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Abstract: The nature of Wireless sensor networks (WNS) allows the implementation of a
distributed estimation process which has proven to be a more robust solution than individual
estimation. Furthermore, filters of an unbiased finite impulse response nature have proven
themselves as a robust alternative for WSNs applications, which are often deployed in harsh
environments, where electromagnetic interference, damaged sensors, or the landscape itself
cause the network to suffer from faulty links and missing data. In this paper, we present
a distributed unbiased finite impulse response (dUFIR) algorithm for optimal consensus on
estimates in WSNs. We compare the performance of dUFIR filter against a distributed Kalman
filter (dKF) and prove with simulations that better robustness is achieved by the dUFIR filter
against data loss, unknown noise statistics and faulty measurements.
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1. INTRODUCTION

Wireless sensor networks(WSNs) are a collection of in-
terconnected smart sensors, also called nodes, that are
able to measure, process, and communicate data among
each other. Applications for this technology can be found
in healthcare, object tracking, environmental monitoring,
etc. (Cook et al., 2009; Feng Zhao, 2004). As technology
furthers the miniaturization of smart sensors, it is possible
to deploy a massive number of cheap sensors, which allows
redundant measurements of a desired quantity Q.

The smart sensors components are prone to failure due to
cost reduction during the manufacturing process; there-
fore, the nodes may present very noisy measurements,
intermittent behavior, loss of data, or even invalid mea-
surements communication(Vazquez-Olguin et al., 2021).
In addition, in real-life applications, an accurate dynamic
model of the physical process and noise statistics may not
be available; hence, optimal estimation is required along
with adequate sensor fusion techniques (Akyildiz et al.,
2002; Mahmoud and Xia, 2014; Chen et al., 2014; Rao
and Durrant-Whyte, 1991), which must demonstrate a
sufficient robustness against missing data, model errors
(mismodeling), and incomplete information about noise
statistics.

Distributed filtering has been introduced to take advan-
tage of the large number of nodes in WSNs. Each node
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is tasked with the estimation of Q and a consensus pro-
tocol is implemented by averaging the estimates, mea-
surements, or information matrices (Li et al., 2015) so
that all the nodes agree in a common value called the
group decision value (Olfati-Saber and Murray, 2004). By
implementing distributed filtering, battery life may be
prolonged as the nodes no longer need to communicate
with a base station. The estimation is locally performed,
and the group decision value may be accessed en any node
of the network.

Algorithms for distributed estimation have been devel-
oped based on the Kalman filter(KF) mainly due to its
low computational burden, optimal estimation, and easy
implementation (Bai et al., 2018). In Olfati-Saber (2007),
the author has proposed a KF structure that requires each
node to locally aggregate its measurement and covariance
matrix with those of its neighbors and, in a posterior
step, compute the estimate using a KF with a consensus
term. In Carli et al. (2008), the KF approach has been
developed for local estimation and a consensus matrix as
fusion technique. In Stanković et al. (2009), the authors
have presented an algorithm based on the KF to address
an issue with missing data.

An important issue with KF is that to ensure optimal
estimates, noise processes must be strictly white Gaus-
sian (Pomarico-Franquiz and Shmaliy, 2014; Shmaliy
et al., 2016; Shmaliy, 2012; Contreras-Gonzalez et al.,
2013). Also, KF requires an adequate model and complete
knowledge of the noise statistics; otherwise, the estimates
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may present large errors or even diverge, making the
Kalman filter lack the required robustness for real-life
applications (Vazquez-Olguin et al., 2018).

The principal reason behind the lack of robustness for KF
algorithms is its Infinite Impulse Response structure. It
has been proven in Jazwinski (2007); Ramirez-Echeverria
et al. (2014); Zhao et al. (2016); Shmaliy et al. (2017a)
that better robustness can be achieved by using filters
operating on finite data horizons. Under such an assump-
tion, a moving average estimator has been designed in
Farina et al. (2010) for weak observability. In Vazquez-
Olguin et al. (2017b), an unbiased finite impulse response
(UFIR) filter was developed for consensus on measure-
ments and in Vazquez-Olguin et al. (2018), the consen-
sus on estimates was developed for the UFIR structure;
however, the effect of missing measurements on the filter
performance was not considered.

The issue of missing measurements has been addressed
by the KF and UFIR approaches. In Hu et al. (2012) an
extended KF was modified to address the issue of missing
measurement while in Vazquez-Olguin et al. (2017a) a
UFIR filter was developed as a robust estimator that ne-
glects noise statistic. Regarding WSNs, in Sinopoli et al.
(2004) a KF was modeled for intermittent observations
and in Uribe-Murcia et al. (2018) a UFIR alternative
for missing and delayed data was developed. In Vazquez-
Olguin et al. (2021), an implementation of a UFIR filter
with distributed consensus on estimates shown good per-
formance against vary unstable links.

In this work, we compare the robustness of a distributed
UFIR filter with consensus on estimates and a Kalman
filter against a large number of missing and faulty mea-
surements with unknown statistics. The rest of the pa-
per is organized as follows. In Section 2, the problem is
formulated and the model presented. Section 3 presents
a predictive version of KF algorithm while in Section
4 the predictive version of a UFIR with consensus of
estimates is given. Simulations are provided in Section
5 and conclusions are given in Section 6.

2. PROBLEM FORMULATION AND
PRELIMINARIES

The dynamic K-state space model for a physical quan-
tity Q, considering a distributed WSN, is given by the
following equations:

xk = Fkxk−1 +Bkwk , (1)

ȳ
(i)
k = H

(i)
k (Fkxk−1) , (2)

y
(i)
k = γk(H

(i)
k xk + v

(i)
k ) + (1− γk)ȳ

(i)
k , (3)

yk = Hkxx + vk , (4)

where xk ∈ R
K , Fk ∈ R

K×K , and Bk ∈ R
K×M . The

wireless sensor network is regarded as an undirected graph
with n being the total amount of nodes. The ith node,
with j neighbors and J = j ∪ i inclusive neighbors,

is able to measure the xk state vector by y
(i)
k ∈ R

p,

p 6 K, with H
(i)
k ∈ R

p×K . Local data y
(i)
k are united

in the observation vector yk = [ y
(i)
k

T

. . . y
(j)
k

T

]T with

Hk = [H
(i)
k

T

. . . H
(j)
k

T

]T . Noise vectors wk ∈ R
M and

vk = [ v
(i)
k

T

. . . v
(j)
k

T

]T are zero mean, white Gaussian,
uncorrelated, and with the covariances Qk = E{wkw

T
k } ∈

R
M×M , Rk = diag[R

(i)
k

T

. . . R
(j)
k

T

]T ∈ R
Jp×Jp, and

R
(i)
k = E{v

(i)
k v

(i)T

k }. A binary variable γk serves as an
indicator of whether a measurement exist (γk = 1) or not

(γk = 0), in which case the measurement prediction ȳ
(i)
k

(2) is used by substituting xk−1 with the estimate. The
problem can be stated as follows. Given model (1)-(4),
prove that better robustness is achieved by a predictive
dUFIR filter against missing of faulty measurements, with
unknown noise statistics.

3. PREDICTIVE DISTRIBUTED KALMAN FILTER

The distributed Kalman filter (dKF) with consensus on
estimates was first introduced in Olfati-Saber (2007). In
order to address the issue of missing data, we modify
the original algorithm by introducing a prediction fea-
ture (lines 3–5). For dKF, we consider that every node
locally performs the operations in line 6–7 and shares

the message msg
(i)
dKF(z

(i)
k ,Z

(i)
k ,x̄

(i)
k ) with its first order

neighbors. When the node receives all the information
from its neighbors, it then preforms the rest of the steps.

Algorithm 1: Predictive dKF Algorithm

Data: P
(i)
0 ,x̄

(i)
0 = x0,Qk,R

(j)
k ,z

(j)
k ,Z

(j)
k

Result: x̂
(i)
k

1 begin
2 for k = 0 :∞ do
3 if γk = 0 then

4 y
(i)
k = H

(i)
k Fkx̂

(i)
k−1;

5 end if

6 z
(i)
k = H

(i)T

k R
(i)−1

k y
(i)
k ;

7 Z
(i)
k = H

(i)T

k R
(i)−1

k H
(i)
k ;

8 s
(i)
k =

∑

l∈J z
(l)
k ;

9 S
(i)
k =

∑

l∈J Z
(l)
k ;

10 M
(i)
k = (P

(i)−1

k + S
(i)
k )−1;

11 x̂
(i)
k = x̄

(i)
k +M

(i)
k (s

(i)
k − S

(i)
k x̄

(i)
k ) +

ǫM
(i)
k

∑

l∈J(x̄
(l)
k − x̄

(i)
k );

12 P
(i)
k ← FkM

(i)
k FT

k +BkQkB
T
k ;

13 x̄
(i)
k ← Fkx̂

(i)
k ;

14 end for

15 end
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4. PREDICTED ITERATIVE DISTRIBUTED UFIR
FILTER

The distributed UFIR filter was developed in Vazquez-
Olguin et al. (2020) and modified to address the issue of
missing data in Vazquez-Olguin et al. (2019). The batch
structure of the filter over a horizon [m, k] of N points is

x̂c
k = Km,kYm,k+Jλopt

k Km,kYm,k−Jλ
opt
k K

(i)
m,kY

(i)
m,k , (5)

where

Y
(i)
m,k =

[

y(i)
T

m y
(i)T

m+1 . . . y
(i)T

k

]T

, (6)

Ym,k =
[

yTm yTm+1 . . . yTk
]T

, (7)

and λopt
k is a consensus factor chosen to minimize the

mean squared error as

λopt
k = argmin

λk

{trP (λk)} , (8)

with P (λk) = E{(x− x̂ic)(x− x̂ic)T }. The centralized and

individual filter gains Km,k,K
(i)
m,k are found by following

the unbiasedness condition

E{x̂c
k} = E{x̂k} = E{x̂

(i)
k } = E{xk} . (9)

The batch structure of the filter may be unsuitable for
WSNs, specially if the number of inclusive neighbors
is large. For this reason, an iterative alternative can
be derived by describing (5) as a linear combination of

unbiased centralized x̂k, and individual x̂
(i)
k estimates

x̂c
k = x̂k + Jλopt

k (x̂k − x̂
(i)
k ) . (10)

Following the procedure described in Shmaliy et al.
(2017b), including a variable l that starts at l = k−N +
K+1 and ending in l = k. The recursions for a centralized
estimation are given by

Gl = [HT
l Hl + (FlGl−1F

T
l )−1]−1 , (11)

x̂−

l = Flx̂l−1 , (12)

x̂l = x̂−

l +GlH
T
l (yl −Hlx̂

−

l ) . (13)

The initial values Gl−1 and x̂l−1 are computed at s = k−
N +K in batch forms as

Gs = (CT
m,sCm,s)

−1 , (14)

x̂c
s = GsC

T
m,sYm,s (15)

The same procedure is followed for the individual esti-

mates x̂
(i)
k , obtaining the recursions

G
(i)
l = [H

(i)T

l H
(i)
l + (FlG

(i)
l−1F

T
l )−1]−1 , (16)

x̂
(i)−

l = Flx̂
(i)
l−1 , (17)

x̂
(i)
l = x̂

(i)−

l +G
(i)
l H

(i)T

l (y
(i)
l −H

(i)
l x̂

(i)−

l ) , (18)

with the initial values

G(i)
s = (C(i)T

m,s C
(i)
m,s)

−1 , (19)

x̂(i)
s = G(i)

s C(i)T

m,s Y
(i)
m,s . (20)

Matrices Cm,s = C̄m,sFm,s and C
(i)
m,s = C̄

(i)
m,sFm,s are

found with the following equations:

C̄m,s = diag(Hm Hm+1 . . . Hs ) , (21)

C̄(i)
m,s = diag(H(i)

m H
(i)
m+1 . . . H(i)

s ) , (22)

Fm,s = [ I FT
m+1 . . . (F

m+1
s )T ]T , (23)

Fg
r =

{

FrFr−1 . . . Fg , g < r + 1
I , g = r + 1
0 , g > r + 1

. (24)

The message that the ith node transmits to ist neighbors

is msg
(i)
dUFIR(H

(i)
k ,R

(i)
k ,y

(i)
k ). If all the nodes observe the

exact same states, then it is possible to avoid the trans-

mission of H
(i)
k .

A pseudo code for the predictive iterative dUFIR algo-
rithm with consensus on estimates is listed as Algorithm
2.

Algorithm 2: Iterative dUFIR Filtering Algorithm

Data: yk, R
(i)
k , Rk, N ,λopt

k

Result: x̂k

1 begin
2 for k = N − 1 :∞ do
3 m = k −N + 1, s = m+K − 1;

4 Gs = (CT
m,sCm,s)

−1;

5 G
(i)
s = (C

(i)T

m,s C
(i)
m,s)−1;

6 if γk = 0 then

7 y
(j)
k = H

(j)
k Fkx̂

(j)
k−1; ∀i ∈ J

8 end if

9 x̃s = GsC
T
m,sYm,s;

10 x̃
(i)
s = G

(i)
s C

(i)T

m,s Y
(i)
m,s;

11 for l = s+ 1 : k do

12 x̂−

l = Flx̂l−1;

13 x̂
(i)−

l = Flx̂
(i)
l−1;

14 Gl = [HT
l Hl + (FlGl−1F

T
l )−1]−1;

15 G
(i)
l = [H

(i)T

l H
(i)
l + (FlG

(i)
l−1F

T
l )−1]−1;

16 x̂l = x̂−

l +GlH
T
l (yl −Hlx̂

−

l );

17 x̂
(i)
l = x̂

(i)−

l +G
(i)
l H

(i)T

l (y
(i)
l −H

(i)
l x̂

(i)−

l );
18 end for

19 x̂c
k = (I + Jλopt

k )x̃k − Jλopt
k x̃

(i)
k ;

20 end for

21 end
22 † First data y0, y1,..., yN−1 must be available.

5. SIMULATIONS

Simulations are performed considering the ground truth
trajectory of a robot available for free from the MagPIE
project dataset Hanley et al. (2017). A simulated WSN is
placed over the trajectory as shown in Fig. 1. We consider
that each sensor is able to measure the x and y coordinates
along the entire trajectory. The process dynamics of the
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Table 1. Standard deviation for each sensors
measurements.

Node σ1

1 0.0967

2 0.1088

3 0.08

4 0.0921

5 0.0859

6 0.0837

7 0.0875

8 0.0938

moving object is described in state space by the following
matrices:

F =







1 τ 0 0
0 1 0 0
0 0 1 τ
0 0 0 1






, H(i) =

[

1 0 0 0
0 0 1 0

]

,

B =







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






, Q =









τ3/3 τ2/2 0 0
τ2/2 τ 0 0
0 0 τ3/3 τ2/2
0 0 τ2/2 τ









σ2
w,

where σw = 0.76 m/s. For dUFIR, the optimal horizon
Nopt was found at a test stage to be 41 in average.
Measurements are simulated considering that each sensor
adds zero mean White Gaussian noise with different
variances according to table 1.

36 38 40 42 44 46

x, m

-17

-16

-15

-14

y,
 m

1
2

3

4

5

6

7

8

Fig. 1. Simulated WSN over the ground-truth trajectory.

We also consider random data loss after k = 100 for every
node.The missing data follows the binomial distribution
with probability of success of 0.02. We also simulate an
unpredicted event, from 300 ≤ k ≤ 550, that produced a
very large amount of missing measurements for node 3.
The measurements for this node are sketched in Fig. 2.

In order to test robustness of Algorithm 1 and Algo-
rithm 2, we first assume complete knowledge of noise
statistics and observe that, as expected, dKF presents
slightly less error than dUFIR, this can be observed in
Fig. 3.

By letting Qk ← (0.5)2Qk and R
(i)
k ← (p(i))2R

(i)
k , where

p(i) is different for every node, larger errors are observed
for dKF during the interval 300 ≤ k ≤ 550 as it is
sketched in Fig. 4.

To further the analysis of robustness, we consider an
scenario where, for unknown reasons, node 3 repeats the
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a)
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Fig. 2. Measurments of node 3. a) x coordinate and b) y
coordinate.
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Fig. 3. Absolute estimation error for node 3, assuming
perfect knowledge of noise statistics. a) x coordinate,
b) y coordinate.

same measurement during the interval 300 ≤ k ≤ 550
as shown in Fig. 5. Under this abnormal behavior, the
measurements of node 3 cannot be regarded as missing
data, therefore they are processed by both algorithms. In
Fig. 6, we observe that both filters produce large errors,
being the smallest error attainable to dKF; however,
the dUFIR presents faster convergence when the node
resumes normal operation. The filter dUFIR takes 41
samples in comparison to the almost 100 samples for dKF.

6. CONCLUSIONS

Real world applications of WSNs require robust esti-
mators against unpredictable events. In this paper, we
compare the performance of a predictive Kalman filter
with a predictive distributed UFIR filter against missing
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Fig. 4. Absolute estimation error for node 3, assuming im-
perfect knowledge of noise statistics. a) x coordinate,
b) y coordinate.
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Fig. 5. Measurements of node 3 for x coordinate, assuming
repeated incorrect data.
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Fig. 6. Absolute estimation error for node 3, assuming
repeated incorrect data.

measurements and incorrect observations that cannot be
regarded as missing data. We prove with simulations that,
when noise and model statistics are not perfectly known,
better robustness in terms of absolute error is achieved
by dUFIR against missing measurements. In the case of
incorrect data, as presented in fig 6, larger errors are
obtained by dUFIR; however, when the node resumes
normal operation dUFIR takes less time than dKF to
reduce the absolute error.
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