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04510, CDMX, México
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Abstract: This paper deals with the detection and localization of damage in pipelines. The
purpose is to characterize the transient wave propagation in a faulty pipeline with a viscous
absorption fluid and the pattern response to an external acoustic source as a function of
the fault type and position. The study assumes an infinite-dimensional linear model for the
wave propagation in the pipeline and lumped models for the leak and blockage faults. The
key to the study is to analyze the wave propagation model through graph theory and by the
reflection coefficient to solve these tasks. The system decomposition according to the fault
scenarios allows the characterization of the impulse input response for a leak and blockage in
the pipeline. For the specific case of a leak and a blockage, the impulse patterns are established
and validated by simulation.

Keywords: Feature selection for fault location, signal patterns for leak and blockage
detection, signal graph theory.

1. INTRODUCTION

Pipelines and distribution networks are the most com-
mon and economical way to transport fluids. The num-
ber of pipelines around the world and the fact that the
products are mainly hazardous demand norms and re-
quirements from government and society for safe instal-
lations (Farmer, 2017; Lu and Iseley, 2018). The main
reason for the pipelines system (PS) degradation is the
destruction of pipe walls as a result of corrosion, erosion,
fatigue damage accumulation, static and shock loading,
frost upheaval, ice load, turbulent flows, and so on. The
main concern of the utilities and distributers of liquid and
gas is the diagnosis of leakage since it results not only
in product loss but also generates accidents with huge
potential damage.

Recently, Murvay and Silea as well as Datta and Sarkar
(2016) published a very exhaustive review of different
methods for PS fault diagnosis based on the applicability
of the methods that included the vibration analysis, pulse
echo methodology, acoustic techniques, negative pressure
wave, artificial intelligence tools, interferometric optic,
and so on. The acoustic pulse reflectometry principle is
suggested as the more suitable because of its proficiency
in identifying both blockage and leakage in a pipe.

According to Sattar and Chaudhry (2008), the multiple
leaks’ problem can be tackled in the frequency domain
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with linearized models of the fluid and by assuming punc-
tual faults. The transient test-based tools are considered
useful for leak and blockage detection in a line as is shown
in Meniconi et al. (2016) and Capponi et al. (2017). Thus,
the transient oscillatory pressure produced by the source
allows detecting faults in the time (Rubio Scola et al.,
2015) and frequency domain (Mpesha et al., 2001).

Since the excitation signal produced by a valve is not
always feasible in a line for security reasons, the idea
of replacing the oscillating valve with acoustic signals
injected into the line has been also proposed in diverse
contributions. A change in the impedance of the fluid is
produced by a fault in the conduit (Sharp and Campbell,
1997). As a consequence, an acoustic source can be used
as perturbation, and the reflection phenomenon allows the
identification of the fault. Thus, the authors proposed an
external acoustic signal injected into the pipeline to detect
the damage conditions by means of information collected
at the measurement point.

Motivated by the facts mentioned above, this work focuses
on two tasks: looking for the transient wave propagation
properties in a damaged pipeline with a viscous fluid
and pattern responses as a function of the damage type
and its location. In particular, by taking advantage of
the graph theory, a study is proposed that joins an
infinite-dimensional linear model of the wave propagation
together with its analysis through graph theory to solve
these tasks. The assumed faults in the study are a leak
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and a discrete blockage modeled as components of lumped
parameters.

Consider the setup system of Fig. 1. The first part of
this work introduces the analytical infinite-dimensional
linear model of the fluid in the complex domain with
a single fault by assuming an injection of a acoustic
signal at the upstream boundary of the line and with a
single measurement point of the wave pressure at distance
l0 from the source. The system model is developed by
using two-port transfer matrices that are coupled with
algebraic operations according to the fault and boundary
conditions.

ℓ2ℓ1ℓ0

Acoustic
source

Measurement
point Damage

Figure 1. Sketch of an interconnected pipe with three
healthy segments, a fault, measurement point and
an acoustic source as a test signal

The whole system in fault conditions as oriented sub-
graphs considering an impulse as an acoustic signal allows
analyzing the wave propagation trajectories in the time
domain based on the paths described by the graphs. This
analysis simplifies the search for the fault parameters in
the impulse propagation and allows the recognition of a
specific pattern in the response for each type of fault.
This idea is the main contribution of this work. The
fault position is associated with the arrival time of the
first reflected wave at the measurement point, and the
amplitude of the reflected wave characterizes the type and
magnitude of the fault. Section 5 validates the proposed
impulse response patterns for the faults in diverse condi-
tions through simulation, and, finally, Section 6 includes
the main conclusions and remarks. The main advantage
of the proposed detection test is the straightforward in-
terpretation of the parameters associated with each fault
and its generalization for a combination of multiple faults.
Moreover, from a practical point of view, the test requires
only an external acoustic source and a measurement point
of transient pressure for the fault identification.

2. SYSTEM STRUCTURE AND WAVE
PROPAGATION MODEL

In order to analyze the system shown in Fig. 1, this section
introduces the propagation model of acoustic waves with
attenuation because of viscosity and faults. The system
configuration consists of the following: three healthy con-
duit segments interconnected with two lumped parameter
components and boundary conditions at the ends of the
conduit. The first component named measurement point
is where the state of the acoustic wave is measured and
recorded. The second one represents a fault in a point of
the conduit that could be a leakage or a partial blockage.
The healthy conduit segments are modeled by a two-port

transfer matrix, which relates the acoustic pressure and
particle velocity at its ends.

2.1 Intact Pipeline Model

The propagation equations of acoustic waves through a
pipe of a constant of cross-section area S [m2] and length
ℓ [m] can be derived from the continuity, momentum
and the gas state equations governing the dynamics
of the fluid considering absorption caused by viscosity.
According to Blackstock (2000), these equations can be
expressed as a set of linearized one-dimensional partial
differential equations as follows:

∂ρ(z, t)

∂t
+ ρ0

∂u(z, t)

∂z
= 0, (1)

ρ0
∂u(z, t)

∂t
+

∂p(z, t)

∂z
= η

∂2u(z, t)

∂z2
, (2)

p(z, t) = c2ρ(z, t), (3)

where (z, t) ∈ [0, ℓ]× [0,+∞) gathers the space [m] and
time [s] coordinates and p(z, t), u(z, t) and ρ(z, t) denote
the acoustic pressure [Pa], the particle velocity [m/s]
and the medium density variations [kg/m3], respectively.
Furthermore, ρ0 is the medium density at the operation
point, c is the sound speed in the fluid [m/s] and η gathers
the coefficients associated with the viscosity of the fluid
[Pa·s].
To obtain the wave equation for a segment, the density
ρ(z, t) given in (3) is substituted in (1), and one gets

1

c2
∂p(z, t)

∂t
+ ρ0

∂u(z, t)

∂z
= 0. (4)

Thus, by taking the partial derivatives of (4) and (2) with
respect to z and t, after some algebraic manipulations the
particle velocity model can be written by

∂2u(z, t)

∂z2
+

η

ρ0c2
∂3u(z, t)

∂z2∂t
− 1

c2
∂2u(z, t)

∂t2
= 0. (5)

By transforming this equation into the frequency domain
s, the wave velocity propagation model is reduced to

d2U(z, s)

dz2
− γ2(s)U(z, s) = 0, (6)

where the propagation function is given by

γ(s) =
1

c

s√
1 + δvs

=
γ̃(s)

c
, (7)

with δv = η/ρ0c
2 [s]. Thus, the solution of (6) takes the

form

U(z, s) = c1(s) sinh
(

γ̃(s)
z

c

)

+ c2(s) cosh
(

γ̃(s)
z

c

)

, (8)

where c1(s) and c2(s) are functions of s determined by
the segment boundary conditions.

On the other hand, by transforming (4) into the frequency
domain, one gets the acoustic pressure

s

c2
P (z, s) + ρ0

dU(z, s)

dz
= 0, (9)

as a function of the derivative of the velocity. Since U(z, s)
is given by (8), one can substitute its derivative in (9) to
obtain the expression of the acoustic pressure
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P (z, s) = −Z(s)

(

c1(s) cosh

(

γ̃(s)
z

c

)

+ c2(s) sinh

(

γ̃(s)
z

c

))

(10)

with Z(s) = ρ0cγ̃(s)/s as the acoustic impedance. Thus,
by defining the state at the ends with any arbitrary
boundary as

X(z−, s) =

[

P (z−, s)
U(z−, s)

]

and X(z+, s) =

[

P (z+, s)
U(z+, s)

]

,

(11)
the functions c1(s) and c2(s) can be determined by

c1(s) = − 1

Z(s)
P (z−, s) and c2(s) = U(z−, s). (12)

Therefore, the wave state at the ends is related to

X(z+, s) = M ℓ(s)X(z−, s), (13)

where z+ − z− = ℓ and the transfer matrix

Mℓ(s) =





cosh

(

γ̃(s)
ℓ

c

)

−Z(s) sinh

(

γ̃(s)
ℓ

c

)

−

1

Z(s)
sinh

(

γ̃(s)
ℓ

c

)

cosh

(

γ̃(s)
ℓ

c

)



 (14)

corresponds to the two-port model for an intact segment
of length ℓ (Chaudhry, 2013). This model is used to
describe any of the three segments of the tube shown
in Fig. 1 with the same propagation function γ(s), im-
pedance Z(s) and their respective lengths. The algebraic
form of the matrix M ℓ(s) differs from the wave models
reported in Lee et al. (2005) as well as Wang et al. (2021)
in the propagation function.

2.2 Components Lumped Models

According to Chaudhry (2013), a point component at
point zk in a conduit produces a discontinuity. In the
framework of two ports, such a component is modeled as
a transfer matrix that depends on the specific component
that relates to the fluid state X before and after the
component. This is

X(z+k , s) = Pzk(s)X(z−k , s), (15)

where z+k = zk + ǫ, and z−k = zk − ǫ are space coordinates
close to zk, with ǫ → 0 and the matrix Pzk(s) relates to
the upstream and downstream states of the component.
The following paragraphs introduce the point transfer
matrices for two types of faults: a leakage and a partial
blockage.

Leakage Model: The discharge produced by a leak at
point zk in a pipeline with cross-section area S can be
described by the two-port lumped model

X(z+k , s) = Pzk
l X(z−k , s) with Pzk

l =

[

1 0
−(F ∗

l S)
−1 1

]

(16)
taken from Zecchin et al. (2005), which depicts the de-
viations upstream and downstream from the steady-state
wave near point zk, with the leak impedance F ∗

l = 2pl/ql
[Pa·s/m3] as the ratio of the steady-state discharge
through the orifice ql [m3/s] to the respective pressure
pl [Pa] in the leak.

Based on reflectometry, when a wave traveling through
the duct falls on a leak, the impedance F ∗

l produces
reflected waves in the line that are characterized by
the coefficients of the dimensionless reflection Rl(s) and
transmission Tl(s). These coefficients are written in terms
of the leak and acoustic impedances F ∗

l and Z(s) as
reported in Zecchin et al. (2005):

Rl(s) = − Z(s)

2F ∗

l S + Z(s)
and Tl(s) =

2F ∗

l S

2F ∗

l S + Z(s)
(17)

with Tl(s) = 1 +Rl(s).

Partial Blockage Model: Following a similar derivation
as for the leak scenario, the following reflection and
transmission coefficients Rb(s) and Tb(s) can be obtained:

Rb(s) =
F ∗

b S

2Z(s) + F ∗

b S
and Tb(s) =

2Z(s)

2Z(s) + F ∗

b S
, (18)

in terms of the blockage impedance F ∗

b = 2∆p0/q0 [Pa·s
/m3]. F ∗

b is associated with the partial blockage that
depends on the steady-state pressure loss across the valve
∆p0 [Pa] corresponding to the steady-state of the flow
rate q0 [m3/s]. Here Tb(s) = 1−Rb(s). Thus, the partial
blockage lumped model is written as

X(z+k , s) = Pzk
b X(z−k , s) with Pzk

b =

[

1 −F ∗

b S
0 1

]

. (19)

As a result, based on the above developed transfer
matrices and the features of the device components, one
can already obtain the global model of an acoustic wave
for the configuration shown in Fig. 1. The analytical
model that links the state X(z, s) along the pipe by inter-
connecting the components according to the configuration
is developed in Subsection 2.4.

2.3 Frequency Response of Reflection Coefficients to
Different Gas Propagation Mediums

The reflection coefficients given by (17) and (18) are an
important object in the study of fault detection because
they represent a magnitude of energy loss from the
incident acoustic wave. Thus, it is important to perform a
study on frequency response. The magnitude diagram of
Rl(s) depicted by Fig. 2 shows that for low frequencies’
signals the gain obtained for different gaseous propagation
mediums like air, O2, N2 and CO2 are constants with
values of F ∗

l = 98, 100 and F ∗

b = 784, 800 Pa · s/m3. A
similar event occurs with Rb(s).

Thus, it is possible to analyze the fault models considering
that the reflection coefficients are constant values: they do
not depend on variable s. Moreover, since the relation-
ships between the reflection and transmission coefficients
are linear, they can also be considered as constants. Fur-
thermore, the reflections coefficients can be approximated
as

Rl ≈ − ρ0c

2F ∗

l S + ρ0c
and Rb ≈

F ∗

b S

2ρ0c+ F ∗

b S
. (20)

If a specific means of propagation through a pipeline is
considered, the above equations imply static relationships

CNCA 2021

13-15 de Octubre, 2021. Guanajuato, México

281Guanajuato, México, 13-15 de Octubre, 2021 Copyright©AMCA. Todos los Derechos Reservados www.amca.mx



0.5

1

1.5

2

M
ag

n
it

u
d
e 

(a
b
s)

Air

O
2

N
2

CO
2

10
0

10
2

10
4

10
6

10
8

10
10

10
12

90

120

150

180

P
h
as

e 
(d

eg
)

Frequency  (Hz)

Figure 2. Gain and phase of function Rl(s) for different
propagation mediums at 20◦C

between the reflection coefficients and the associated
impedances for each of the faults. Therefore, by making
an identification of the parameter Rf , it is possible to
identify the parameter F ∗

f that allows estimating the
magnitude of the fault. These relations are depicted by
Figs. 3 and 4.
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As a result, on the basis of the transfer matrices developed
above and the analysis of the frequency response of the
reflection coefficients, one can already obtain the global
model of an acoustic wave traveling for the configuration
shown in Fig. 1 by considering that the reflection coef-
ficients are constants. The analytical model that links
the state X(z, s) along the pipe by interconnecting the
components according to the configuration is developed
in the next subsection.

2.4 Embedded Model

The block diagrams of Fig. 5 give a description of the
whole system whereX(0) is associated with the excitation
source and X(L) with the condition at the end of the line
of length L. Hereafter the dependency on s is omitted
for simplicity, and the set of matrices {M ℓ0 , M ℓ1 , M ℓ2}
is associated with (14) for the intact sections of lengths
ℓ0, ℓ1, and ℓ2, respectively. These lengths satisfy L = ℓ0+
ℓ1 + ℓ2. The unit matrix Pz0

o associated with the point z0
is where the state can be observed and recorded, as well
as the matrix Pz1

f associated with a fault at coordinate
z1 = ℓ0 + ℓ1, where the subindex f = l or b denotes if the
fault is a leak or a partial blockage, respectively.

_
+

_
+

X(0) X(L)
M ℓ0 M ℓ1 M ℓ2Pz0

o Pz1
f

ℓ0 ℓ1 ℓ2

z0 z10 L

Figure 5. Matrix block diagram of the acoustic system
with a fault at z1 and an observation point at z0

Because Pz0
o = I for the wave state at the observation

point, one can write the relation

X(z0) = M ℓ0X(0), (21)

and for the state at the end of the line in terms of X(z0),
one can also write the relation

X(L) = Sℓ2,ℓ1X(z0) with Sℓ2,ℓ1 = M ℓ2Pz1
f M ℓ1 . (22)

Thus, from (21) and (22), the state at the observation
point can be expressed in terms of the boundary condi-
tions by

X(z0) =
1

2

(

M ℓ0X(0) +
(

Sℓ2,ℓ1
)−1

X(L)
)

, (23)

which depends on the transfer matrix between the obser-
vation point and the fault, as well as the transfer matrix
between the fault and the end of the pipeline.

On the other hand, the transfer matrix between the
boundary conditions at the ends of the pipe can be
expressed by

X(L) = TX(0) with T =

[

t11 t12
t21 t22

]

= Sℓ2,ℓ1M ℓ0 . (24)

These relations are valid for any excitation source and
downstream condition, as well as for any type of fault
with a punctual matrix model. Moreover, this is straight-
forwardly extended for the case of two faults in the line.

3. WAVE BEHAVIOR AT THE MEASUREMENT
POINT

To analyze the wave behavior at the measurement point
z0 under fault scenarios, specific boundary conditions
X(0) and X(L) must be given in (23). Upstream pressure
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X1(0) = P (0) is assumed to be the excitation source sig-
nal in the pipe, and the downstream velocity X2(L) = 0 is
assumed to be the boundary condition produced by a rigid
body. X1(0) and X1(L) are obtained directly from (24).
In this way, the boundary conditions can be written as a
function of the external source P (0) as

X(0) =

[

1

− t21
t22

]

P (0), X(L) =

[ 1

t22
0

]

P (0). (25)

By substituting these boundary conditions in (23), the
state at the measurement point is reduced to

X(z0) =

[

G1

G2

]

P (0), (26)

where
[

G1

G2

]

=
1

2

(

M ℓ0

[

1

− t21
t22

]

+ (Sℓ2,ℓ1)−1

[ 1

t22
0

])

(27)

is the transfer matrix that characterizes the dynamic
behavior of the wave at the measurement point z0 for
any source P (0).

3.1 Transfer Function G1

Since only the pressure P (z0) is measured for fault loca-
tion, the following study focuses on the relationship given
by

P (z0) = G1P (0). (28)

Thus, the properties of the transfer function G1 are ana-
lyzed in terms of the pipeline parameters and the specific
type of fault. By substituting the specific expressions
for coefficients tij and after algebraically simplifying, the
transfer function G1 can be written as

G1 =

e
−ℓ0
c

γ̃ +Rf e
−ℓ0−2ℓ1

c
γ̃ + T 2

f
e

−ℓ0−2ℓ1
c

γ̃

(

e
−2ℓ2

c
γ̃

1−Rf e
−2ℓ2

c
γ̃

)

1 +Rf e
−2ℓ0−2ℓ1

c
γ̃ + T 2

f
e

−2ℓ0−2ℓ1
c

γ̃

(

e
−2ℓ2

c
γ̃

1−Rf e
−2ℓ2

c
γ̃

) ,

(29)

with the reflection and transmission coefficient Rf and
Tf for the respective fault f = l or b and distances
ℓi for i = 0, 1, 2. As shown in Fig. 6, the exponential

functions gi(s) = e
−ℓi
c

γ̃(s) have a clear interpretation as
a delay for low frequencies. Moreover, the fault effects are
simpler to interpret through reflection and transmission
parameters for a wave propagation study than through
the impedances F ∗

l and F ∗

b .

Peralta and Verde (2021) proved that the graph G1 shown
in Fig. 7 is equivalent to (29) with the input vertex
v8 = P (0) and the output v9 = P (z0). In other words, G1

describes the expansion of (29) and is the starting point
for the wave propagation analysis in fault conditions.

The graph consists of 9 vertices and 12 transmittances

of type, Rf , Tf and gi(s) = e
−ℓi
c

γ̃ for i = 0, 1, 2. Note
that the inverse transform of gi(s) acts as a time delay
ti = ℓi/c with an attenuation factor, which depends on
the propagation function γ(s).
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Figure 7. Equivalent graph G1 for a pipe with a fault

4. IDENTIFICATION OF FAULT BY MEANS OF
REFLECTION COEFFICIENT

If an intact pipe is considered, then Rf = 0, Tf = 1,
and the vertex v9 = P (z0) is the pressure at the meas-
urement point. One identifies two paths in G1. One
travels from the source v8 by v6 → v9 in the positive
direction with a time delay of ℓ0/c. The other path
starts in v8 and arrives to v3 = P (L), returning by the
path v3 → v2 → v5 → v7 → v9 after a time of (2L− ℓ0)/c.
After this time, the signal consists of reflexed waves. Thus,
the signal at v9 arriving from v6 or v7 is only suitable for a
fault location during the time window TW = (2L−ℓ0)/c.
The rest of the transient response is an overlapping of
wave signals that are not easy to recognize.

4.1 Wave Pattern Features with a Fault

One can recognize the pattern response of v9 for t < TW
as response to the impulse v8 = p(0, t) = δ(t) from the
following simple paths and their transmittances.

Path 1: The source signal δ(t) traveling by the simple
path v8 → v6 → v9 arrives at v9 with negligible atten-
uation in a time τ0 = ℓ0/c. In other words, its effect is
the impulse p(z0, τ0) = δ(t− ℓ0/c).

Path 2: From v8, the source travels, and part of the
signal is reflected by the simple path

v8 → v6 → v4 → v5 → v7 → v9
arriving at v9 in time τf = 2ℓ1/c+ τ0 with an attenu-
ated factor given by Rf . Therefore, p(z0, τf ) = Rfδ(t−
τf ) with τf < TW , and the fault position can be de-
termined by ℓ1 = c(τf − τ0)/2.

Path 3: Another simple path of the signal leaving v8 is

v8 → v6 → v4 → v1 → v3 → v2 → v5 → v7 → v9.
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Through this path, the signal arrives at v9 in a time
TW > τf after its departure.

The above 3 paths are the only simple ones in G1.
Path 2 is critical for fault diagnosis since it characterizes
the damage type, its magnitude and position. The rest
of the possible paths in the graph are not simple and
can generate multiple waves in v9. By considering the
paths that pass only twice through v8, one identifies the
following.

Path 4: The source δ(t) travels by path

v8 → v6 → v4 → v5 → v7 → v8 → v6 → v9

and arrives at v9 in a time τ2 = τf +2τ0, passing twice
by v8 → v6. Note that the signal effect on v9 allows the
verification of the fault in some cases since the response
is −Rfδ(t− τ2) with τ2 > τf .

Path 5: According to path 4, the signal travels until v6
and continues by v4 → v5 → v7 → v9 until also arriving
at v9 but in a time τ3 = 2τf + τ0.

Path 6: A signal that now passes through the vertex v6
three times arrives at v9 in time τ4 = 2τf + 3τ0.

Thus, the wave traveling along path 2 allows the de-
tection of the position ℓ1 for both faults and corres-
ponds to the second signal arriving at the vertex v9 since
τ0 < τf < TW. To estimate the reflection factor and type
of fault, the impulse response amplitude at time τf is
proposed because the magnitude of the exponential func-

tions e
−ℓi
c

γ̃(s) is equal to 1 at low frequencies and for short
distances. Note that the impulse is positive for a partial
blockage and is negative for a leakage. One can also say
that if ℓ2 → ∞, TW → ∞; furthermore, there is no re-
flected wave generated by the end. As a consequence, the
patterns for fault diagnosis can be formally established
by Fact 1.

Fact 1: Consider the graph G1 with δv = 0 that is
associated with the fault diagnosis system of Fig. 1 and
the impulse source v8 = P (0, t) = δ(t). Thus, according
to the previous graph analysis, the transient response or
pressure pattern v9 = p(z0, t) measured at z0 is described
by the impulse set

A0δ(t−τ0)+Afδ(t−τf )+ATW δ(t−TW )+
∞
∑

i=2

Aiδ(t−τi),

where magnitudes and delays of the impulses are related
to the damage conditions. For an intact line and a line
that has a leak or a blockage at some points of the line,
the patterns are characterized by their respective relevant
features.

(1) For an intact pipe, the impulse response has the
magnitudes A0 = ATW = 1 with known time delays
τ0 = ℓ0/c and TW = (2L− ℓ0)/c; the rest of the
impulses for TW > τi have magnitude 0.

(2) For a pipe with a leak or a partial blockage, only
the second impulse gives information of the fault
with known A0 = 1 and τ0. The reflection coefficient
is given by Rf = Af , and the rest of the impulses

could be overlapped without explicit information of
the fault. The delay τf allows the estimation of
the distance of the fault to z0 from the relation
ℓ1 = c(τf − τ0)/2. Moreover, the second impulse is
negative for a leak and is positive for a blockage.

5. IMPULSE RESPONSE PROPAGATION TESTS

To show the simplicity of the diagnosis by using the
features given in Fact 1, a pipeline with a fault and
parameters given in Table 1 is considered. The system
is simulated by using the Simulink toolbox (MATLAB,
2021) with a measurement point at z0 = 1 m and a leak
and a partial blockage at z1 = 4 m or equivalently at a
distance ℓ1 = z1 − z0 = 3 m from the measurement point.
On the other hand, the generation of the excitation wave
in a real device is a fundamental aspect for obtaining
reliable results. Since the signal shape must be generated
by the response from a loudspeaker, Delgado (2021)
characterized a loudspeaker, where from the experiments
carried out with the sound source in the form of a pulse, it
was considered convenient to generate a short and smooth
signal (in a mathematical sense) in order to get a pulse in
the microphone. Therefore, it was proposed to generate
the exponential function

p(0, t) = exp
(

−(t− τ)2/2σ2
)

(30)

with values σ = 0.1 ms and τ = 2.2604 ms. Through the
value of σ is possible to choose the time in which the signal
excites the system. For the selection of a short signal, a
duration of approximately 0.5 ms was considered.

Table 1. Pipeline parameters for the diagnosis
test on air at 20◦C as a propagation medium

c = 343 m/s ρ0 = 1.21 kg/m3

φ = 0.077 m L = 10 m
F ∗

l
= 98, 100 Pa·s/m3 F ∗

b
= 784, 800 Pa·s/m3

The pressure evolution p(z0, t) is shown in Figs. 8 and 9
for a leak and a blockage, respectively. From the set of
impulses, one can identify in both responses that the
results are coherent with the features established in Fact

1.

(1) The first pulse arrives at the measurement point in
τ0 ≈ 5.176 ms and the second one at τf ≈ 22.67 ms;
therefore, according to the second point of Fact 1,
the distance from the fault to measurement point is
then ℓ1 ≈ 3 m or equivalently z1 = 4 m.

(2) The amplitude of the second pulse is Af = −0.318 ≈
Rl for the leak and Af = 0.8108 ≈ Rb for the block-
age; thus, through the results given by Figs. 3 and 4,
one obtains that F ∗

l ≈ 121, 036 and F ∗

b ≈ 789, 000
Pa·s/m3.

As a result, the diagnostic for the two simulated scenarios
coincides with the established conditions in Fact 1.
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Figure 8. Evolution of the pressure at z0 = 1 m and a
leak located at z1 = 4 m

Figure 9. Evolution of the pressure at z0 = 1 m and a
blockage located at z1 = 4 m

6. CONCLUSIONS

This work introduced a study of the effects of acoustic
wave propagation in a pipe with absorption under fault
conditions. By expressing the model of infinite dimension
with faults as a transfer matrix with transcendental
functions using an oriented graph and considering an
impulse and a single measurement point of the wave
pressure as an external source, it allowed obtaining the
fault parameter through the reflection coefficient for a
blockage and a leak. An important remark from the
analysis is the characterization of the time window TW
in which the fault parameters can be easily identified
from the transient response. The rest of the transient
response is a set of overlapped waves that are difficult
to associate with fault features. Simulation results by
MATLAB validated the proposed patterns for a leak
and a blockage. Thus, it has been possible to perform a
systematic analysis of the pipeline with damage, including
the case of two faults.
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