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Abstract: In this paper, we focus on the primary control of inverter-based microgrids. The
controller consists of the interconnection of two passivity-based controllers, one that adds
a virtual impedance and another that achieves voltage regulation. The equal power-sharing
is reached with the addition of a droop-type controller. Numerical evaluations show the
performance of the proposed control algorithm.
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1. INTRODUCTION

A Microgrid (MG) is a small-scale grid formed of dis-
tributed generation units (DGU), power converters, lines,
electrical energy storage (EES), and loads, with the abil-
ity to self-supply, island, distribute, and regulate the flow
of electricity to the loads (Rojas and Rousan [2017],
Han et al. [2016]). In terms of control, hierarchical con-
trol layers are used to obtain the desired operational
requirements at different levels. This paper focuses on the
primary level, which comprises an inner control loop in
charge of regulating the output voltage at each inverter,
and another control layer in charge of achieving equal
power-sharing.

In the literature, many works related to primary control
can be found (Rokrok et al. [2018], Bendib et al. [2017],
De Persis and Monshizadeh [2017]). Most of these works
simplify the MG’s model by representing the inverters
as voltage sources so that phasors describe the electrical
variables (Schiffer et al. [2016]). The results are droop-
type controllers designed for predominantly inductive
networks. Some results include in the primary control
a virtual output-impedance loop that ensures a specific
behavior (inductive, capacitive, or resistive) at the line
frequency (Guerrero et al. [2011], Mortezapour and Lesani
[2017], Rokrok et al. [2018]).

In this paper, first, we use a modular approach to describe
the MG as a port-Hamiltonian system (pH); then, we
propose three steps to solve the primary control problem:
an output impedance control, a tracking control, and a
droop-control. Inspired by the Control by Interconnection
technique (CbI), see Ortega et al. [2008], we propose to
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IA105421 and UNAM-PAPIIT IN118019. Sof́ıa Avila-Becerril
(soavbec@comunidad.unam.mx)

modify the output impedance by interconnecting a dy-
namical system (controller) through a power-preserving
interconnection. A second interconnection stage is pro-
posed to solve the tracking problem that ensures bound-
edness and output voltage regulation. We give a formal
proof of the output impedance controller working together
with the tracking controller and leave a signal available
to add a droop controller. Since the designer can fix the
inverters’ output impedance, one can choose between a
variety of droop controllers. We take the so-called robust-
droop controller (Zhong [2011]) into our strategy, and we
evaluate its operation in union with the other two stages.

The rest of the paper is organized as follows: Section 2 in-
troduces the MG model from the Hamiltonian formalism.
Section 3 presents the main result of the paper, the inner
controller, adding the virtual impedance and the PBC
for voltage and current tracking. The droop controller
is presented in Section 4, and finally, some numerical
simulations are given in Section 5.

2. INVERTER-BASED MICROGRID MODEL

A generic inverter located at the k − th node of the MG
is represented in Fig. 1.
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Fig. 1. General scheme of an inverter
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The figure shows a single phase two-level voltage source
inverter (2L-VSI) where µk ∈ R is the modulation control
signal. The k− th inverter has as input the pair (vdk

, idk
)

of DC voltage and current; and it has as output the pair
(vmk

, imk
) of AC voltage and current. Both ports are

related via the duty cycle as:
[

i
dk

v
mk

]

=

[

0 µ
k

−µ
k

0

] [

v
dk

i
mk

]

. (1)

Each 2L-VSI is connected to a second order filter with
positive parameters: L

k
, C

k
, r

Lk
and r

ck
. To obtain

the model of the set of n VSI, the state variables are
defined by the collection of inductor fluxes φ

k
and the

capacitor charges q
k
of every VSI, such that φ = col (φ

k
),

q = col (q
k
) and

x := [φ⊤ q⊤]⊤ ∈ R
2n.

By recognizing that the total energy function H : R2n →
R

+ of the system is

H(x) =
1

2
x⊤Dx, (2)

with D = bdiag
{

L−1, C−1
}

∈ R
2n×2n, L = diag {L

k
},

and C = diag {C
k
}, the VSI model can be written as a

pH system given by:

ẋ = (J −R)∇H(x) +Gmvm +Goio (3a)

y = G⊤

m∇H(x) (3b)

with J =

[

0 −I
I 0

]

= −J⊤, Gm =

[

I
0

]

, Go =

[

0
−I

]

,

R = bdiag {r
L
, r

C
} > 0, where r

L
= diag{r

Lk
}, r

C
=

diag{r−1

ck
}, load current i

o
= col

(

i
ok

)

∈ R
n, ∇H(x) the

vector of partial derivatives of the Hamiltonian H(x) with
respect to the state x, and from the vector form of (1)

v
m
= −V

d
µ

where the modulation control vector µ = col (µ
k
) ∈ R

n,

the DC input V
d
= diag{v

dk
} > 0, and vm = col

(

v
mk

)

∈
R

n.

3. INNER CONTROLLER

Inspired by the Control by Interconnection (CbI) tech-
nique, we first present a control strategy that allows
us to design the output impedance of the VSI without
modifying the pH structure of the closed-loop system.
The second step in the inner control strategy is to apply
a tracking controller for the output voltage that also
preserves the pH structure.

3.1 Control of Inverter Output Impedance

We interconnect each VSI given by the k − th element
of (3) to a port-Hamiltonian controller system Σ

C
con-

sisting of a virtual capacitor and two virtual resistors.
The interconnection results in the virtual capacitor, with
capacitance Cvk , in series with the filter’s inductor Lk,
one resistor in series with the virtual capacitor, with

resistance r
vk
, and another resistor in parallel with the

virtual capacitor, with resistance rCvk
. If the n individual

controllers are piled up, the compact form of the controller
system is given by

Σ
C
:=

{

ζ̇ = −r
Cv

∇Hv(ζ) + uv

yv = ∇Hv(ζ)
(4)

with state ζ ∈ Rn, uv ∈ R
n, r

Cv
= diag

{

r−1

Cvk

}

> 0,

Hamiltonian Hv(ζ) : R
n → R

+

Hv(ζ) =
1

2
ζ⊤Cvζ, (5)

C
v
= diag{C

vk
} > 0 ∈ R

n×n a controller gain, and a
standard negative feedback interconnection

[

vm
uv

]

=

[

−rv −I
I 0

] [

y
yv

]

+

[

u
0

]

(6)

where rv = diag{rvk} > 0 ∈ R
n×n is a controller gain,

and u = col (uk) ∈ R
n is an external input.

Proposition 1. Consider the set of n VSI given by (3); the
dynamic control law given by (4)-(6) allows to choose the
output impedance of each VSI as follows:

• Inductive output impedance if r
v
= 0, r

Cv
→ ∞ and

C
v
→ ∞.

• Resisitive output impedance if r
v
→ ∞, r

Cv
→ ∞

and Cv → ∞.
• Capacitive output impedance if rv = 0, r

Cv
→ ∞

and C
v
→ 0.

Proof. The closed-loop system is defined in the extended
state-space (x, ζ) and can be written as:

ẋe = (Je −Re)∇He(x, ζ) +

[

Gm

0

]

u+

[

Go

0

]

io, (7a)

ye =
[

G⊤

m 0⊤
]

∇He(x, ζ) (7b)

xe =
[

x⊤ ζ⊤
]⊤ ∈ R

3n, Re = bdiag{r
L
+ r

v
, r

C
, r

Cv
} >

0, He(x, ζ) = H(x)+Hv(ζ), and J =

[

0 −I −I
I 0 0
I 0 0

]

= −J⊤.

Defining the currents i
k

= L−1

k
φ

k
, the voltages v

k
=

C−1

k
q
k
, and the voltage related to the virtual capacitors

v
vk

= C−1

vk
ζ
k
, with ζ

k
the k − th controller state, and

using the steady-state of (7), the output impedance of
the k − th inverter is given by

Z
ok

= r
Lk

+ r
vk

+
1

r
Cvk

|Y
Cvk

|2 + jω

(

L
k
−

C
vk

|Y
Cv

|2
)

with Y
Ck

= r−1

Ck
+ jωC

k
the admittance of the k − th

capacitor filter and Y
Cvk

= r−1

Cvk
+ jωC

vk
the admittance

of the k − th virtual capacitor.

Since r
Lk

is usually not significant, we can always choose
the gains r

vk
, r

Cvk
, and Cvk to modify the output

impedance Z
ok
.

✷
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3.2 Passivity-Based Tracking Controller

Following the ideas reported in Cisneros et al. [2015]
and Avila-Becerril et al. [2018], we present a Passivity-
Based Controller (PBC) that drives the output currents
and voltages of the VSI to a desired state x⋆. A first
step towards the development of the control strategy is
the definition of the admissible trajectories that for the
extended system (7) are the solutions of:

ẋ⋆
e = (Je −Re)∇H⋆

e (x
⋆
e) +

[

Gm

0

]

u⋆ +

[

Go

0

]

io, (8a)

y⋆e =
[

G⊤

m 0⊤
]

∇H⋆
e (x

⋆
e) (8b)

with u⋆ ∈ R
n the input that (univocally) generates the

admissible behavior.

We first assume that a desired x⋆
e ∈ R

3n bounded and
solution of (8) has been selected, Section 4 is dedicated
to the design of x⋆

e, particularly of x⋆ ∈ R
2n. Under this

condition, the control objective is to design the input
u ∈ R

n in (7) such that:

lim
t→∞

x = x⋆ (9)

guaranteeing internal stability.

By defining the error signals as (̃·) = (·) − (·)⋆, the error
dynamics can be written as:

˙̃xe = (Je −Re)∇H̃e(x̃e) +

[

Gm

0

]

ũ (10a)

ỹe =
[

G⊤

m 0⊤
]

∇H̃e(x̃e) (10b)

with H̃e(x̃e) = H(x̃) +Hv(ζ̃).

The next proposition presents a solution for the tracking
control problem. Again, the solution is based on the
interconnection of a dynamical controller system that
drives the closed-loop system to the desired state and
leaves an external output u⋆ free to regulate the power
distribution.

Proposition 2. Consider the MG system represented by
(7) interconnected with the controller system ΣC

ΣC :=

{

ż = uc

yc = ∇Hc(z)
(11)

with state z ∈ R
n, uc ∈ R

n, Hc : R
n → R given by

Hc(z) =
1

2
z⊤Kiz, (12)

and Ki = K⊤

i > 0 a positive gain, via the power
preserving interconnection:

[

u
uc

]

=

[

−Kp −I
I 0

] [

ỹe
yc

]

+

[

u⋆

0

]

(13)

where Kp = K⊤
p > 0 ∈ R

n×n is a controller gain. Assume
that:

A1. The VSI’s parameters are positive and known.
A2. The demanded current io is a known bounded and

continuous function.
A3. The references x⋆ are known bounded functions with

bounded first derivative.

A4. Each reference v⋆vk , with k = 1, . . . , n is a bounded
function.

Then, the closed-loop system fulfills the control objective
(9).

Proof. We take the time derivative of the radially un-
bounded function

HT (x̃e, z) = H̃e(x̃e) +Hc(z) (14)

along (10) in closed-loop with (11)-(13) which gives

ḢT = ∇⊤H̃e
˙̃xe +∇⊤Hcż

= ∇⊤H̃e

(

−Re∇H̃e +

[

Gm

0

]

(−Kpỹe − yc)

)

+∇H⊤

c ỹe

= −∇⊤H̃eRe∇H̃e − ỹeKpỹe ≤ 0

showing that the closed-loop system is stable in the
sense of Lyapunov. Moreover, since the maximal invariant
set for which HT ≡ 0 is x̃ = 0 then, using standard
arguments, the asymptotic stability of x̃ = (̃i, ṽ) = (0, 0)
can be concluded if x⋆

e is bounded. ✷

Remark 3. The x⋆
e value involves the desired state x⋆ and

the virtual voltage vector v⋆v = col
(

v⋆vk

)

. The v⋆v value is
determined by the gain selection related to Proposition
1, so in terms of the proof, we do not need to know it a
priori, but it is necessary to assume that it is bounded.

4. DROOP CONTROLLER

Once the state x is guaranteed to reach its desired x⋆,
the problem is to define a correspondence between those
desired trajectories x⋆ and the power distribution. To
solve this problem, we use the external input u⋆ to add
a droop-type controller. We present the basis of this
controller in the following.

In steady-state, a VSI can be represented by an ideal
voltage source in series with its output impedance. Fig. 2
illustrates one VSI with output voltage amplitude E and
power angle δ, delivering power to an AC bus V ∠0◦ (or
another voltage source) through an impedance Zo∠θ.

i

E 6 δ V 6 0◦

Zo
6 θ

S = P + jQ

Fig. 2. Equivalent circuit of a VSI connected to an AC
bus

The complex power drawn to the bus is written as

S = P + jQ (15)

where P and Q are the active and reactive power, re-
spectively, which can be expressed, following Zhong and
Hornik [2012], as:
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[

P
Q

]

=

[

sin θ cos θ
− cos θ sin θ

]







EV0

Z0

sin δ

EV0

Z0

cos δ − V 2
0

Z0






(16)

where the power angle δ is the phase difference between
the supply and the terminal.

The so-called conventional droop control law is based on
some proportionality, for a small power angle δ, between
the magnitude and phase variables and the active and
reactive powers. The output impedance determines this
proportionality. When the output impedance is inductive
θ = 90◦, and if sin δ ≈ δ and cos δ ≈ 1, it can be obtained
that the active power P is strongly dependent on the angle
δ. At the same time, the amplitude difference E − V0

mainly influences the reactive power Q, so that

P ∼ δ and Q ∼ E. (17)

As mentioned in Guerrero et al. [2005], this effect is well
known in large scale systems in which the generators
drop their frequency as the output power increases. Hence
trying to follow this behavior, the Q−E and P −ω droop
is used to design the control strategy for the k − th VSI.
This conventional droop controller takes the form:

Ek = E⋆ − nkQk, (18a)

ωk = ω⋆ −mkPk (18b)

for k = 1, . . . , n, where ω⋆ and E⋆ are the nominal output
voltage frequency and amplitude, whilemk and nk are the
droop coefficients.

Similar to the previous analysis, when the output
impedance is resistive θ = 0◦, for small δ, P ∼
E and Q ∼ −δ, so that the Q − ω and P − E droop
is used to generate the control strategy, but different to
(18), the Q − ω loop is a negative loop so that the sign
before mkQk is positive. Finally, if the output impedance
is capacitive, then θ = −90◦ and for a small δ it turns that
P ∼ −δ and Q ∼ −E. In this case, to ensure that the
Q−E loop and the P −ω loop are negative feedback, the
signs before nkQk and mkPk are all positive.

In this paper, we take the improved droop control strategy
of Zhong and Hornik [2012]. The controller, implements
the voltage Ek in (18) via integrating ∆Ek = Ek −
E⋆ = −nkPk as

Ek =

∫ t

o

∆Ekdt, (19)

and adds to ∆Ek the load voltage drop E⋆
k − Vk, with Vk

the RMS value of the filter’s output voltage vk (see Fig.3).
So that, in the case of the inductive output impedance,
the robust droop controller for the k − th VSI is of the
form:

Ėk = −nkQk + kek(E
⋆ − Vk), (20a)

ωk = ω⋆ −mkPk (20b)

with kek ∈ R a positive gain. A similar procedure
can define the robust-droop controllers when the output
impedance is resistive or capacitive.

Finally, we assign to each reference u⋆
k in (13) a sinusoidal

where its magnitude and phase are specified by the robust
droop controller, selected according to the designed out-
put impedance, so that:

u⋆
k =

√
2Ek sin(ωkt+ δk), (21)

where ωk is integrated to form the phase of the control
reference u⋆

k.

1

s
m

k

1

s
n
k

ke RMS

E
k

ω
k

P
k

Q
k

v⋆
k

i⋆
k

E⋆

ω⋆

u⋆
k

+
−

+

+

L-Droop

R-Droop

C-Droop

−

−

−

+

+

+

Fig. 3. Robust droop controller for L-inverters, R-
inverters and C-inverters.

5. NUMERICAL EVALUATION

To validate the result, we use four inverters parallel
connected with both a non-linear and a linear load as
presented in Fig.4. The inverters are controlled by (11)
with the power preserving interconnection (13) and the
output impedance control (4). In order to achieve load
distribution, the desired trajectories are obtained by
means of a droop controller, depending on the inverter’s
output impedance. The generation units have the same

Inverter 1

Inverter 2

Inverter 3

Inverter 4

i
01

i
02

i
03

i
04

AC Bus

Non-linear load Linear

load

Fig. 4. Four inverters in parallel with linear load and non-
linear load.

parameters but we assume that the units have different
apparent power capacity. In this sense, each inverter
is powered by v

dk
= 500 V DC voltage source, and

the power ratings are S
1

= 10 kV A, S
2

= 20 kV A,
S

3
= 30 kV A, S

4
= 40 kV A. The filters’ inductances

and capacitances are L
k
= 2.35 mF and C

k
= 28 µF

with r
Lk

= 0.9 Ω and r
Ck

= 100 MΩ, respectively. The
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droop coefficients are n
k
=

keVref

4S
k

and m
k
=

ω
ref

10Sk
, while

V
ref

= 120 V
RMS

and ω
ref

= 2πf
ref

with f
ref

= 50 Hz
and k

e
= 50. The controllers’ gains are K

pk
= 100 and

Kik = 200. The impedance control parameters are shown
in Table 1

Table 1. Virtual elements

Inverter Cv r
Cv

rv Zo

L-Inverter 1 [MF ] 1 [MΩ] 0 [Ω] 0.1 + 0.7383i [Ω]
R-Inverter 1 [MF ] 1 [MΩ] 15 [Ω] 15.1 + 0.7383i [Ω]
C-Inverter 1.5 [mF ] 100 [Ω] 0 [Ω] 0.145− 1.3828i [Ω]

We use a rectifier bridge with parameters L = 1mH,
C = 470µF and r = 10ω as non-linear load; see Figure 4.

5.1 Simulation results

The numerical evaluation was performed in the Simulink
environment of MATLABTM, considering a fixed-step
solver. The validation of the proposed controller consists
of connecting a linear and a non-linear load. The inverters
have to regulate the voltage and distribute the power
according to their capacities. The output impedance of
the inverters is modified so that there are L-inverters,
R-inverters and C-inverters. The numerical validation is
divided into three time intervals, at time 0 < t < 0.5 there
is no load connected to the inverters. At time 0.5 < t < 2
a linear load is connected, at time 2 < t < 3.5 a non-
linear load is connected, in time 3.5 < t < 5 the linear
load is disconnected, therefore the connected load is non-
linear. Finally, at time 5 < t < 7 the non-linear load
is disconnected of the system, and the inverters are left
working at a non load condition.

In Figure 5 the behavior of the L-inverters is observed,
with the load profile described above. Figure 5(a) shows
the active power of the load P0 and the power of the
inverters P

k
, with k = 1, 2, 3, 4. Note that there is a

distribution of active power among the inverters, which
is best observed in the time interval 2 < t < 3.5, since
P2 = 2P1, P3 = 3P1 and P4 = 4P1. In Figure 5(b) the
reactive power of the load and the inverters is observed.
In this case, it is observed that all the inverters provide
reactive power to satisfy the load demand; however, the
load distribution is not precise. Figure 5(c) shows the
RMS reference voltage and the load’s voltage. The voltage
does not exceed 10% of the reference voltage at any time.
The harmonic voltage distortion with nonlinear load is
THD = 6.71%.

Figure 6 shows the active and reactive power, and the
voltage of the R-inverters. In this case, a precise active
power distribution is also fulfilled; however, the conver-
gence time increases, compared to L-inverters. For the re-
active power, it is observed that the distribution between
the sources is precise. In this case, the voltage peaks due
to load changes exceed 50% of the nominal value, as seen
in Figure 6(c). The harmonic voltage distortion with the
nonlinear load is THD = 9.51%.
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Fig. 5. L-Inverter with L-Droop; a)Active power
b)reactive power c)load voltage
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Fig. 6. R-Inverter with R-Droop;a)Active power
b)reactive power c)load voltage
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Fig. 7. C-Inverter with C-Droop; a)Active power
b)reactive power c)load voltage

Concerning to the C-inverters, a precise active and re-
active power distribution is observed. The voltage peaks
due to load variations do not exceed 10% of the nominal
voltage, as shown in Figure 7(a). The harmonic voltage
distortion with nonlinear load is THD = 6.54%.

As one can see, regardless of the output impedance, the
three controllers generate a voltage drop that limits an
accurate voltage regulation; this is a consequence of the
droop technique; new control loops called secondary are
usually implemented for its compensation; see for example
Guerrero et al. [2011].

6. CONCLUSION

A robust droop controller analysis methodology is pro-
posed for L-inverters, R-inverters and C-inverters, from
an interconnected Hamiltonian systems perspective. Un-
like the reported in the literature, in this paper, the droop
control is used to generate the desired trajectories of the
physical system and if these trajectories are bounded,
then asymptotic and global stability of the equilibrium
point x− x⋆ = 0 is guaranteed.
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