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Abstract: This paper describes the Attractive Ellipsoid Method (AEM) application, which
uses the state estimates obtained by a sliding mode observer (SMO) for a wide class of quasi-
Lipschitz nonlinear stochastic discrete-time systems. For the extended vector, containing state
estimation and tracking errors as its components, we prove the mean square convergence to
an attractive ellipsoid, which ”size” is done as small as possible by the corresponding optimal
selection of the gain matrices in both the SMO and in the linear feedback, using obtained
current state estimates. It is shown that the procedure of the gain matrices optimization
consists of the numerical solution of a corresponding matrix optimization problem subject to
a set of bilinear matrix inequalities (BMIs), which by a special transformation procedure can
be converted to a set of linear matrix inequalities (LMIs). An illustrative example shows the
effectiveness of the suggested approach.
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1. INTRODUCTION

The Attractive Ellipsoid Method (AEM) provides re-
searchers a special tool for designing linear feedback for a
wide class of nonlinear systems containing both uncertain-
ties in the description of the model and possible external
bounded perturbations Poznyak et al. (2014). Usually, the
application of this method requires the exact knowledge
(availability) of all current states and control actions in
the use. When the required variables or their part are
not available online, a possible approach consists in the
realization of a state estimation process with the direct
usage of them in the applied control actions. In some
sense, such construction may be treated as an adaptive
controller, which in our case is referred as to the adaptive
AEM. As an example of such approach, in the determin-
istic case, we can mention the recent paper Hernandez-
Gonzalez et al. (2019), presents a method to identify an
unknown discrete-time nonlinear system, using high-order
neural networks and high-order sliding mode algorithms,
which are subject to internal and external disturbances. A
SMO have also been applied in systems with deterministic
bounded perturbations Bejarano et al. (2007); Moreno
and Osorio (2008); Davila et al. (2006). In Oliveira et al.
(2018), an adaptive sliding mode control strategy, based

1 This work was supported by CONACYT and CINVESTAV-IPN.

on the extended equivalent control, is developed. The
adaptation rule combines the qualities of monotonically
increasing gains and the equivalent control. Here we con-
sider the wide class of quasi-Lipschitz nonlinear stochas-
tic discrete time systems where the state estimates are
obtained by the special version of SMO, providing an
acceptable mean square level of state space estimation
accuracy. Specific feature of stochastic systems consists
in the consideration of unbounded random external per-
turbation that makes impossible the direct application
of AEM and SMO approaches: some special constraints
and extensions are required. So, in Chen et al. (2019) the
network-based SMO is investigated for a class of discrete
nonlinear time-delay systems with stochastic communica-
tion protocol. The stochastic communication protocol is
governed by a Markov chain, which converts the protocol-
constrained system into a Markovian jump system. The
purpose is to design a SMO such that the trajectories of
the estimation error system are driven into a band of the
sliding surface and, in subsequent time, the sliding motion
is mean-square asymptotically stable. In Qiao et al. (2008)
an adaptive SMO is designed to reconstruct the states
of non-linear stochastic continuous time systems with
uncertainties, from the measurable system output and the
reconstructed states are employed to construct a sliding
mode controller for the stabilization. It takes the advan-
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tages of the sliding mode schemes to design both the ob-
server and the controller. The convergence of the observer
and the globally asymptotic stability of the controller are
analyzed in terms of stochastic Lyapunov stability, and
the effectiveness of the control strategy is verified with
numerical simulation studies. The number of works, in
which the methodology of sliding modes is applied to
observe or control the Discrete Time Stochastic Systems,
is in fact very limited Wu et al. (2010); Abidi et al.
(2007); L. Wu (2013); Kailath (1980), Alcorta-GarcIa
et al. (2009), Basin and Rodŕıguez-Ramı́rez (2013), ba-
sically deals with linear models (see, for example, S. Ja-
nardhanan (2017)). However, in Velázquez and Poznyak
(2021) you can see the application of SMOs to nonlinear
stochastic systems using AEM as convergence analysis.
The stability analysis of nonlinear discrete time stochastic
systems can be found in Bensoubaya et al. (1999). The
recent and most advanced studies, concerning the SMOs
design for discrete time systems, can be found in Janard-
hanan and Bandyopadhyay (2007); Bandyopadhyay and
Janardhanan (2005) and Alazki and Poznyak (2010). The
merit of this paper is to propose the exact mechanism for
designing an adaptive version of AEM and SMO, which,
working simultaneously, provide a good behavior in some
probabilistic sense for a wide class of uncertain nonlinear
stochastic systems.

2. STOCHASTIC DISCRETE - TIME NONLINEAR
PLANT

2.1 Model of the process

Consider the stochastic discrete-time system

x (k + 1) = f(k, x(k)) +Bu(k) + ξ(k + 1) ∈ R
n

y(k) = Cx(k) + ζ(k) ∈ R
m

u(k) ∈ R
l, k = 0, 1, 2...







(1)

Random sequence {y(k)}k≥0 is available during the pro-
cess, but {x(k)}k≥0 not. Measurable input is {u(k)}k≥0.
ξ(k + 1) and ζ(k) are the input and output stochastic
noises, respectively. This sequences are defined on the

probability space
(

Ω, {Fk}k≥0
, P
)

, where {Fk}k≥0
is a

flow of the σ -algebras Fk, which for each k = 0, 1, ... is
a minimal sigma-algebra, generated by the prehistory of
the process, i.e.,

Fk = σ {x (0) , u (0) , ξy (0) ; ...;x (k) , u (k) , ξx (k) , ξy (k)} .
(2)

2.2 Main assumptions

Suppose that

A1) Random variables ξx (k + 1) and ξy (k) are indepen-
dent martingale-differences, namely,

E {ξx (k + 1) | Fk}
a.s.
= 0, E {ξy (k) | Fk}

a.s.
= 0,

E
{

ξx (k + 1) ξ⊺y (k) | Fk

} a.s.
= 0

}

(3)

with bounded conditional covariation matrices

E {ξx (k + 1) ξ⊺x (k + 1) | Fk}
a.s.

≤ Ξx,

E
{

ξy (k) ξ
⊺

y (k) | Fk

} a.s.

≤ Ξy;

}

(4)

A2) the nonlinear mapping f : R
n → R

n is sup-
posed to be a priory unknown but belonging to the
class C (A, f0, f1) of quasi-Lipschitz functions (see
Poznyak et al. (2014)), which means

‖f (x (k) , k)−Ax (k)‖
2
≤ f0 + f1 ‖x (k)‖

2
(5)

globally on R
n;

A3) The matrices A ∈ R
n×n, B ∈ R

n×l and C ∈ R
m×n

are assumed to be known such that the pair (C,A)
is observable, and (A,B) is controllable.

Here E {·/Fk} and E{·} represent the operators of condi-
tional and complete mathematical expectation.

3. PROBLEM STATEMENT

Before the formulation problem we need to describe the
class of observer and controller which will be considered.

3.1 Sliding mode observer

The on-line state estimates {x̂(k)}k≥0 of {x(k)}k≥0 is
generated by the SMO:

x̂(k + 1) = Ax̂(k) +Bu(k) + Lσ(k) + LaSign (σ(k)) ,
σ(k) = y(k)− Cx̂(k)

}

(6)

3.2 Robust controller

The control actions will be deigned as a linear feedback

u(k) := Kx̂(k) + v(k),
v(k) := −Kx∗k −B+[Ax∗k − ϕ(k + 1, x∗k)],

BB+B = B, B+BB+ = B+







(7)

depending on the desired dynamics given by x∗(k) =
ϕ(k, x∗(k − 1)) ∈ R

n.

3.3 Problem formulation

The main problem of this paper can be formulated as
follows.

Problem 1. For the extended vector

z(k) = ( δ⊺(k) e⊺(k) )
⊺
∈ R

2n (8)

with the components, defined as

δ(k) := x(k)− x∗(k), e(k) := x(k)− x̂(k), (9)

where δ(k) is the tracking error and e(k) the state
estimation error, to find the gain matrices K ∈ R

l×n, L ∈
R

n×m and La ∈ R
n×m such that the joint mean square

weighted error E {z⊺(k)Pzz(k)} belongs asymptotically
to the stochastic attractive ellipsoid, fulfilling the
inequality

lim sup
k→∞

E {z⊺(k)Pzz(k)} ≤ 1 (10)

for any admissible nonlinearity f ∈ C (A, f0, f1) .
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4. ZONE-CONVERGENCE ANALYSIS

4.1 Tracking error

The tracking error dynamics in (9) with the control (7)
results in:

δ(k + 1) = (A+BK) δ(k)−BKe(k) + ϑ(k)

ϑ(k) := ξ̂(k + 1)− δ̂(k),

δ̂(k) := ϕ(k + 1, x∗(k))−Ax∗(k).







(11)

4.2 Observation error

For the observation error e(k) in (9) it follows

e(k + 1) = (A− LC) e(k)− LaSign (σ(k)) + ω(k),

ω(k) := ξ̂(k + 1)− Lζ(k),
Sign (σ) := (sign (σ1) , ..., sign (σn))

⊺
,

sign (σi) :=

{

1 if σi > 0
−1 if σi < 0

[−1, 1] if σi = 0
.



























(12)

4.3 Storage function analysis

Theorem 1. If matrices P,K,L, La and scalars α, β, γ are
selected in such a way that

W̃ (P,K,L, La | α, λ, γ) =




3Ã⊺PÃ+ Λ̃δ − αP 0 0
0 2Q⊺PQ− λI Q⊺P
0 PQ 2P − γI



 ≤ 0,















(13)
with

Λ̃δ =

[

6γf1In×n 0
0 0

]

, (14)

then for the storage (Lyapunov-like) function

V (k) = z⊺(k)Pz(k), 0 < P =

(

P1 0
0 P2

)

, (15)

we may guarantee that

E {Vk+1} ≤ αE {V (k)}+ β̃k(L). (16)

where

β̃k(L) := mλ+ γ
(

2tr {Σx}+ 3f0 + 6f1 ‖x
∗
k‖

2
)

+γ
(

tr {LΣyL
⊺}+ 2‖δ̃k‖

2

)

, δ̃k =
(

I −BB+
)

δ̂(k).







(17)

Proofs of this and the following next statement can be
found in Appendix.

4.4 Analytical representation of attractive ellipsoid

Taking θ as upper bound of tr {L⊺ΣyL} in (17), we can
write:

tr

{

θ

n
In×n − LΣyL

⊺

}

≥ 0, (18)

then, lim sup
k→∞

of (16), is:

lim sup
k→∞

E {Vk} ≤
β̃k(L)

1− α
≤
ψ(β, γ, θ)

1− α
,

ψ(·) := mβ + γ
(

2tr {Σx}+ 3f0 + 6f1X
∗
+ + 2∆∗

+ + θ
)

,

‖x∗k‖
2
≤ X∗

+, and
∥

∥

∥δ̃k

∥

∥

∥

2

≤ ∆∗
+,

for convenience ψ(·) = ψ(β, γ, θ) . This may be repre-
sented as

lim sup
k→∞

E {z⊺k Pz zk} ≤ 1, Pz :=
1− α

ψ(·)

(

P1 0
0 P2

)

,

which, according to the definition (10), defines the
stochastic attractive ellipsoid with matrix Pz.

4.5 Gain matrix optimization

To minimize the errors ek and δk+1, we need to maximize
Pz with respect to the matrices La, L, K and the scalar
positive parameters α, β, γ. The optimal matrix gains L∗

a,
L∗, K∗ are suggested to be found as the solution of the
following optimization problem

tr

{

1− α

ψ(·)

(

P1 0
0 P2

)}

→ sup
P1 > 0, P2 > 0, La, L,K;
α > 0, β > 0, γ > 0

under constraints (13) and (18). These constraints are
bilinear ones, to apply Matlab Package, we need to
transform them into linear ones. See the next theorem.

Theorem 2. Taking P ∗
1 = X1, P2 = X2, K = G, P2L =

Y1, and P2La = Y2. Inequalities (13) and (18) are fulfilled
if the following LMIs hold:

W̄+ ≤ 0, WQ1
≥ 0, WQ2

≥ 0, Q1 ≥ 0, Q2 ≥ 0,Wθ ≥ 0
(19)

here

W̄+ :=

(

−Q1 0 0
0 −Q2 WY2

0 WY2
2X − γI

)

,WY2
:=

[

0 0
0 Y2

]

WQ1
:=









1

3

(

αX − Λ̃δ −Q1

)

WQ1
(1, 2)

WQ1
(2, 1)

[ γ

2
I 0

0 X2

]









,

WQ1
(1, 2) =W ⊺

Q1
(2, 1) :=

(

(A+BG)⊺ 0
−G⊺B⊺ A⊺X2 − C⊺Y1

)

WQ2
:=

(

1

2
(λI −Q2) WY2

WY2
X

)

,Wθ :=





θ

n
In×n

γ

2
Y1

γ

2
Y ⊺

1 Σ−1
y



 .

Notice that, with Theorem 2, for the parameters α, λ, γ
and θ after some transformations the matrix inequalities
(13) and (18) become LMIs. They can be solved using
the LMItoolbox, SeDuMi and Yalmip. Our optimization
problem can be also solved following the next two-steps:

1 we fix the scalar parameters α, λ, γ and θ, and solve
the LMIs with respect to the matrix variables.
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2 for the found matrix variables X1, Y1, X2, Y2 and G,
solve our optimization problem only with respect to
scalar parameters α, λ, γ and θ.

Finally, iterating this process we find the optimal solution
K∗ = G∗, L∗ = (X∗

2 )
−1
Y ∗
1 , L

∗
a = (X∗

2 )
−1
Y ∗
2 .

5. ILLUSTRATIVE NUMERICAL ACADEMIC
EXAMPLE

Consider the system

x(k + 1) = f(x(k)) +Bu+ ξ(k + 1),
y(k) = x1(k) + ζ(k),

which in the quasi-linear format is presented as

x(k + 1) = Ax(k) +Bu(k) + ξ̂(k + 1),
y(k) = Cx(k) + ζ(k),

where x(k) = [ x1(k) x2(k) ]
⊺
and

ξ̂(k + 1) = ξ(k + 1) + f(x(k))−Ax(k),

f(x(k)) =

[

x2(k) sin(x1(k))
−0.1(x1(k) + x2(k))

]

A =

[

0 1
0.1 0.1

]

, B =

[

1 0
0 1

]

, C = [ 1 0 ] .

For (5), f0 = 0 and f1 = 1. Notice that (A,B) is
controllable and (C,A) is observable. Here, ξ(k + 1) ≤
Ξx = 0.01I2×2 and ζ(k) ≤ Ξy = 0.01. The desired
dynamics is given by

x∗(k) =

[

C∗
1

C∗
2 sin(k)

]

, C∗
1 = 1, C∗

2 = 0.5.

The gain optimization procedure (4.5) leads to

α∗ = 0.1, β = 0.1, γ = 0.9,

P ∗ =







0.0503 0 0 0
0 0.0503 0 0
0 0 0.4499 −0.0012
0 0 −0.0012 0.0021






,

K∗ =

[

0 −0.2596
−0.2596 0.0499

]

,

L∗ =

[

−0.3
−0.6

]

, L∗
a =

[

0.015
0.01

]

.

Trajectories of the real, observed and desired of states are
showed on Fig.1 and Fig.2, respectively. Fig.3 and Fig.4
shows the convergence errors to the attractive ellipsoid
with simulation step time of 0.01s.

6. CONCLUSIONS

In this paper we prove the mean square convergence of
state estimation and tracking errors by the application of
AEM for the robust control design of a large class of quasi-
Lipschitz nonlinear stochastic discrete-time systems using
the on-line state estimates, obtained by the corresponding
SMO; the size of the convergence zone (trace of Pz) is
minimized by the optimal selection of the gain matrices
in the SMO and the linear feedback; the optimal selec-
tion is achieved transformation of BMIs into LMIs and
using standard MATLAB packages. A numerical example
illustrate the effectiveness of the suggested technique.

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Real

Desired

Observed

Fig. 1. Real, desired and observed trajectories of the state
x1(k).
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Fig. 2. Real, desired and observed trajectories of state
x2(k) .
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Fig. 3. Traking error δ(k) convergence.
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Appendix A. PROOF: THEOREM 1

a) For the vector z(k) ∈ R
2n (8) with the control (7), we

have

z(k+1) = Ã (K,L) z(k)+Q (La) s(k)+η(k, k+1) (A.1)

where

Ã (K,L) =

(

(A+BK) −BK
0n×n (A− LC)

)

∈ R
2n×2n,

Q (La) =

(

0n×m

−La

)

∈ R
2n×m,

s(k) = Sign (σ (k)) ∈ R
m, η(k) =

(

ϑ(k)
ω(k)

)

∈ R
2n.































(A.2)
Now, for the storage function V (k + 1) it follows

V (k + 1) = z⊺(k + 1)Pz(k + 1)

=

(

z(k)
s(k)
η(k)

)⊺




Ã⊺PÃ Ã⊺PQ Ã⊺P

Q⊺PÃ Q⊺PQ Q⊺P

PÃ PQ P





(

z(k)
s(k)
η(k)

)















(A.3)
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Applying Λ-matrix inequality W ⊺Z + Z⊺H ≤ H⊺ΛH +
Z⊺Λ−1Z, valid for H,Z ∈ R

K×M and Λ = Λ⊺ > 0 , to
2z⊺(k)Ã⊺PQs(k) and 2z⊺(k)Ã⊺Pη(k, k + 1), we get

V (k + 1) ≤

(

z(k)
s(k)
η(k)

)⊺

W

(

z(k)
s(k)
η(k)

)

+

αz⊺(k)Pz(k) + λ ‖s(k)‖
2
+ γ ‖η(k)‖

2
, |α| < 1,











(A.4)
where

W :=





3Ã⊺PÃ− αP 0 0
0 2Q⊺PQ− λI Q⊺P
0 PQ P − γI



 (A.5)

Taking E {·|Fk}, in both sides of (A.4), we obtain

E {V (k + 1)|Fk}
a.s.

≤ E







(

z(k)
s(k)
η(k)

)⊺

W

(

z(k)
s(k)
η(k)

)

|Fk







+ αV (k) + λ ‖s(k)‖
2
+ γE

{

‖η(k)‖
2
|Fk

}

.

(A.6)

Expanding E
{

‖η(k)‖
2
|Fk

}

and taking into account the

relations (3), (4) and (5), we derive

E {V (k + 1)|Fk}
a.s.

≤ E







(

z(k)
s(k)
η(k)

)⊺

W

(

z(k)
s(k)
η(k)

)

|Fk







+ αE {V (k)|Fk}+ βk(L),

βk(L) := mλ+ γ
(

2tr {Σx}+ 3
(

f0 + f1 ‖x(k)‖
2
))

+

γ

(

2
∥

∥

∥δ̃(k)
∥

∥

∥

2

+ tr {LΣyL
⊺}

)















































(A.7)

b) Since x(k) = δ(k) + x∗(k), it follows ‖x(k)‖
2

≤

2 ‖δ(k)‖
2
+2 ‖x∗(k)‖

2
. The term 2 ‖δ(k)‖

2
can be included

W̃ and 2 ‖x∗k‖
2
into βk(L), that leads to

E {V (k + 1)|Fk}
a.s.

≤ E







(

z(k)
s(k)
η(k)

)⊺

W̃

(

z(k)
s(k)
η(k)

)

|Fk







+ αE {V (k)|Fk}+ β̃k(L).















(A.8)
If the matrices P,K,L, La and scalars α, β, γ are selected
in such a way that W̃ ≤ 0, from (A.4) we get

E {V (k + 1)|Fk} ≤ αE {V (k)|Fk}+ β̃k(L). (A.9)

Taking the complete mathematical expectation of (A.9)
we finally obtain (16).

Appendix B. PROOF: THEOREM 2

Let us introduce the change of variable X1 = P1, X2 =
P2, K = G, Y1 = P2L, Y2 = P2La. Entering the matrices
Q1 > 0 and Q2 > 0 such that:

3Ã⊺ (K,L)PÃ (K,L) + Λ̃δ − αP ≤ −Q1 ≤ 0, (B.1)

2Q⊺ (La)PQ (La)− λI ≤ −Q2 ≤ 0. (B.2)

Substituting this in (13) we get W̃ ≤ W̃+. Applying the
Schur’s complement into (B.2), we get









1

3

(

αP − Λ̃δ −Q1

)

Ã⊺

[

I 0
0 P2

]

[

I 0
0 P2

]

Ã

[

P−1

1 0
0 P2

]









≥ 0. (B.3)

Now, from W̄+ ≤ 0, (B.3) and taking into account
X1 = P1, it’s easy to see that X−1

1 ≥ 2

γ
I, which implies

WQ1
≥ 0. In turn, by the same reasoning, applying the

Schur’s complement to inequality (B.2) and substitution
Y2 = P2La, results WQ2

≥ 0. Finally, in view of the
relation Y1 = LX2 and applying, again, the Schur’s
complement into (18), we have Wθ ≥ 0.
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