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Abstract: State estimation using the Kalman Filter (KF) is one of the principal topics in
areas such as guidance, navigation, and control. The disturbance observer (DOB) is a control
scheme with a proven efficiency reported in the literature. In this article, we develop an
alternative method, in which we estimated the compensation of unknown disturbances with
the Kalman filter. We use the estimation to cancel the effects of the disturbance in the system.
It gave a simulation example to show the effectiveness of the proposed method against classical
algorithms.
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1. INTRODUCTION

Disturbances broadly exist in control systems and con-
sequently appear deviations in the steady-state errors.
Therefore, disturbance rejection is one of the main issues
in control systems. A disturbance usually appears from
external unknown-interaction, a direct compensation in
the control system is not possible. In control systems,
soft sensors [González (2010)] are used to estimate non-
measurable states in the system, they need a set of
measurements and an inferential plant model. In the
same way, a DOB used in a loop control can estimate
and compensate a bounded unknown disturbances. Prof.
Ohnishi has proposed for the first time in 1983 [Ohishi
et al. (1983)] looking for an alternative control method to
the integral action in the controllers. His efforts lead to
the concept of equivalent disturbance used to compensate
for the input and minimize the effects of uncertainties in
the model. Disturbance Observer-based control gains a
relevant role in further investigations.

The conventional design methods for DOB are based
on frequency domain techniques[Sariyildiz and Ohnishi
(2013)] but exists many implementations of disturbance
observers [Radke and Gao (2006)]. In time-domain formu-
lations, a multi-input multi-output system with distur-
bances can be controlled by computing an observer gain
matrix (L)[] and a constant for a proportional control law
(K). The closed-loop control is asymptotically stable with
the fitting values for parametersK and L. Other solutions
[Phuong et al. (2018),Hosseinnajad and Loueipour (2021)]
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use the Kalman Filter to smooth the output before doing
the feedback to the Disturbance Observer-based Con-
troller. Recent approaches include hybrid solutions[Zhu
et al. (2019)] with two stages: controller and disturbance-
estimator. Some other elegant control methods reject
disturbance by feedback control and employ advanced
algorithms like Adaptative Control [Cui (2019)], Robust
Control[Hosseinnajad and Loueipour (2021)], and Sliding
Mode Control [Wang et al. (2020)]. These control strate-
gies achieve disturbance rejection by tracking the error
between measured outputs and their input control signal.

The settling time of these kinds of controllers cannot
react fast in presence of strong perturbations, and there
suppresses the disturbance slowly. In this article, we pro-
pose a Disturbance Observer design with the structure
of a Kalman Filter. An augmented model can estimate
the disturbance with zero bias. For the control stage, we
choose the Proportional Velocity Integral (PVI) control
architecture with an additional Proportional-Derivative
(PD) control loop as feedforward compensation. The per-
formance for Kalman Disturbance Observer (KDOB)and
stability in a closed-loop is explored via simulations.

2. PROBLEM FORMULATION

It is proven that the Kalman Filter is an optimal estima-
tor in the mean square error(MSE) sense, and with only
a measurement vector yn and a set of initial estimation
values x̂0, Pn can estimate the internal states x̂n for a dis-
crete stochastic system. A linear system can be described
in state-space representation as shown in equation (1)
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Fig. 1. General realization of continuous time DOBC

xn = Anxn−1 +Bnun + wn ,

yn = Cnxn + vn , (1)

Where xn = [x1, · · · , xK ]T ∈ R
K is a state vector,

yn = [y1, · · · , yM ]T ∈ R
M is an observation vector,

un = [u1, · · · , uL]
T ∈ R

L is an exogenous input (control
signal) vector, and the vectors wn ∼ N (0, Qn) and
vn ∼ N (0, Rn) are the process and measurement noises,
repectivly. The matrices An ∈ R

K×K (state-transition
matrix), Bn ∈ R

K×L (input matrix) and Cn ∈ R
M×K

(Observation matrix) are know. The matrices Qn and Rn

are the covariances of the white Gaussian uncorrelated
noise vectors wn, vn.

We assume that a control signal un actuates the system
but with an additive perturbation vector, so the signal
control that feeds the plant is ūn = un+dn. The classical
DOB control techniques [Li et al. (2017)] shown in Fig(1)
uses an inverse model of the plant G(s) and a transfer
function Q(s) which is a low pass filter to estimate the

perturbation d̂l. More complex designs of observers are
MIMO systems represented with a state equation [Chen
et al. (2016)].

Thus, to determine the perturbation we represent d̂n as
a state variable, the augmented state vector is x̂n =
[x1 · · ·xK , d1 · · · dL]

⊺ , the corresponding augmentative
model must add the behavior of the augmentative state,
assuming that the perturbation is slow compared to the

sampling time we get ˙d(t) ≈ 0, and by the Euler forward
method and incorporating the additive process noise
d(n+1) = d(n)+ w̄n where w̄n represents the augmented
noise components. We give the augmented model defined
as:

Xn =AnXn−1 + BnUn + Wn ,

Zn = CnXn + Vn , (2)

Where the matrices are:

Xn =

[

xn+1

dn+1

]

Zn =

[

yn
dn

]

Un =

[

un

0

]

An =

[

An Bn

0 I

]

Bn =

[

Bn 0
0 0

]

Cn =

[

Cn 0
0 I

]

Wn =

[

wn

w̄n

]

Vn =

[

vn
v̄n

]

(3)

And the covariance of the augmented noise matrices
Wn,Vn are Qn = diag(Qn, Q̄n) and Rn = diag(Rn, R̄n).
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Fig. 2. Diagram block of Kalman Disturbance Observer-
based Control

Figure 2 shown our proposal for a Kalman-like
disturbance observer-based control (KDOBC). We used
a classical PIV topology in the feedback controller. The
major difference with a PID controller relies on the
necessity to have measurements for position and velocity,
each one for two different control loops.

In practical applications it’s common to use filters to
estimate the velocity using the position measure, however,
significant delays can cause loss of accuracy. The KFE
algorithm will achieve the offline measurements of distur-
bance. We then incorporated the estimated perturbance
into the control as a feed-forward compensation and the
filtered output as a feedback compensation.

In the feed-forward control loop, we have implemented
a discrete PD controller to predict the future value of
the disturbance, but without minimizing the error in
steady-state. To tune the PIV controller, we require the
bandwidth (BW ) and the damping ratio (ζ). The total
inertia J and viscous friction B are also required. When
the damping ratio is fixed, the bandwidth determines the
rise time. The damping ratio is related to the overshoot
for a fixed bandwidth. The best practices to syntonize
controllers can be found in [Ziegler and Nichols (1942)].

Given an initial error covariance for the augmented
model P0 ∈ R

(K+L)×(K+L), the initial state vector
X⊺

0 ∈ R
(K+L) and the noise covariances matrices Qn ∈

R
(K+L)×(K+L), Rn ∈ R

(M+L)×(M+L) and an observation
vector Z⊺

n ∈ R
(M+L) the Kalman Filter Estimator (KFE)

can recover the optimal estimated-value of disturbances

d̂n with zero-bias, the capabilities of the KFE to ensure
controllability and observability in LTI systems regarding
the process noise has been extensively estudied[Rhudy
and Gu (2013); Su et al. (2015); Zhang (2017)]. The
algorithm for the KF is given in algorithm 1.

3. APPLICATION: MECHANICAL SERVO SYSTEMS

Mechanical servo systems have been extensively used in
CNC machining, industrial applications, cameras, tele-
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Algorithm 1 KFE Algorithm

Input: X̂0, Zn, Un, P0, Qn, Rn

Output: X̂n, Pn

for n = 1, 2, · · · do
P−

n = AnPn−1A
⊺

n + Qn

Sn = CnP
−

n C ⊺

n + Rn

Kn = P−

n C ⊺

nS
−

n 1

X̂−

n = AnX̂n−1 + BnUn

X̂n = X̂−

n +Kn(Zn − CnX̂
−

n )
Pn = (I−KnCn)P

−

n
end

scopes, elevators, and robotics[Preitl et al. (2007)]. In a
servo application, a command signal is used to control
the position of a load. As the signal actuates the servo-
motor, the load changes its position. At the same time,
an encoder provides a negative feedback signal, sending to
the controller the states of the load. The controller looks
at this feedback and, based on a control law, calculates
the appropriate value for the control signal to achieve the
position given by the command signal. In the fig (3) a
general control scheme for a servomotor is shown.

+
-

+
-

Position P-Controller Velocity PI-Controller
Servo system dynamics

Fig. 3. Servo Control System

The equation 4 gives the transfer function for the servo
system in Fig3.

C(s)

U(s)
=

KtKb

s(Js+B)
(4)

In a continuous-time state-space representation, we can
write the equation above as

[

ẋ1

ẋ2

]

=

[

0 1

0 −
B

J

]

[

x1

x2

]

+

[

0
KtKb

J

]

r(t) ,

y =

[

1 0
0 1

] [

x1

x2

]

, (5)

Where r(t) is the input voltage applied to the servo, x1

is the output displacement of the servo, x2 the velocity,
J is the total motor’s inertia, B is the viscous friction
coefficient, Kt the torque voltage ratio and Kb the ball-
screw constant. A controller for this application needs
specific considerations to reduce or eliminate the effect of
disturbance in the controller. Perturbance rejection is one
of the principal objectives in controller design. In general,
a disturbance is not only because of the environment but
of uncertainties from the model. The traditional methods
such as proportional-integral-derivative(PID) controller
are not designed to consider the presence of perturbations,

so they will be incapable to correct the output in the
presence of severe perturbances.

However, the disturbance is not usually available for
measurement, and their nature can’t be represented in a
parametrized form, therefore deterministic system identi-
fication methods[Ljung (2010)] can’t be used.

The Kalman Filter needs a discrete-time state-space
model, the matrix An is obtained using the Laplace
Transform method and Bn by the integral approximation
method, the system in Eqs (5) becomes:

An =L−1{(sI−A)−1}|t=Ts
,

=L−1

{[

s −1

0 s+
B

J

]−1}

|t=Ts
,

=L−1

{

[

1/s J/(Js2 +Bs)
0 J/(Js+B)

]

}

|t=Ts
,

=

[

1 J(1− e−BTs/J)/B

0 e−BTs/J

]

,

Bn =

∫ Ts

0

eAσdσB ,

=

∫ Ts

0

[

1 J(1− e−Bσ/J)/B

0 e−Bσ/J

]

dσ

[

0
KtKb

J

]

,

=
KtKb

J

∫ Ts

0

[

J(1− e−Bσ/J)/B

e−Bσ/J

]

dσ ,

=
KtKb

J







J

B
Ts −

( J

B

)2

(1− e−BTs/J)

J

B

(

1− e−BTs/J
)






,

Cn =C ,

=

[

1 0
0 1

]

(6)

Finally, the augmented model for the KFE is given in Eqs.
(3) can be calculated from Eqs. (6)

4. SIMULATIONS

To verify the effectiveness of the KDOBC, a simulation of
a servomotor system for linear movement was conducted,
the parameters for the model were taken from [Lin et al.
(2008)], The tuning of the PD control loop is resumed in
the next steps

• Set Kffd and Kffp gains to zero
• Increase Kffp gain until the response to a distur-
bance produce damped oscillations

• Slightly increase Kffd gain until his value does not
affect the output

The simulation parameters are on table 1. To verify the
robustness of the KDBOC, two experiments were con-
ducted. First, the response to a short step perturbation.
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The second, the effect of a periodic ramp as a disturbance
signal.

Symbol Units

Kp1 156.064 1/s

Kp2 3.67x10−2 V s/mm

Ki 5.36 V/mm

Kffd 8.25

Kffp 1.02

Fs 100 KHz

J 3.655x10−5 Kgm2

B 2.676x10−3 Kgm2/s

Kt 0.423 Nm/V

Kb 2/π mm/rad

Table 1. Parameters of the servo system and
controller

4.1 Case I: Simple Perturbation

In the figure 1 a disturbance d(t) is additive with the
control signal u(k), as a result, the response of the
servo system will be immediately affected, and the PIV
control will compensate the perturbation over the time.
A perturbation in step form with a magnitude of 0.8V ,
phase-delay of 90ms, and duration of 10ms is applied
after using a unit step for the reference signal. Figures
4 and 5 show the simulation for a system without DOBC
and with KDOBC, respectively.
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Fig. 4. Output of the servo system with PIV Controller

n the fig 4, we can observe an oscillation just after
the perturbation was applied. Even without disturbance
compensation, the feedback controller could regain a
steady state. In the figure, we can also observe the

disturbance d(t) and the disturbance estimation d̂(k) the
noisy components in the estimation is related to the
covariance matrix Rn.

In the fig 5 the KDOBC uses the disturbance estimation
to produce a feed-forward compensation, the oscillation

caused by d(t) is pretty attenuated. The effects of the
perturbations are compared in the fig6. KDOBC weakens
the amplitude of the perturbance.
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Fig. 5. Output of the servo system with disturbance
compensation
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Fig. 6. Comparation of PVI controller and KDOBC

4.2 Case II: Periodic perturbation

A periodic ramp with a magnitude of 0.8V , with phase
delay of 20ms, and a period of 10ms are applied as a
disturbance signal. In the input, we have a unit step
with a phase delay of 20ms. Figures 7 and 8 show
the simulation for a system with PIV and with KDOB
controller, respectively.

On the fig 7 a unit step as a reference and a periodic ramp
as disturbance is applied, the integral term in the PIV
controller can compensate the ramp effect on the servo
system, but small oscillations appear on the output. In
the design of the KFE, the discrete-time LTI augmented
model assumes that the perturbations remain almost
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constant between intervals, the ramp perturbation is not
the case but, the difference between Ts = 10µs and the
ramp period T = 10ms is enough to attenuate the errors
on the output.

A lower error can be observed in the fig 8. One more time,
the KDOBC can compensate for the disturbance effects.
A comparative for the errors can be found in fig9.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Time (s)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Fig. 7. Output of the servo system without DOBC
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Fig. 8. Output of the servo system with disturbance
compensation

5. CONCLUSIONS

Classical control techniques as PID or PIV can obtain
disturbance rejection but with several losses of accuracy
right after the perturbation appears. The KDOBC im-
proves the steady-state tracking errors and the transient
time response against a PIV controller. A Kalman Filter
Estimator can estimate not only the states of the system
but the magnitude of the disturbance, adding a feed-
forward control loop the effects or perturbation can be in-
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Fig. 9. Output of the servo system with disturbance
compensation

cluded in the control signal. The uncommon Proportional-
Derivative control was used to derive compensation for
the disturbance. Even if this control has non-zero steady-
state error the feed-forward control loop appears to bal-
ance it. Numerical simulations are also given to show the
validity of this new modeling and control scheme.
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González, G.D. (2010). Soft Sensing, 143212. Springer
London. doi:10.1007/978-1-84996-106-6-4.

Hosseinnajad, A. and Loueipour, M. (2021). Design of
a robust observer-based dp control system for an rov
with unknown dynamics including thruster allocation.
In 2021 7th International Conference on Control, In-
strumentation and Automation (ICCIA). IEEE. doi:
10.1109/iccia52082.2021.9403543.

Li, S., Yang, J., Chen, W.H., and Chen, X. (2017). Dis-
turbance Observer-Based Control: Methods and Appli-
cations. CRC Press, Inc., USA, 1st edition.

Lin, M.T., Yau, H.T., Nien, H.W., and Tsai, M.S.
(2008). Fpga-based motion controller with real-time
look-ahead function. IEEE/ASME International Con-
ference on Advanced Intelligent Mechatronics, AIM.
doi:10.1109/AIM.2008.4601868.

Ljung, L. (2010). Perspectives on system identifica-
tion. Annual Reviews in Control, 34(1), 1–12. doi:
https://doi.org/10.1016/j.arcontrol.2009.12.001.

Ohishi, K., Ohnishi, K., and Miyachi, K. (1983). Torque
- speed regulation of dc motor based on load torque
estimation method. 1209–1218.

CNCA 2021

13-15 de Octubre, 2021. Guanajuato, México

356Guanajuato, México, 13-15 de Octubre, 2021 Copyright©AMCA. Todos los Derechos Reservados www.amca.mx



Phuong, T.T., Ohishi, K., Mitsantisuk, C., Yokokura,
Y., Ohnishi, K., Oboe, R., and Sabanovic, A. (2018).
Disturbance observer and kalman filter based motion
control realization. IEEJ Journal of Industry Applica-
tions, 7(1), 1–14. doi:10.1541/ieejjia.7.1.

Preitl, S., Precup, R.E., Preitl, Z., Vaivoda, S.,
Kilyeni, S., and Tar, J.K. (2007). Iterative
feedback and learning control. servo systems ap-
plications. IFAC Proceedings Volumes, 40(8),
16–27. doi:https://doi.org/10.3182/20070709-3-RO-
4910.00004. 1st IFAC Workshop on Convergence of
Information Technologies and Control Methods with
Power Plants and Power Systems.

Radke, A. and Gao, Z. (2006). A survey of state
and disturbance observers for practitioners. In
2006 American Control Conference. IEEE. doi:
10.1109/acc.2006.1657545.

Rhudy, M.B. and Gu, Y. (2013). Online stochastic
convergence analysis of the kalman filter.
International Journal of Stochastic Analysis,
2013, 1–9. doi:10.1155/2013/240295. URL
https://doi.org/10.1155/2013/240295.

Sariyildiz, E. and Ohnishi, K. (2013). A guide to
design disturbance observer. Journal of Dynamic
Systems, Measurement, and Control, 136(2). doi:
10.1115/1.4025801.

Su, J., Li, B., and Chen, W.H. (2015). On
existence, optimality and asymptotic stability
of the kalman filter with partially observed
inputs. Automatica, 53, 149–154. doi:
https://doi.org/10.1016/j.automatica.2014.12.044.

Wang, Y., Lin, Q., Huang, J., Zhou, L., Cao, J., Qiao,
G., and Shi, X. (2020). Sliding mode robust control of
a wire-driven parallel robot based on hji theory and a
disturbance observer. IEEE Access, 8, 215235215245.
doi:10.1109/access.2020.3040652.

Zhang, Q. (2017). On stability of the kalman filter
for discrete time output error systems. Systems and
Control Letters, 107, 84–91.

Zhu, W., Du, H., and Li, S. (2019). Observer-based
output feedback stabilization for perturbed second-
order uncertain system with finite-time convergence. In
2019 Chinese Control Conference (CCC). IEEE. doi:
10.23919/chicc.2019.8866067.

Ziegler, J.G. and Nichols, N. (1942). Optimum settings
for automatic controllers. Journal of Dynamic Systems
Measurement and Control-transactions of The Asme,
115, 220–222.

CNCA 2021

13-15 de Octubre, 2021. Guanajuato, México

357Guanajuato, México, 13-15 de Octubre, 2021 Copyright©AMCA. Todos los Derechos Reservados www.amca.mx


