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Abstract: In this work it is presented an adaptive observer design methodology for the
Fractional-Order Hindmarsh-Rose Neuron Model. Using an analysis based on quadratic
Lyapunov functions and an extension of Barbalat’s theorem to the fractional-order case, the
asymptotic convergence of the observed states to the real ones is proven, as well as the
boundedness of the parameter reconstruction. Numeric examples are presented to show the
effectiveness of the proposed design.
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1. INTRODUCTION

Fractional order systems can be seen as a generalization
of the well-known integer-order systems, where the differ-
ential operator that describes their dynamics is, instead
of the usual derivative D = d

dt
or the integral operator

I(·)
∆
= D−1(·) =

∫

·dt, it is now expressed as Dα, where
α ∈ ℜ. It is also known that there have been proposed
different definitions of this operator, that in general give
different results depending on the kernel functions, as well
as the time horizon. Although the reported variety of
fractional differential operators, the most used in control
theory is the Caputo fractional operator (Gorenflo and
Mainardi, 1997), given that it handles initial conditions
in a similar way as in the integer counterpart. It has
been noted through literature (Duarte Ortigueira and
Tenreiro Machado, 2019) that special care has to be taken
when selecting or using a given fractional-differential op-
erator, as well as the role of the initial conditions (Sabatier
et al., 2010).

The role of the fractional-order operators has been proven
valuable to model systems that show a long-term mem-
ory behavior, and several biological systems have been
modeled accordingly (Rihan, 2013). One of the main
features of this model is that it includes fractional-order
differential operators, instead of the integer order ones, is
⋆ M.A. González-Olvera wants to thank UACM for its financial
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that the latter can neglect some of the intrinsic memory
dynamics that the fractional-order operators inherently
describe.

Several models for biological neural systems have been
proposed using integer-order differential operators, such
as the now historical Hodgkin-Huxley model (Hodgkin
and Huxley, 1952), as well as the Fitzhugh-Nagumo
(FitzHugh, 1961). The Hindmarsh-Rose neural model
(HRNM) (Hindmarsh and Rose, 1982) was first intro-
duced as a simplified version of the Hodgkin-Huxley
model, and later the same authors expanded the model
so it took into account slow adaptation in the exchange of
ions through the neuron’s ionic channel (Hindmarsh and
Rose, 1984).

The Hindmarsh-Rose neuron model has proven to be
an useful model of relative simplicity that helps to un-
derstand some of the underlying dynamics in a neuron.
Among those, it is of special interest the generation of
action potentials within the neuron’s membrane (spik-
ing) and the change of dynamics from relative resting to
repetitive firing states (bursting). Recently, the role of
fractional-order operators in the Hindmarsh-Rose neuron
model has been explored (Xiao, 2012), analyzing the
model and comparing the results obtained from the model
to experimental data (Kaslik, 2017). It has been found
that given different parameters on the fractional-order
HRNM describe different types of dynamics, where for
some values no bursting or spiking is achieved, as well as
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finding the parameter conditions where bifurcation is to
be expected, as well as regions for sustained oscillations
(Xiao, 2013).

However, not always all signals are available for mea-
surement, and the reconstruction of the internal variables
is one of the goals in order to model and simulate the
interconnection of not only one but several neurons inside
a network. In previous works, a methodology to design
an adaptive observer design for a class of Nonlinear-
Fractional-Order Systems (NFOS), based on quadratic
Lyapunov functions, was presented (González-Olvera and
Tang, 2018; Flores-Pérez et al., 2018).

Therefore, in this work we present a methodology
to achieve the state estimation of the three-variable
fractional-order HRNM, as well as a bounded paramet-
ric reconstruction error. In this paper, in Section 2 the
theoretical antecedents are presented, showing a brief
explanation on fractional-order operators and systems, as
well as a description of the fractional-order HMNM. In
Section 3, the design methodology for the adaptive ob-
server with bounded parametric reconstruction error and
convergent state observation is presented; and in Section
4 the simulation results are shown. Finally, conclusions
and future work are depicted in Section 5.

2. ANTECEDENTS

2.1 Fractional-order operators

Commonly, the Riemann-Liouville fractional-order inte-
gral operator is presented as a generalization from the
Cauchy’s formula for the n-fold repeated integration for
n ∈ N as:

Jnf(t)
∆
=

∫ t

a

∫ τ1

a

· · ·

∫ τn−1

a

f(τ)dτ · · · dτ2dτ1

=
1

(n− 1)!

∫ t

a

f(τ)(t− τ)n−1dτ (1)

When n is allowed to change from an integer value to any
real value n → α ∈ ℜ, then the definition is extrapolated
to the Riemman-Liouville fractional integral, given by

t0I
α
t f(t) =

1

Γ(α)

∫ t

t0

f(τ)(t− τ)α−1dτ. (2)

where Γ(w) is the Gamma function of w ∈ C. Finally, the
Riemann-Liouville fractional-integral operator is givven
by

RL

a Dα
t f(t) =



























1

Γ(n− α)

dn

dtn

∫ t

a

f(τ)

(t− τ)α+1−n
dτ,

α ∈ (n− 1, n), n ∈ N

dn

dtn
f(t),

α = n ∈ N,

(3)
This operator can act as left-inverse for (2) (Caponetto,
2010), i.e., Dα(Jαf(t)) = f(t).

However, from a system theory point-of-view, the previ-
ous definition as analysis challenges, given that it requires
the definition of initial conditions for t ∈ (−∞, a). In
order to overcome those limitations, a different definition
is given by (Caputo, 1967) and is known as the Caputo
Fractional Differential Operator :

C

aD
α
t f(t) =



























1

Γ(n− α)

∫ t

a

dnf(τ)
dtn

(t− τ)α+1−n
dτ,

α ∈ (n− 1, n), n ∈ N

dn

dtn
f(t),

α = n ∈ N.

(4)

In this work, the Caputo’s definition is preferred used
for the fractional derivative, and the initial time is taken
as a = t0. In the following, the simplified notation
C
aD

α
t f(t) = D(α) = f (α)(t) is used.

2.2 Hindmarsh-Rose fractional-order model

Through the literature on neural dynamics analysis, the
description of the spiking and bursting phenomena of
the membrane potential, resulting from the exchange
of sodium and potassium in the ion channels in single
neurons, have been a subject of interest (Shilnikov et al.,
2005). One of the most used models, due to its success-
ful and relatively simple description the aforementioned
phenomena, is the Hindmarsh-Rose neuron model, that is
given by:

ξ̇ =





aξ21 − ξ31 − ξ2 − ξ3 + u(t)
(a+ β)ξ21 − ξ2
µ(bξ1 + c− ξ3)



 (5)

y =

(

ξ1
ξ2

)

. (6)

In this model, ξ1 is the membrane potential in the axon of
a neuron, ξ2 is the transport rate of sodium and potassium
ions through fast ion channels, and ξ3 models the ion
exchange in slow ion channels. Usually, ξ2 is referred as
the spiking variable, and ξ3 is called the bursting variable.
The spiking refers to the rapid change in the potentials
almost in an impulsive fashion, while bursting refers to
the periods of successive repetitive spikes followed by
relatively resting conditions.

Neural models have been proposed to have fractional-
order dynamics (Lundstrom et al., 2008), given that it
can better model some of the information processing and
dynamics related to dielectric processes and memory char-
acteristics in the membrane. Works have focused in the
two-pseudo-state fractional-order HRNM. Some studies
have once again expanded the model to have a three-
pseudo-state representation (Jun et al., 2014; Kaslik,
2017), analyzing its dynamics properties with different
fractional-order values of the derivative, as well as the
bifurcation phenomena linked to parameter variation.
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Following previous works, in this paper it is used the
Hindmarsh-Rose Fractional-Order model given by the
pseudo-state equations:

ξ(α) =





aξ21 − ξ31 − ξ2 − ξ3 + u(t)
(a+ β)ξ21 − ξ2
µ(bξ1 + c− ξ3)



 (7)

y =

(

ξ1
ξ2

)

. (8)

with α ∈ (0.9, 1). Based on this model, an adaptive ob-
server is proposed to estimate the states of the system by
measuring the output signals y with bounded parametric
error.

A simulation of this model considering the same parame-
ters as the ones reported in Section 4 is shown in Fig. 1,
where it can be seen the spiking and bursting phenomena,
as well as the change in the dynamics after a change in the
parameter a is considered. Depending on the value of a it
can be seen that the model changes its behaviour from a
spiking-bursting dynamics, to only sustained spiking, and
once again returns to spiking-bursting, denoting the role
that this parameter has in the internal dynamics of the
neuron.
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4

0 100 200 300 400 500 600 700 800 900 1000
0

50

0 100 200 300 400 500 600 700 800 900 1000

Time (s)
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-2

-1

0

1

Fig. 1. In this figure all states are shown when beginning

in t = 0 with the initial condition ξ(0) = ( 1 1 1 )
T
.

In t = 300 an abrupt change in the parameter a is
forced, from a = 2.8 for t ∈ [0, 300] to a = 5.6 for
t ∈ (300, 600], and returned to a = 2.8 for t > 600.
It can be seen how the amplitude, as well as the
frequency of the oscillations, change depending on
the value of a.

3. ADAPTIVE OBSERVER DESIGN FOR THR
FRACTIONAL-ORDER HRNM

Considering that a is an unknown parameter and that

y =

(

ξ1
ξ2

)

is the measurable output of the system, (8)

can be rewritten as

ξ(α) =

(

0 −1 −1
0 −1 0
µb 0 −µ

)

ξ +





−y3 + u(t)
βy21
µc



+

(

1
0
0

)

(ay31)

(9)

Following the results presented in González-Olvera and
Tang (2018), note that (8) belongs to the class of single-
input-multiple-output fractional-order nonlinear systems
given by

ξ(α)(t) = Aξ(t) + f0(y(t), u(t)) + b (ag(y(t), u(t)))

y = Cξ (10)

where ξ(t) ∈ ℜn is the pseudo-state vector, 0 < α < 1 the
derivative order, A ∈ ℜn×n, f0 : ℜ × ℜ → ℜn, b ∈ ℜn,
g : ℜ× ℜ → ℜ, C ∈ ℜ2×n. In this case:

A =

(

0 −1 −1
0 −1 0
µb 0 −µ

)

, (11)

f0(y(t), u(t)) =





−y31 + u(t)
βy21
µc



 , (12)

b = ( 1 1 0 )
T
, g(y, a) = y31 , C =

(

1 0 0
0 1 0

)

. (13)

The objective is to obtain an adaptive observer with the
structure:

ξ̂(α)(t) = hξ(ξ̂, u,y, â) (14)

â(α) = ha(u,y, ξ̂) (15)

where it can be achieved that limt→∞(ξ − ξ̂) = 0 and
limt→∞(a− â) = 0.

Defining ξ̃ = ξ−ξ̂ as the observation error and ã = a−â as
the parametric error, the associated fractional dynamics
is

ξ̃(α)(t) = Aξ(t) + f0(y(t), u(t))

+ bag(y(t), u(t))− hξ(ξ̂, u,y, â). (16)

Selecting

hξ(ξ̂, u, y, â) = Aξ̂(t) + f0(y(t), u(t))

+ bâg(y(t), u(t))−Kỹ, (17)

where K ∈ ℜn×1 is a design matrix, ŷ = Cξ̂, and ỹ = y−
ŷ, it is obtained

ξ̃(α)(t) = Aξ̃(t) + bãg(y(t), u(t)−Kỹ (18)

In order to design the adaptive observer dynamics, the
following Lyapunov candidate function is proposed:

V (ξ̃, θ̃) =
1

2
ξ̃(t)TPξ̃(t) + ã2(t)γ−1

i , (19)

where γi > 0 and P = PT ∈ ℜn×n, P > 0 is a
design matrix. From Duarte-Mermoud et al. (2015), it
is obtained that the fractional derivative of order α of
V (ξ̃, θ̃) is
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V (α)(ξ̃, θ̃) ≤ ξ̃TP
(

(A−KC) ξ̃ + bãg(y(t), u(t))
)

+ γ−1
i ãã(α)

= ξ̃T (P(A−KC))ξ̃

+ ã
(

ξ̃TPbg(y(t), u(t)) + γ−1
i ã(α)

)

Defining

V1 = ξ̃T (P(A−KC))ξ̃ = ξ̃TQsξ̃ + ξ̃TQAξ̃,

where Qs =
1
2 (P(A−KC) + (A−KC)P)

T
is the sym-

metric part of P(A−KC) and QA is the anti-symmetric
component.

V1 = ξ̃TQsξ̃.

and V (α)(ξ̃, ã), we can choose

ã(α) = â(α) = −γi

(

ξ̃TPbg(y(t), u(t))
)

, (20)

so

V (α)(ξ̃, θ̃) ≤ ξ̃TQsξ̃

As ξ̃ is not available, if there exists P > 0 and K such
that Qs < 0 under the restriction Pb = CT , then it can
be selected

ha(u, y, ξ̂) = −γg (y(t), u(t)) (y −Cξ̂) (21)

With the previous discussion, the following theorem is
proposed (González-Olvera and Tang, 2018):

Theorem 1. Given the fractional-commensurate-order non-
linear fractional-order system (10) and the adaptive ob-
server given by (17) and (21), if there exists a constant
matrix P > 0 and a gain K ∈ ℜn×1 such that P(A −

KC)T +(A−KC)P < 0 and Pb = CT , then limt→∞ ξ̃ =
0 and the parameter error ã remains bounded.

Proof 1. Given that there exist P > 0 and K such that
Qs = 1

2

(

P(A−KC) + (A−KC)TP
)

< 0 and Pb =

CT 1 , then from the quadratic Lyapunov function (19)
we obtain, using (17) and (21), that

V (α)(ξ̃, ã) ≤ ξ̃TQsξ̃.

Then, there exist some λP , λQs
> 0 such that ξ̃TPξ >

λP ||ξ̃||
2 and ξ̃TQsξ < −λQs

||ξ̃(t)||2. So,

V (α)(ξ̃, ã) ≤ −λQs
||ξ̃(t)||2 (22)

In consequence, from Duarte-Mermoud et al. (2015)

as V (ξ̃, ã) is non-negative, therefore ξ̃ and ã remain

bounded, and necessarily 0 ≤ V (ξ̃, ã) < V̄ < ∞. Fol-
lowing Navarro-Guerrero and Tang (2017), applying the
Riemann-Liouville fractional integral of order α to both
sides if the previous equation, we get

t0I
α
t

(

V (α)
)

≤ −λQs t0I
α
t ||ξ̃(t)||

2. (23)

By the Newton-Leibniz formula generalization we know
that t0I

α
t

(

V (α)
)

= V (ξ̃(t), ã(t))− V (ξ̃(t0), ã(t0)), so

1 This is the same Kalman-Yakubovich condition required in the

integer-order case

t0I
α
t ||ξ̃(t)||

2 ≤ −
1

λQs

(

V (ξ̃(t), ã(t))− V (ξ̃(t0), ã(t0)
)

(24)

Then, t0I
α
t ||ξ̃(t)||

2 < M < ∞. Using the Barbalat’s
Lemma extension (Duarte-Mermoud et al., 2015; Navarro-

Guerrero and Tang, 2017), limt→∞ ξ̃ = 0, as the asymp-

totic convergence of ξ̂(t) to ξ(t) is proven, then the para-

metric error θ̃ remains bounded.

Remark 1. Note that the condition of existence of a
constant matrix P > 0 and a gain K ∈ ℜn×1 such
that P(A − KC)T + (A − KC)P < 0 and Pb = CT

can be related to the Kalman-Yakubovich-Popov (KYP)
lemma. In order to determine the gain matrix K and
P jointly, the problem can be reformulated as a Linear
Matrix Inequality problem (LMI).

From the previous discussion, the adaptive observer for
joint state estimation and reconstruction of the parameter
a by â can be described by the set of equations:

ΣM :























ξ(α) =





aξ21 − ξ31 − ξ2 − ξ3 + u(t)
(a+ β)ξ21 − ξ2
µ(bξ1 + c− ξ3)





y =

(

ξ1
ξ2

)

(25)

ΣS :























































ξ̂(α) =

(

0 −1 −1
0 −1 0
µb 0 −µ

)

ξ̂ +





−y31 + u(t)
βy21
µc





+

(

1
1
0

)

âg(y(t), u(t))−Kỹ

â(α) = γg (y(t), u(t)) (y − ŷ)

ŷ =

(

ξ̂1
ξ̂2

)

4. NUMERICAL RESULTS

The fractional-order HRNM was simulated using the
parameters β = 1.6, c = 5, b = 9, I = 0.2, µ = 0.01 and
the fractional-order α = 0.95, and considering a changing
parameter a described as

a =

{

2.8, t ∈ [0, 300)
5.6, t ∈ [0, 600)
2.8, t ≥ 600

(26)

In order to solve the matrix inequality P(A − KC)T +
(A−KC)P < 0 for P > 0 and K ∈ ℜn×1 such that and
Pb = CT , we used CVX, a package for specifying and
solving convex programs (Grant and Boyd, 2014, 2008).
This resulted in the solution for the observer gain matrix

K =

(

0.5104 −0.4577
−1.036 0.04031
−0.5243 0.5835

)

. (27)

The gain for the parameter adaptation γ was selected as
γ = 0.05. The results are shown in Fig 2,3 and 4, where it
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can be seen the dynamics of each state compared to their
observed values, and how the observation error converges
to zero even after the parameter change in t = 300 and
t = 600.

In Fig. 5 it can be seen how the reconstructed parameter
â tends to the real value even after the change. This
indicates that some typical conditions related to the
persistence of excitation in the integer-order case could be
extrapolated to the fractional-order case. However, this is
still an open research field, although some advances have
been presented (Aguila-Camacho and Duarte-Mermoud,
2016).

0 100 200 300 400 500 600 700 800 900 1000

Time (s)
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0
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0 100 200 300 400 500 600 700 800 900 1000
-10

-5
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10

Fig. 2. State observation ξ̂1 for the proposed adaptive
observer and parameter change in t = 300 and
t = 600.
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Fig. 3. State observation ξ̂2 for the proposed adaptive
observer and parameter change in t = 300 and
t = 600.

5. CONCLUSIONS

In this work it was presented an adaptive observer scheme
for the fractional-order Hindmarsh-Rose neuron model,
based on Lyapunov quadratic candidate functions, with

0 100 200 300 400 500 600 700 800 900 1000

Time (s)
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0

5

0 100 200 300 400 500 600 700 800 900 1000
-10

-5
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Fig. 4. State observation ξ̂3 for the proposed adaptive
observer and parameter change in t = 300 and
t = 600.
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Fig. 5. Parameter reconstruction â for the proposed
adaptive observer and parameter change in t = 300
and t = 600.

convergence in the pseudo-states and parameter bound-
edness. Numeric examples were shown in order to demon-
strate the efectiveness of the proposed methodology. Fu-
ture work involves the estimation of further parameters,
as well as applications to synchronization techniques.
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