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Abstract: In this work, the solution of the trajectory tracking control problem for a class of port-
Hamiltonian systems is presented. The considered class is characterized by the fact that the
interconnection matrix exhibits a particular structure in which the internal interconnection of
the components of the vector state is modulated by the state itself. An additional feature of the
presented result is the possibility to deal with under-actuated systems. Regarding the stability
analysis, the structure of the approached class allows the formulation of the control error
dynamic so that, using well-known results from the perturbed systems theory, it is possible
to obtain asymptotic stability properties for the closed-loop system. The usefulness of the
contribution is illustrated by solving the speed tracking control problem of the Permanent

Magnet, Synchronous Motor.

Keywords: Nonlinear control, Passivity Based Control, Tracking control, Hamiltonian

Systems.

1. INTRODUCTION

The well-established nonlinear control technique called
Passivity Based Control (PBC) has a framework that
achieves stabilization via passivization and focuses on
the structure and the energy of the systems to develop
procedures to construct control schemes. Since the first
work where the term PBC was introduced in Ortega
and Spong (1989) and explained in Ortega et al. (2013),
there have been numerous important results like the IDA-
PBC in Ortega and Spong (2000), in which the authors
develop a methodology for control regulation by injecting
damping and designing the interconnection of the system
with the control, resulting in a closed-loop system with
a structure corresponding to a port-Hamiltonian (pH)
system.

For a long time, pH systems have been investigated from
different points of view by different areas. This class
of systems has gained more attention in recent years
because of the extensive framework that it provides; from
physical modeling and its particular structure throughout
theory and analysis of physical systems, as explained
in Van Der Schaft and Jeltsema (2014). The results
published over the years, starting with Van Der Schaft
(1986), have solved several problems; for example, the
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stabilization of fully actuated and underactuated pH
systems as published in Ortega et al. (1999) and in
Castarios et al. (2009), as well as trajectory tracking of
fully actuated systems as shown in Reyes-Béaeza et al.
(2018).

However, the lack of a systematic methodology that solves
the control problem of tracking for a class of underactu-
ated pH systems has not been developed, becoming the
motivation of the present work. In order to contextualize
the contribution, it must be considered that there are
an important amount of results that have solved the
tracking problem for specific systems, like in Turnwald
et al. (2018) where they develop a trajectory tracking
control for an autonomous bicycle which is considered
an underactuated system. Another result is presented in
Nguyen et al. (2019) where they develop a tracking-error
control for a polymerization reactor. In a more general
setting, in Yaghmaei and Yazdanpanah (2017) the con-
tractive theory is used to achieve trajectory tracking of
that class of pH systems, relying on the contractivness of
the trajectories of the system.

In this work, we contribute to the solution of the traject-
ory tracking control problem by characterizing a particu-
lar class of pH systems for which it is possible to achieve
convergence of control error to zero. The main feature of
this particular class of nonlinear system is focused on the
interconnection matrix, which can be represented as the
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sum of the products between constant skew-symmetric
matrices and states components that appear in the J(z)
matrix. Another relevant quality of this class of Hamilto-
nian system is founded in the input matrix since it is
possible to cover the case of underactuated systems.

The stability properties achieved by the closed-loop sys-
tem come from the fact that under the assumed structure
of the class of pH systems, it is possible to formulate
a dynamic error equation with a structure that makes
feasible the application of well-known results from the
perturbed systems theory. Thus, a control law is designed
to guarantee asymptotic stability properties of the equi-
librium point that corresponds to the operation when
the actual state equals the behavior of an admissible
trajectory, being the latter a behavior that the original
system can achieve.

In order to illustrate both the transcendence of the
considered class of systems and the usefulness of the
proposed controller, the speed tracking control problem
of Permanent Magnet Synchronous Motors (PMSM) is
analytically solved and numerically verified. For this, the
two-phase equivalent motor model in dgq coordinates is
considered and, for the sake of ease of the presentation,
it is presented the case when the load torque is zero.

The remaining of this paper is organized as follows:
Section 2 shows the particular class of pH systems that
is considered in this work. In Section 3, the problem
formulation is stated and the error coordinates dynamics
are obtained, while in Section 4, it is explained the
control design together with its stability analysis which is
based on identifying the vanishing perturbation term and
proving the asymptotic stability properties of a perturbed
system. In Section 5 it is introduced the case of study and
its numerical evaluation to close the paper with Section
6, where the conclusions are formulated.

2. A CLASS OF PORT HAMILTONIAN SYSTEMS

In this section, the class of pH systems considered in
this paper is presented. It is first considered a general
structure to identify the particular features assumed in
this work. Several remarks are included explaining the
transcendence of the obtained class of systems.

The Hamiltonian system considered in this paper is of the
form

& = [J(z) = R(z)] VH () + g(x)u (1)
y = g(x)"VH(z) (2)
where z € R", J(z) = —J(z)T, R(z) = R(z)T > 0,
H(z) : R" - R, VH(z) = [859{;?) 8619190(3)]T»

u € R™ and g(x) € R™*™.

From the structure presented above, it is clear that when
m < n the system qualifies as underactuated while if
m = n the system is fully-actuated. Another well-known
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fact is that if u € R™ is considered as input and y € R™
as output, then it is defined a passive map.

The particular class of systems considered in this paper
is obtained by considering the following assumptions:

A.1 The Hamiltonian function is a quadratic-type and is
given by

H(x) = %xTQx; Q=07 >0

leading to the fact that VH(x) = Q.

A.2 The input matrix is a constant full-column rank
matrix g(z) = g.

A.3 The dissipation matrix is a symmetric positive semi-
definite constant matrix R = RT > 0.

A.4 The interconnection matrix has a structure such that
can be written as

J(@)=Jo+ i1+ ...+ Jpzp; n>p

where J; are constant skew-symmetric matrices while
x; are the states that appear in the interconnection
matrix. If p = n, then all the states appear in the
interconnection matrix.

Considering the assumptions A.1-A.4 the class of Hamilto-
nian system approached in this paper takes the form

& =[J(x)— R Qz+ gu (3)

y=9"Qx (4)
where z € R", J(z) = —J(z), R=R" >0,Q = QT >
0eR™™ yueR™ geR"™™ m<n,yeR™.

The following remarks, that explain the transcendence of
the class of systems, are in order:

Remark 1: It is clear that assumptions A.1-A.3 corres-
pond to the fact that the class of systems is composed,
in part, by a linear structure. As will be clear below,
this feature is fundamental to obtain an error dynamic
equation suitable to carry out a stability analysis.

Remark 2: Even though assumption A.2 restricts to
accept pH systems that have a constant input matrix, it
does not restrict the systems to be fully actuated because
it considers full column rank input matrix that allows us
to consider underactuated systems.

Remark 3: The importance of assumption A.4 is two-
fold: On the one hand, it defines the nonlinear nature
of the class approached in this paper. In this sense, the
nonlinearities that can appear are given by products of
components of the state vector. On the other hand, its
structure is also fundamental to obtain a suitable error
equation. However and besides this advantage, this struc-
ture is usually found in practice since it corresponds to
the situation when the internal interconnection between
components of the vector state are modulated by a com-
ponent of the same vector.

3. PROBLEM FORMULATION

This section is devoted to the formal formulation of the
control problem solved in this paper. This formulation
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begins by recognizing the kind of (time-varying) behavi-
ors that the system can achieve, denoted as admissible
trajectories, to later formulate the dynamic behavior of
the error variable defined as the difference between the
actual and the admissible trajectories. Once this equation
is stated, the control problem is established.

The admissible trajectories of the system (3) is defined as
the set of trajectories that this system is able to reach. In
this sense, these behaviors must be compatible with the
structure of (3) and therefore must be solutions of the set
of differential equations given by

iy = [J(z,) — R] Qr, + gu, (5)

which is a copy of the original system. It must be notice
that for this system it must be assumed that for a given
trajectory x, there exists a corresponding input u, that
generates it.

Once the admissible trajectories have been defined, the
next step in the problem formulation corresponds to
obtain the dynamic behavior of the control error variable
defined as Z = ¢ — x,. This result is included in the next
proposition.

Proposition 1: Consider the system (3) and the admiss-
ible trajectories defined by (5), then the error coordinates
dynamics are defined as:

t=[J(z) - BQT+ B(z.)QpTp +9u  (6)
where 4t = u —u, € R™, T, € RP, p < n, szQg>O€
RP*P and B(x,) € R®*P is a matrix given by
B(zy) = [J12x Joxu ... Jpxy]

Proof 1: The dynamic in the error coordinates can be
obtained as follows

T = JoQF — RQ7 + g+ J(2)Qx — J(x — #)Qz,  (7)
where J(z) = Jiz1 + - + JpTp.

Using A4. we can separate J(z — ) = J(z) — J(Z) so
that

T = [J(z) — R Q% + gu + J(7)Qu, (8)

With the property of the A4. the next equivalence is
correct

J(2)Qx, = B(x,)% (

o<

Given the structure of the error dynamic presented in (6
it is possible to formulate the control problem solved in
this paper in the following way:

Considering the dynamic system given by (6), design a
control law @ such that

lim £ =0

t—o0

guaranteeing internal stability.

The proposed solution to this problem is presented in the
next section.
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4. CONTROL DESIGN

The main result of this paper is presented in this section,
namely, the proposition of a control law for system (3)
such that the control problem formulated in Section 3 is
solved.

Due to the structure exhibited by the error Equation (6),
the methodology design is divided into two steps. First,
considering the term B(x.)Q,%, as a state-dependent
perturbation, a control law that asymptotically stabilizes
the equilibrium point £ = 0 of the nominal system
(when B(z,)Qp%, = 0) is designed. Second, noticing
that the perturbation term actually defines a vanishing
perturbation, a well-known result from the perturbed
systems theory is applied in order to obtain the desired
result.

4.1 Stability of the nominal system

In the next proposition, stabilization of the equilibrium
point & = 0 for the nominal system, obtained by consid-
ering B(x.)QpZ, = 0 in system (6), is achieved.
Proposition 2: Consider the error coordinate dynamic
(6) without the perturbation term

i =[J(x) — R Q% + gl (10)
with an equilibrium point & = 0. The system (10) in
closed loop with the proportional control of the passive

output

i=—-Ky=-Kq¢'Qz (11)
where K € R™*™ guch that the symmetric part of the
matrix [R+ gKg"'] > 0, is asymptotically stable.

Proof 2: Define the Lyapunov function candidate as
system energy function or the Hamiltonian of the system

H(z) =iTQz (12)

The closed-loop system (10) and (11) may be written in
the pH form

T =[J(x) - RQz — gKg" Q1 (13)

The time derivative along the systems trajectories is
H(i) = #7Qi (14)
=7"Q[J(zx) - R—gKg"] QF (15)
=-#"Q[R+9Kg"] Qi <0 (16)
O

Remark 4: It is important to underscore that asymptotic
stability can be guaranteed if there is natural damping in
the non-actuated coordinates of the system.

Remark 5: Using assumption A.1, the first condition
of exponential stability defined in Khalil (2002) can be
established.

Ain [2]” < 77 QF < Anax 1 2])” (17)
where Anin, Amax are the minimum and maximum ei-
genvalues of matrix Q, respectively. And with the neg-
ative proportional feedback of the passive output (11)
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the second condition defined in Khalil (2002) can be
established:

H(#) < -K ||| (18)

4.2 Stability of the perturbed system

Considering the nonlineal system given by (6), the term
B(z,)QpT, can be considered as a vanishing perturbation
because if £ = 0 — %, = 0 and therefore B(z,)Q,%, = 0.
This property allows us to consider the term B(z,)QpZ)
as a vanishing perturbation term, let us use classical
perturbation theorems to analyze the perturbed system.
This analysis is developed to investigate the stability of
the origin as an equilibrium point of the perturbed system
(6) and is based on the definitions included in Chapter
9 of Khalil (2002). For this purpose in the sequel it is
considered the definition b(xy, Zp) = B(x+)QpZyp-

Proposition 3: Consider that z, is bounded and that
the perturbation term b(z,, Z,) satisfies the bound
~ ~ C3

[b(24, Zp) || < ¥(Fp), v < o (19)
for all ¢ > 0 and for all z € R", where c3,cs are some
positive constants and ¢(Z,) : R? — R is positive definite
and continuous, then the origin of the perturbed system
is asymptotically stable.

Proof 3: Define the energy function H(Z) as a Lyapunov
function candidate

(@) = 5 [-R - gKgT] Qiy + 01 B(r)Q7, (20)
p p
< W) Il + | Beoes,| @
p

where W5(Z) is positive definite and continuous.

When the energy function is positive definite, decreasing
and satisfies

OH(@) | OH (@)

10 D < ey @)
|20 < cavta (23)

A quadratic Lyapunov function (A.1) satisfies (22) and
(23), then the derivative along the trajectories of the
system satisfies

H(Z) < —e3¢” (&) + cad(p) |0, ) |
H(Z) < —(c3 — cam)¢*(Tp)
Therefore, if v is small enough to satisfy the bound then

H(z) is negative definite and therefore the origin of the
perturbed system is asymptotically stable. O

Remark 6: If the equilibrium point is exponentially
stable, the analysis can be simplified and the bound of
the perturbation is given by ||b(z4, Z)|| < v ||Z]].
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5. CASE STUDY

In this section, it is shown that the proposed methodology
ensures asymptotic stability for the trajectory tracking of
the PMSM system.

Consider the PMSM dg model given by

Z1

—Ry 0 NpT2 | 10

i= 0 Ry —np(x1+)| [ 2|+ |01 u
—npza np(z1 + @) —Tm 2 00

(26)

where the state space vector z = [igLy iqLo me]T is

formed by the coils magnetic fluxes in the d and ¢
coordinates and the rotor angular momentum, the input
vector u = [Vy VlI}T is assembled by the coil terminal
voltages in the d and ¢ coordinates and the parameters
of the PMSM are Ry = Ry = 0.225[Q], r,,, = 0.00063 [(],
Ly = Ly = 38mH], J, = 0012[Kgm?], ¢ =
0.17[ Wb] with 3 poles, 1[KW] rated power and 1 [Nm]
rated torque, obtained from Shah et al. (2014).

The PMSM model given by (26) satisfies the properties
(A.1-A.4) of the characterized class system (3) and con-
sidering that the torque of the motor is 77, = 0 the system
is enclosed in the underactuated system class. Beyond the
practical implications of considering the torque 77, = 0,
it is important to clear out that this example is given
to prove that the proposed methodology works with un-
deractuated systems. The unknown perturbation case is
already solved but as it is not the objective of this work,
it is left out for future publication.

The velocity profile followed starts with a desired velocity
(w*) of Ofrad/s] and increases for 1[s] until reaching
a speed of 10[rad/s] that stays for 2[s]. Following the
velocity starts increasing again until getting to 80 [rad/s]
for 2[s] and maintain the velocity for 3 [s] to later start
decreasing for 2]s] till getting to —10[rad/s] for 2][s],
then it decreases more for 2[s] to reach —80 [rad/s] for
3[s] to finally return to the start velocity of 0 [rad/s]|, as
illustrated in Figure 1.

PMSM velocity

o Jrenis]

Figure 1. Trajectory Tracking of the PMSM Velocity
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The motor velocity tracking results of the MATLAB -
Simulink ®) simulations are exposed in Figure 1, where
we can observe the comparison between the desired velo-
city (w*) and the velocity followed by the PMSM (w). This
tracking behavior is achieved through the input control
signals that are illustrated in Figure 2.

Centrol input u,

u, [V

[} 2 4 & B 12 14 18 8 20

0
Tirme [s]

Figure 2. Input Control Signals

In order to have a more precise view of the trajectory of
the state tracking, the graphics of the tracking errors of
the three states are shown in Figure 3. The tracking states
errors are of the order of 1072 in the state x3, which is
the biggest error in all states, as shown in Figure 3. This
figure gives a clearer view of the differences between the
desired trajectories and the ones followed by the PMSM
with the designed controller.

6. CONCLUSIONS

A new trajectory tracking methodology has been estab-
lished for a class of Hamiltonian systems characterized
along with this paper. The properties of the system class
allowed the development of the dynamics in the error
coordinates with a specific structure. This determined
structure of the error let us establish that the term
B(z,)Qpz, can be considered as a vanishing perturbation
and enable us to use the vanishing perturbation analysis
to design the control law. The control scheme maintains
the pH structure in closed-loop by considering a term
as a vanishing perturbation. The results obtained in the
example of the PMSM system illustrate the trajectory
tracking of the desired velocity profile with a small error
when the trajectory suffers from a sudden change. How-
ever, the most relevant result of the case study is that
the PMSM is an underactuated system and it shows that
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Figure 3. Tracking Error Coordinate States

this methodology can be applied in underactuated pH
systems that fulfill the properties of the pH system class
characterized.
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