as well as (zero-mean Gaussian) white
noises steam outflow (wae), surrounding (ws) and output
(wy) temperature are injected as [N(0, σb) means zero-
mean white noise with standard deviation (σb) of wb]

dae = Wae(t) + W̃ae(t) + wae (37a)

ds = Ts(t) + T̃s(t) + ws, y = T (t) + wy (37b)

W̃ae(t) = 0.001 sin(0.3t), T̃s(t) = 0.2 sin(0.1t) (37c)

wae = N(0, σae), ws = N(0, σs), wy = N(0, σy) (37d)

(σae, σs, σy) = (5, 200, 200)× 10−4. (37e)

• Nominal operation: The application of control (16a)
to (3), with (T̄ , To, λs) = (473, 293, 0.002) yields the
nominal operation (continuous line) shown in Figure 2
with t̄f = 3.6h, where the application of 4 prescribed
temperature trajectories (dashed lines) yields the optimal
state motion. Its robust stability is enlightened in the
sense that temperature and parameter deviations produce
admissible state motion deviations x̃(t).
• Robust CL behavior : The application of (30) with ω =
0.0064 s−1 and ǫe = 0.015 yields the CL system (32) with
controller-estimator gain triplet (kc, η, ζ) = (0.01, 10, 1.5)
which robust behavior is shown in Figure 3. The results
are given: (i) (ts, tf ) = (0.8 ± 0.02, 3.4 ± 0.24)(h) with
6.5% error respect to t̄f , the estimated state motion x̂(t)
tends to the nominal one x̄(t) with a bounded (less than
5%) error and the tracking control action results in the
measured temperature output y(t) instantly tracking the
nominal one ȳ(t). The practical results corroborate the
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Fig. 2. Robustness of the Nominal operation (continous).
(a) Measured output (b) Control effort, (c,e) dy-
namic states, (d,f) quasi-static states.

Fig. 3. Robust functioning of the CM system with NL OF
controller. (a) Measured output, (b)Control effort,
(c,e)dynamic states, (d) quasi-static state, (f) batch
stop criterion.

theoretical results, the state motion x̂(t) is non-locally
robustly stable with respect to the nominal motion.

6. CONCLUSIONS

The problem of robustly controlling and monitoring a
batch HTC reactor has been addressed within a construc-
tive design framework. The resulting CM system has:
(i) An optimality and robustness-based nominal offline
design scheme, (ii) an optimal-based event controller that
decides the batch duration by means of an economic state,
(iii) a robust OF controller that tracks the reactor opera-
tion along the nominal one, and (iv) a monitoring system
that robustly estimates masses of biomass, carbon and

water as well as the economic state. Comparing previous
results, here the robust functioning of the CM system
was formally assessed with a case example through nu-
merical simulation, and solvability with physical meaning
was stated on the basis of passivity and detectability of
the nominal motion. The proposed design is a point of
departure to address: (i) the robust stability proof of the
CL system, (ii) multicomponent biomass feed, and (iii)
the reactor continuous operation case.
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