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Abstract: The problem of network systems with stochastic uncertain failures at the trans-
mitted measurements and undetermined knowledge of the system parameters is addressed
with the UFIR filter. The measurement output is multiple transmitted which random one-step
packet delay and described by Bernoulli process according to the probability detected of this
phenomena. the multiplicative noise is detected in the model and the observation, which are
described by random variables. Linear filters such as the Kalman filter, the game theory H∞,
and the UFIR filter are developed based on the transformed model, which not depend on
delays in the sense to obtain a minimum variance despite the errors at the system and achieve
comparison the effectiveness and robustness obtained in real situations. A simulation example
using the GPS coordinates of a vehicle illustrates the effectiveness o the proposed methodology.
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1. INTRODUCTION

In the network systems, the high influence of the distur-
bances, saturation channels or failures at the sensors has
brought problems at the communicated data. To date,
one of the most challenges in this system is the deteri-
oration in the measurements taken by the sensors when
these are sent to the central station via wireless com-
munication, due to environment failures, saturate com-
munication channels, or sensor gain degradation, which
may cause constrains at the observation such as missing
measurements or intermittent delays at different rates.
To ensure appropriate performance of wireless sensors
networks (WSN), new approaches have been attracted
wide attention considering the real behavior of the packet
data.

The state estimation has become an indispensable tech-
nology for WSN in view of the difficulty to obtain direct
measurements of inaccessible system states and bounded
signals. In the past decades, considerable research effort
has demonstrated the importance of arrival measure-
ment analysis to obtain veracious estimation stability.
Consequently, new methodologies has been studied to
according to the arrival observation at the processor,

⋆ This investigation was partly supported by the Mexican
CONACyT-SEP Project A1-S-10287, Funding CB2017-2018.

where delayed information, lost data, packet dropouts,
or both problems can happen. The Bernoulli distributed
random variables are commonly utilized to describe the
phenomena when the estimator receives measurements
successfully or with some sampling time delay Nikfetrat
and Esfanjani (2018); Sun and Wang (2014). The stochas-
tic uncertainties, the randomly delayed measurements,
and measurement noises are treated by the orthogonal
projection theorem using a robust recursive estimation
in Feng et al. (2020), in the same way, more than one-
step delay is analyzed in Qian et al. (2017); Wang et al.
(2017) where two-step delay measurement and multiple-
step delay observations are modeled with a combination
of random variables and address with a robust Kalman
filter. The mixed uncertainty, delays, packet dropouts,
and lost data is also investigated in Zhang et al. (2012) a
multi-rate distributed fusion estimation is proposed for a
network system with multiple sensors, where the packet
loses is compensate in two faces, when the measurement
is taken by the sensor and when it arrives at the CS.
The existence of random disturbances in the system and
full knowledge of system parameters are uncommonly
monitoring but it makes critical difficult the estimation
behavior. The parameter uncertainties and multiplicative
noise characterize these unreliable factors and there are
not considered in the above literature. Qu et al. (2010);
Wang and Sun (2019).To improve the reliability, few fil-
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tering methodologies have been presented, including the
optimal filtering based on the Minimum MSE estimation
principle and state augmentation approach to address the
effect of the multiplicative and auto-correlated process
noise Chen et al. (2016).

At the wide area of estimation methodologies, the Kalman
filter has demonstrated the best accuracy when all in-
formation works healthily. However, faulty measurements
and undetermined noise information can lead to unsuit-
ably inaccurate estimation. The iterative unbiased finite
impulse response (UFIR) filter Shmaliy (2011, 2006) can
also be used under the uncertain observations with mul-
tiple delays and packet dropouts also with incomplete
system knowledge Uribe-Murcia et al. (2019, 2021). This
filter does not require any information about noise and
initial conditions Shmaliy et al. (2017) and is thus more
robust. In this paper, The UFIR filtering problem for a
network system with one-step random delay and multi-
plicative noises is introduced. The possible one-step delay
packet data at the filter is described by Bernoulli random
variables with known probability. Finally, an example to
compare the effectiveness of the filter proposed is provided
based on the GPS navigation data of a moving vehicle.

2. PROBLEM FORMULATION

Consider the discrete time state system

xn = (A+ Āαn)xn−1 + wn , (1)

yn =Cxn + vn , (2)

where xn ∈ R
K is the state vector, yn ∈ R

M is the
measurement vector by the sensor , and A ∈ R

K×K , F ∈
R

K×K , C ∈ R
K×M and G ∈ R

K×M are known matrices.
wn ∈ R

K and vn ∈ R
K are white Gaussian uncorrelated

noise vectors with zero mean and the covariances Q =
E
{
wnw

T
n

}
and R = E

{
vnv

T
n

}
. The multiplicative noise

αn and βn are mutually independent and uncorrelated
with wn and vn.

The measurement taken by the sensor are assumed to
be transmitted for wireless communication to a central
station multiply times with the intention to obtain always
information at the estimator and not only noise. Assume
that the system parameters as well as in the dynamic
state and observation model are subject to a stochastic
uncertain and there exist the probability to receive ran-
dom delay measurement of one-step at the processor, this
phenomenon is described by a binary sequence with a
known probability as Bernoulli distribution. Combining
the noise which is described as multiplicative noise, and
delayed measurement the observed signal is eventually
convert on:

zn = θ0,nyn + (1− θ0,n) yn−1 , (3)

where zn is the received measurement at the proces-
sor at current time n, θ0,n is a uncorrelated random

Bernoulli variable with probability P {θ0,n = 1} = θ̃0,n,

P {θ0,n = 0} = (1 − θ̃0,n), and take values between 0 ≤
θi,n ≤ 1.

Model (3) indicate us that, the on time packet data is

receives zn = yn with the probability θ̃0,n if θ0,n = 1
otherwise if θ0,n = 0 one-step delay data is obtained at

the estimator zn = yn−1 with the probability 1− θ̃0,n.

To a better comprehension of the model (3) the following
table 1 depicts a typical data transmission with only one-
step delayed information. Table 1 shows that y(1), y(2),
y(5), y(7) and y(8) arrive on time, while y(3) and y(9)
are delayed and y(4) and y(6) are lost.

Table 1. Data Transmission in the Network.

n 1 2 3 4 5 6 7 8 9

θ0 1 1 0 0 1 0 1 1 0
Zn y(1) y(2) y(2) y(3) y(5) y(5) y(7) y(8) y(8)

the model (1)-(2) may not be yet applied due to the
dependence of the delayed information and the noise,
consequently a transformation of (1)-(2) are needed. The
UFIR filter is derived considering the following trans-
formed model.

3. UFIR FILTERING FOR TWO-STEP RANDOM
MEASUREMENT DELAYS AND LOST DATA

Before preceding further, to apply the standard estima-
tion techniques is necessary that the observation equation
should not depend on previous data and multiplicative
noise. Then, we introduce a following model transforma-
tion to accommodate the impact from the multiplicative
random delays and noises.

3.1 Model transformation

The model transformation consist in rewrite the system
(1)-(3) based on the random delayed measurement and
the multiplicative noise in a equivalent to accommodate
the impact from this failures as follows:

xn =Axn−1 + w̄n , (4)

zn = H̄nxn + V̄n , (5)

where the new process noise is

w̄n = Āαnxn−1 + wn . (6)

Introducing the definition of the state back on time as

xn−kn
= A−kn

[

xn −

kn−1∑

i=0

Aiwn−i

]

. (7)

the one-step delayed can be defined as xn− 1 = A−1xn+
A−1w̄n. Thus, from the above specification and the mea-
surement equation (2), we can conclude that (5) was
obtained as:
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zn = θ0(Cxn + vn) + (1− θ0)(Cxn−1 + vn − 1) (8)

=
[
θ0C + (1− θ0)CA−1

]
xn + [θ0vn + (1− θ0)vn−1

(1− θ0)CA−1w̄n] .

where H̄n and v̄n are the new observation and noise
matrices, and the random variable θ0 satisfies the stochas-
tic properties E{θ0,n} = θ̄0, E{(1 − θ0,n)} = (1 − θ̄0),
E{(δj,n)

2} = δ̄j and E{αj,nαi,n} = 0 for i 6=.

H̄n = θ0C + (1− θ0)CA−1 , (9)

V̄n = θ0vn + (1− θ0)vn−1 − (1− θ0)CA−1w̄n , (10)

The covariance matrices of noise v̄n and w̄n are given by

R̄= θ0Rn + (1− θ0)Rn−1 + (1− θ0)CA−1ĀQnĀ
TA−TCT

+(1− θ0)CA−1QnA
−TCT , (11)

Q̄n = ĀE
{
xn−1x

T
n−1

}
ĀT +Qn , (12)

where we have

X̄n =E
{
xnx

T
n

}
= AE

{
xn−1x

T
n−1

}
AT Q̄n , (13)

based on (11), we note that v̄n is correlated with w̄n, then
we obtain

E {v̄nwnT} = −(1− θ0)CA−1Q̄n , (14)

To address the Kalman and H∞ filter problem of the
signal xn from the observation zn is necessary that the
noise matrices don’t be time correlated. A de-correlated
noise transformation employing the Lagrange multiplier
method is shown below to compensate the effect of the
correlated noise at the estimation.

3.2 De-correlation of v̄n and wn

Following Shmaliy et al. (2019) we first rewrite the state
equation (1) as

xn =Anxn−1 + w̄n + Λn

(
zn − H̄nxn − v̄n

)

=Anxn−1 + un + ζn , (15)

where the Lagrange multiplier Λn is to be determined, zn
is the vector of real data, and we obtain

Ān =An − ΛnH̄nAn ,

un =Λnzn ,

ζn = (I − ΛnH̄n)w̄n − Λnv̄n , (16)

from the definition of the new observed noise vector ζn,
the covariance matrix Qζ = E{ζnζ

T
n } is defined as,

Qζ = (I − θ̄0ΛnC)ĀE
{
xn−1x

T
n−1

}
ĀT (I − θ̄0ΛnC)T

+(I − θ̄0ΛnC)Qn(I − θ̄0ΛnC)T

+θ̄0,nΛnRnΛ
T
n + (1− θ̄0,n)ΛnRn−1Λ

T
n . (17)

Now, the Lagrange multiplier Λn can be determined to
satisfy the condition E{ζnv̄

T
n } = 0. This gives

Λn = [−(1− θ̄0)QnA
−1TCT − (1− θ̄0)ĀE

{
xn−1x

T
n−1

}

ĀTA−TCT ][θ̄0Rn + (1− θ̄0)Rn−1]
−1 . (18)

Given the de-correlated covariance matrices R̄n and Qζ ,
the UFIR, Kalman and game theory H∞ filters can be
developed as we will shown next.

3.3 UFIR filter design

Based on the observation vector Ym,n =
[
yTm yTm+1 . . . yTn

]T

and the state vector Xm,n =
[
xT
m xT

m+1 . . . xT
n

]T
in the

horizon [m,n], the UFIR Filter estimation of the state
x̂n will be derived in the sense of the unbiased condition
(E {xn} = E {x̂n}) to achieve minimize the estimation
error as Shmaliy (2006):

Xm,n =Am,nxm + Sm,nUm +Dm,nWm,n , (19)

Zm,n =Cm,nxm + Lm,nUm +Gm,nWm,n + V̄m,n ,(20)

where the extended matrices are

Ām,n =
[
I ĀT . . . (ĀK−1)T

]T
, (21)

Sm,n =









Λm 0 . . . 0 0
AΛm Λm+1 . . . 0 0
...

...
. . .

...
...

AK−2Λm AK−3Λm+1 . . . Λn−1 0
AK−1Λm AK−2Λm+1 . . . AΛn−1 Λn









,(22)

Cm,n = C̄m,nAN =










H̄m

H̄m+1A
H̄m+1A

2

...
H̄nA

K−1










, (23)

Lm,n = C̄m,nSm,n , (24)

C̄m,n = diag
[
H̄m H̄m+1 · · · H̄n

]

︸ ︷︷ ︸

N

. (25)

The UFIR filter is designed for the stochastic system
with one-step random delay and multiplicative noise (15)-
(5) discarding the initial state and the error covariance
matrix Pn using the Batch form in the horizon [m,m +
K − 1] where the K is the number of the state, and the
iterative form to update the batch’ estimation and reach
the best estimation value x̂n to the time index n

Batch UFIR Filter The batch UFIR estimate can be
written according to Shmaliy (2011) in the form

x̂k = GkC
T
m,k (Zm,k − Lm,kUm,k) + S

(K)
m,kUm,k , (26)
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where Zm,k is the observation vector with the arrival
measurement, Um,k is the known input vector defined on
(16) and the matrix Cm,k are represented on [m, k] as

Cm,k =








H̄mF−K+1

...
H̄k−1F

−1

H̄k







, (27)

The generalized noise power gain (GNPG) is Gk =
(CT

m,kCm,k)
−1.

Iterative UFIR Filtering Algorithm The iterative UFIR
filtering algorithm likewise to the KF, computes the
final estimation at the time n using previously estimated
values in the batch form, it are calculated in a predictive
and update wise. The iterations are organized using the
following recursions,

x̃−

n = (An − ΛnH̄nAn)x̃n−1 + un , (28)

Gn = [H̄T
n H̄n + (ĀGn−1Ā

T )−1]−1 , (29)

x̃n = x̃−

n + (GnH̄
T
n )(zn − H̄nx̃

−

n ) . (30)

4. EXPERIMENTAL VERIFICATION

In this section, A numerical example is proposed using
a GPS vehicle tracking signal of the Cook County of
Illinois available from the University of Illinois at Chicago
Databases and in University of Illinois at Chicago (2006)
whit the aim to show the robustness and feasibility of
the proposed algorithm. Two performance tests about
the effect of the accuracy noise matrices and reliability
transmission likelihood is given. The Fig. 1 illustrated the
measured GPS trajectory in the north and east coordinate
x, y.

-1400 -1200 -1000 -800 -600 -400 -200 0 200

x, m

-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

0

500

1000

y
, 

m

Fig. 1. GPS-measured vehicle trajectory in the local north
(y) and east (x) coordinates.

The received information can be expressed via the model
(5)–(15) assuming the following characteristics: xn =

[x1n x2n x3n x4n]
T
, where x1n ,m is the xn coordinate,

x2n is the velocity in m/s in the coordinate xn, x3n ,m is
the yn coordinate, and x4n is the velocity in m/s in yn.

xn =











1 τ 0 0
0 1 0 0
0 0 1 τ
0 0 0 1




+






0.01 0 0 0
0 0.01 0 0
0 0 0.01 0
0 0 0 0.01




αn




xn−1

+






τ/2 0
τ 0
0 τ/2
0 τ




wn .

yn =

[
1 0 0 0
0 0 1 0

]

xn +

[
1 0
0 1

]

vn .

αn is a white noise with unit covariance and uncorrelated
with other noises. Qn and Rn are specify with a general
knowledge of the system. the vehicle moves with an
average speed of 10m/s, and a standard deviation of 15%
and assign σ2w = 1.5m/s and σ1w = 0m/s. The GPS
navigation produces errors of smaller than 15 meters with
a probability of 95% in the 2σ sense and we thus assign
σv = 3.75m. Accordingly,

Q = σ2
w2







τ2/4 τ2/2 0 0
τ2/2 τ2 0 0
0 0 τ2/4 τ2/2
0 0 τ2/2 τ2






, R =

[
σ2
v 0
0 σ2

v

]

.

To apply properly the UFIR and H∞ filter, in the sense
to minimize the estimated error the following tuning has
to be provided:

• The UFIR filter require to define a horizon of point
called Nopt, solving the minimizing problem

Nopt = argmin
N

[trPn(N)] ,

we obtain from the optimization Nopt = 5.
• Defining properly the tuning factor σ for H∞ filter
achieve minimize the estimated error obtained in the
KF and hence is hard work. In our experiment we
found σ = 0.15 × 10−2, nevertheless, it changes at
this value produce that the filter diverge.

4.1 Tracking Errors

The estimation produced by the UFIR, KF, and H infty

employing the on-time arrival probability theta0 = 0.7
is shown in Figure ref Fig2. Consistent estimations of
the vehicle position in the north direction by the three
filters are displayed in this figure. The ability to return
back to the actual trajectory when the vehicle rapidly
maneuvers is highlighted by the UFIR filter despite the
large excursion. A minimum estimation error is obtained
by the H infty filter improving the KF estimation, but
errors on theta0 make it diverge. 3.
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Fig. 2. Vehicle tracjectory estimation by the UFIR filter,
KF, and H∞ filter using model (5)–(15).

430 440 450 460 470 480 490 500 510

Time, s

-100

-80

-60

-40

-20

0

20

40

60

y
, 
m

Error UFIR

Error Kalmant

Error H
 

Fig. 3. Tracking error produced by the UFIR filter, KF,
and H∞ filter.

4.2 Unsuitable transmissions

The wireless transmissions are usually affected by a wide
kind of perturbations which are often be modeled by
uncertain covariance matrices and multiplicative noise.
To represent this situation where the matrices noise are
inconsistent, the noise matrices Q and R are modified as
(1/β)2Q and β2R where β take vales on 0.1 < β > 10.
From Figure 4 we can deduce that an optimal estimation
is only obtained with accurate matrices. Nevertheless,
when the stochastic noise parameters are unsure the
UFIR filter estimation doesn’t produce large variations at
the estimation, nevertheless, its performance is affected
by the dependence of the noise covariance in the new
system matrices (16). The KF and H infty produce big
errors due to variations of the noise matrices.

4.3 Effect of Errors in the Transmission Probability

The importance of suitably knows the transmission prob-
ability is shown in Figure 5. A minimum estimation error
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= IND

 RMSE
 < 0.4

= IND

 RMSE
 < 0.7

= IND

Fig. 4. Effect of unsuitable noise covariance matrices at
the estimation produced by the UFIR filter, KF, and
H∞ filter.

is produced when the probability of transmission is equal
to the model probability, thus increasing values of error
are observed when we have variations on θ0. An ideal
observation vector is obtained when θ0 tends to be 1,
which means that estimations with minimum errors are
obtained due to one-step delayed data is not received.
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 RMSE
0
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Fig. 5. Effect of the data transmission probability θ0 on
the RMSEs produced by the UFIR filter, KF, and
H∞ filter.

5. CONCLUSIONS

The problem of one-step delay measurements and mul-
tiplicative noise in network systems was solved using
the UFIR, Kalman, and H∞ filters. The random arrival
packet data at the processor was presented using the
Bernoulli distribution according to the approach prob-
ability detected. The algorithms designed have been de-
veloped based on a transformed model, which reduces the
effect of uncertain failures at the system and brings the
ideal model form to apply linear estimated methodologies.
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Finally, an experimental example of GPS-based vehicle
tracking has shown the advantages of the proposed UFIR
algorithm to obtain a feasible estimation in practical ap-
plications with delays, and multiple uncertain parameters.
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