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Abstract: Discontinuous observer-based convex control of an underactuated rotatory system,
better known as the Furuta pendulum, is the subject of this report. It is shown that a slight
generalization of the traditional discontinuous observer design allows applying it to the referred
plant. Since the observer gains are obtained via linear matrix inequalities and convex rewriting
of nonlinear terms, convex control comes at hand as a better fit to drive the system to the
upright position. Simulation and real-time results are presented which prove the effectiveness
of the proposal.
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1. INTRODUCTION

Effectiveness of nonlinear control schemes is better put at
test on underactuated systems with rapid dynamics such
as the inverted pendulum on a cart (Angeli, 2001), the
Pendubot (Begovich et al., 2002), the 3-link SISO system
(Farwig et al., 1990), the pendulum on an inclined rail
(Furuta et al., 1980), and the inertia wheel link (Spong
et al., 2001). None of these examples have a 3D workspace
as the Furuta pendulum, which is an underactuated
mechanism with 2 degrees of freedom (DOF), 2 beams,
and 2 rotational joints. (Furuta et al., 1992); this report is
focused on observer-based controller design for the latter.

As most robotic plants with Lagrange-Euler model, the
physical setup of the Furuta pendulum is such that only
positions are measured via encoders: a first one for the
angle of the beam at the base with respect to a fixed
reference; a second one for the angle of the vertical beam
with respect to the upright position. It is not common to
incorporate any device directly measuring the beam ve-
locities due to its cost; thus the need of observer schemes
to recover all the states for control purposes, more specif-
ically the velocities. The underactuated characteristic of
Furuta pendulum resides in the fact that the actuator
only rotates the horizontal beam which should be enough
to drive the vertical beam to its upright position. Expect-
edly, such dynamics require a quick response on the part

⋆ The authors have been sponsored by the CONACYT scholarships

731289 and 758980.

of the controller, which in turn requires the observer to
converge as soon as possible.

Finite-time observer design is preferred for the task just
described for obvious reasons; one of the first approaches
in such class was the discontinuous observer in Edwards
and Spurgeon (1994), which employs sliding modes to
drive a part of the observer error to 0 in finite time. As
most sliding mode approaches, it requires constructing an
error system with a linear nominal model; nonlinearities
are usually considered as perturbations (Edwards and
Spurgeon, 1998); if coupled, the observer thus designed
will be insensitive to their presence; if not coupled, the
approach will fail or require incorporating some sort of
attenuation such as H∞. Other traditional schemes have
the same linear nominal model characteristics, for in-
stance Walcott and Zak (1987); Walcott et al. (1987);
Walcott and Zak (1988). In this work, nonlinear nominal
models are employed to alleviate the requisites for discon-
tinuous observer design in order to apply it to the Furuta
pendulum, which otherwise does not meet the conditions
for such approach. The novel observer will be used to
estimate the velocities of the plant in order to use them for
control purposes. Handling nonlinear nominal models is
performed by means of convex modelling of nonlinearities
(Taniguchi et al., 2001), which is a common practice in
convex control (Bernal et al., 2022) where, when combined
with the direct Lyapunov method, it allows for design
conditions to be put in the form of linear matrix inequal-
ities (LMIs) (Boyd et al., 1994), which can be solved in
polynomial time by means of efficient algorithms already
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implemented in commercially available software (Gahinet
et al., 1995).

Solving for observer and controller gains by means of
numerical tools is increasingly appreciated in the con-
trol community as it represents a paradigm change from
purely analytical ad-hoc solutions to systematic numer-
ically computable techniques (Tanaka and Wang, 2001).
This is the reason for adopting a convex control scheme
along with the novel observer proposal in this paper; the
corresponding control law is a generalization of the well-
known parallel distributed compensation first appeared
in Wang et al. (1996); it will drive the Furuta pendulum
to its upright position based exclusively on the position
(angles) and the velocity estimations (angular velocities).

The paper is organized as follows: the model is presented
and rewritten in a convex form in section 2, along with a
convex control law requiring the whole state to be avail-
able; section 3 shows how a nonlinear nominal model can
be handled for discontinuous observer design by means of
convex modelling and slight modifications of the scheme
in Edwards and Spurgeon (1994); based on the discon-
tinuous observer just designed, section 4 presents how
the control law in section 2 performs when velocities are
replaced by their estimates, both in simulation and real-
time implementation; the paper gathers some conclusions
in section 5.

2. A CONVEX CONTROL LAW FOR THE FURUTA
PENDULUM

Fig.1 shows the Furuta pendulum manufactured by
Quanser as part of the mechatronics kit (Quanser, 2006):
it has a horizontal beam at the base which rotates when
activated by the sole actuator of the system (a DC motor),
and a vertical beam which is linked to the horizontal one
by a rotary joint with no actuator. This section proposes
a convex control law to drive the vertical beam to its
upright position within a controllable range (no swing-up

Fig. 1. Furuta pendulum

is involved). In this section, it is assumed that the whole
state is available.

The Furuta pendulum has the following state space
model:

ẋ1 = x2

ẋ2 =
(β + γ)

(

δx2
4 sinx3 − 2βx2x4 cosx3 sinx3 + u

)

((β + γ)β + δ2) sin2 x3 + (β + γ)α− δ2

−
δ cosx3

(

βx2
2 cosx3 sinx3 + σg sinx3

)

((β + γ)β + δ2) sin2 x3 + (β + γ)α− δ2

ẋ3 = x4 (1)

ẋ4 =

(

β sin2 x3+α
) (

βx2
2 cosx3 sinx3 + σg sinx3

)

((β + γ)β + δ2) sin2 x3 + (β + γ)α− δ2

−
δcosx3

(

δx2
4sinx3−2βx2x4cosx3sinx3+u

)

((β + γ)β + δ2) sin2 x3 + (β + γ)α− δ2

where x1 and x3 are the angles of the horizontal and
vertical beams with respect to a fixed position at the
base and the upright position, respectively, x2 and x4

are the corresponding angular velocities, and the system
parameters are α =

(

J0 +m1L
2
0

)

/Tc, β =
(

m1l
2
1

)

/Tc,
γ = J1/Tc, δ = (m1L0l1) /Tc, σ = (m1l1) /Tc, with
L0 = 0.068m and J0 = 6.9885e−5 being the length and
total moment of inertia of the horizontal link, respectively,
m1 = 0.02366kg, l1 = 0.08, and J1 = 1.7590e−4 being the
mass, center of mass, and total moment of inertia of the
vertical beam, respectively, g = 9.81 and Tc = 0.0049431
being the gravitational constant and the torque constant,
respectively. The task of keeping the second beam at the
upright position coincides with driving the system to the
origin xi = 0, i ∈ {1, 2, 3, 4},

The state equations (1) can be written as in Vázquez et al.
(2016), i.e.:

ẋ(t) =







0 1 0 0
0 0 z1z2z5 0
0 0 0 1
0 0 z2z3z5 0






x(t) +







0
(β + γ)z5

0
−δz4z5






u(t), (2)

where z1 = (β+γ)δx2
4−2β(β+γ)x2x4 cosx3−βδx2

2 cos
2 x3

−δσg cosx3, z2 = (sinx3) /x3, z3 = (β sin2 x3 +
α)(βx2

2 cosx3+σg)− δ cosx3

(

δx2
4 − 2βx2x4 cosx3

)

, z4 =

cosx3, and z5 = 1/((β2+γβ+δ2) sin2 x3+αβ+αγ−δ2).

Convex control is based on the fact that every nonlinearity
in (1) can be rewritten as a convex sum within a region
of interest of the state space (Bernal et al., 2022); let us
call this region Ω ⊂ R

4 with the property of including
the origin, i.e., 0 ∈ Ω. Physical bounds can be taken
into account to define such region. In this work we will
take the specifications in Vázquez et al. (2016), namely
Ω = {x : |x2| ≤ 6, |x3| ≤ 0.2618, |x4| ≤ 3}. Thus, zi,
i ∈ {1, 2, . . . , 5} are bounded in Ω as shown in Table 1.

It can be verified that zi = wi
0(x)z

0
i + wi

1(x)z
1
i , where

wi
0(x) = (z1i −zi)/(z

1
i −z0i ) and wi

1(x) = (zi−z0i )/(z
1
i −z0i )

are functions that hold the convex sum property within
Ω, i.e., wi

0(x) + wi
1(x) = 1, 0 ≤ wi

j ≤ 1, i ∈ {1, 2, . . . , 5}.
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The fact that each zi in (2) can be written as a convex
sum of its bounds in Ω allows writing (2) as:

ẋ(t) =
∑

i∈B5

wi(x) (Aix(t) +Biu(t)) , (3)

since convex sums can be stacked together at the leftmost
side of expressions, where B = {0, 1}, i = (i1, i2, . . . , i5),
wi(x) = w1

i1
(x)w2

i2
(x)w3

i3
(x)w4

i4
(x)w5

i5
(x),

Ai =









0 1 0 0
0 0 zi11 zi22 zi55 0
0 0 0 1
0 0 zi22 zi33 zi55 0









, Bi =









0
(β + γ)zi55

0
−δzi44 zi55









.

The model (3) is known as a tensor product equivalent
of the nonlinear model (1): it is not an approximation.
A generalization of the well-known parallel distributed
compensation can be used to drive such model to 0,
namely,

u(t) =
∑

j∈B5

wj(x)Fjx(t), (4)

where Fj are gains to be obtained from the solution of the
LMIs:

∑

(i,j)∈P(k,l)

(

AiX +BiMj +XAT
i +MT

j BT
i

)

< 0, (5)

where k, l ∈ B
5, P(k, l) is the set of indexes (i, j) such

that wiwj = wkwl, X and Mj are decision variables, and
Fj = MjX

−1. The LMI Toolbox (Gahinet et al., 1995) or
SeDuMi (Sturm, 1999) can be used to numerically solve
these conditions; they are obtained by means of the direct
Lyapunov method. The interested reader is referred to
(Bernal et al., 2022).

The nonlinear control (4) relies on the availability of
the whole state, which is unrealistic. Therefore, a novel
discontinuous observer is proposed in the next section to
obtain the states that the physical setup of Quanser does
not provide, i.e., the angular velocities x2, x4.

3. AN IMPROVED DISCONTINUOUS OBSERVER
DESIGN FOR THE FURUTA PENDULUM

Our goal is to estimate the non-measurable states x2 and
x4 from the knowledge of the output y = [x1 x3]

T and
input u(t). To this end, consider the change of coordinates







χ1

χ2

y1
y2






=







0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0













x1

x2

x3

x4






,

with χ = [χ1 χ2]
T , and y = [y1 y2]

T . Thus, system (1)
can be rewritten in the new coordinates as

χ̇(t) = fχ(χ, y) + gχ(y)u(t),
ẏ(t) = fy(χ, y),

Table 1. Bounds for zi ∈ [z0i , z
1
i ] in (2)

Nonlinearity z1 z2 z3 z4 z5

Lower bound −0.184 0.9886 0.1251 0.9659 524.91

Upper bound −0.0352 1 0.2057 1 580.12

with fχ(χ, y)=[f1
χ(χ, y) f

2
χ(χ, y)]

T, gχ(y)=[g1χ(y) g
2
χ(y)]

T,

fy(χ, y)=[f1
y (χ, y) f

2
y (χ, y)]

T , and

f1
χ(χ, y) =

(β + γ)
(

δχ2
2 sin y2 − 2βχ1χ2 cos y2 sin y2

)

((β + γ)β + δ2) sin2 y2 + (β + γ)α− δ2

−
δ cos y2

(

βχ2
1 cos y2 sin y2 + σg sin y2

)

((β + γ)β + δ2) sin2 y2 + (β + γ)α− δ2
,

f2
χ(χ, y) =

(

β sin2 y2+α
) (

βχ2
1 cos y2 sin y2 + σg sin y2

)

((β + γ)β + δ2) sin2 y2 + (β + γ)α− δ2

−
δcos y2

(

δχ2
2sin y2−2βχ1χ2cosy2sin y2

)

((β + γ)β + δ2) sin2 y2 + (β + γ)α− δ2
,

g1χ(y) = (β+γ)/(((β+γ)β+δ2) sin2 y2+(β+γ)α−δ2),

g2χ(y)=−δcos y2/(((β+γ)β+δ2)sin2y2+(β+γ)α−δ2),

f1
y (χ) = χ1, f2

y (χ) = χ2.

Based on the structure of the transformed system above,
the following discontinuous observer is proposed

˙̂χ(t) = fχ(χ̂, y) + gχ(y)u(t) + Lχ(ŷ − y)
−KLy(ŷ − y)−Kν,

˙̂y(t) = fy(χ̂, y) + Ly(ŷ − y) + ν,
(6)

where [χ̂T ŷT ]T is the observer state; K ∈ R
2×2, Lχ ∈

R
2×2, and Ly ∈ R

2×2 are constant observer gains to be
designed; ν is a discontinuous term to be defined later.

Now, taking into account the error signals eχ = χ̂ − χ,
ey = ŷ−y, and the factorization given in (Quintana et al.,
2020), the nonlinear error system

[

ėχ
ėy

]

=

[

Ā11(χ, χ̂, y) Ā12(χ, χ̂, y)
Ā21(χ, χ̂, y) Ā22(χ, χ̂, y)

] [

eχ
ey

]

+

[

Lχey −KLyey −Kν
Lyey + ν

]

,
(7)

is obtained, where

Ā11(χ,χ̂,y)=

[

ζ1(−2(β+γ)βζ6ζ2ζ4−δβ(ζ5+ζ7)ζ3ζ4)
ζ1((β(1−ζ3)+α)βζ2ζ4(ζ5+ζ7)+2δζ3βζ4ζ6)

ζ1((β+γ)(δζ4(ζ6+ζ8)−2βζ2ζ4ζ7))
ζ1(−δ(δζ2ζ4(ζ6 + ζ8)− 2βζ3ζ4ζ7))

]

,

Ā21(χ,χ̂,y)=

[

1 0
0 1

]

, Ā12(χ,χ̂,y)=Ā22(χ,χ̂,y)=

[

0 0
0 0

]

,

with ζ1 = 1/(
(

(β + γ)β + δ2
)

sin2 y2 + (β + γ)α − δ2),

ζ2 = cos y2, ζ3 = cos2 y2, ζ4 = sin y2, ζ5 = χ̂1, ζ6 = χ̂2,
ζ7 = χ1, and ζ8 = χ2.

Applying the change of coordinates
[

ẽχ
ėy

]

=

[

eχ +Key
ey

]

, (8)

to system (7), yields
[

˙̃eχ
ėy

]

=

[

Ã11(χ,χ̂,y) Ã12(χ,χ̂,y)

Ã21(χ,χ̂,y) Ã22(χ,χ̂,y)

][

eχ
ey

]

+

[

Lχey
Lyey+ν

]

, (9)

with Ã11(χ,χ̂,y)=Ā11(χ,χ̂,y)+KĀ21(χ,χ̂,y), Ã12(χ,χ̂,y)=
Ā12(χ,χ̂,y)+KĀ22(χ,χ̂,y)−(Ā11(χ,χ̂,y)+KĀ21(χ,χ̂,y))K,

Ã21(χ,χ̂,y)= Ā21(χ,χ̂,y), and Ã22(χ,χ̂,y) = Ā22(χ,χ̂,y)−
Ā21(χ,χ̂,y)K.
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Since the goal is to design a discontinuous observer, the
following sliding surface

S = {[ẽTχ eTy ]
T : ey = 0}. (10)

is proposed. As with any other sliding-mode-based ap-
proach, we need to guarantee: stability of the reduced-
order error system once the sliding motion takes place;
asymptotic stability of the origin of (9); an ideal sliding
motion on S.

Assuming an ideal sliding motion is already taking place
on S, the reduced-order error system is

˙̃eχ(t) =
(

Ā11(χ, χ̂, y) +KĀ21(χ, χ̂, y)
)

ẽχ, (11)

where ẽχ = 0 needs to be asymptotically stable to
guarantee the stability of the sliding motion. To do that,
convex modelling and LMI-based design comes at hand
to find an adequate observer gain K. As before, consider
the region of interest Ω = {[χT yT ] : |χ1| ≤ 10, |χ2| ≤
3, |y2| ≤ 0.2618} and let the observer states mimic them,
i.e., |χ̂1| ≤ 10, |χ̂2| ≤ 3. Thus, using the bounds in Table 2,
the reduced-order nonlinear system (11) can be rewritten
as

˙̃eχ(t) =
∑

i∈B8

ωi(χ, χ̂, y)
(

Ā11
i +KĀ21

i

)

ẽχ, (12)

where i = (i1, i2, . . . , i8) ∈ B
8, ωi(ζ) = ω1

i1
(ζ1)ω

2
i2
(ζ2)

ω3
i3
(ζ3)ω

4
i4
(ζ4)ω

5
i5
(ζ5)ω

6
i6
(ζ6)ω

7
i7
(ζ7)ω

8
i8
(ζ8), ω

i
0(ζi) = (ζ1i −

ζi)/(ζ
1
i − ζ0i ), ωi

1(ζi) = 1 − ωi
0(ζi), i ∈ {1, 2, . . . , 8};

Āi1
i = Ãi1(χ, χ̂, y)|ωi=1, i ∈ {1, 2}.

Theorem 1. The origin of the nonlinear reduced-order
system (11), which is algebraically equivalent to (12),
is asymptotically stable if there exist P ∈ R

2×2 and
K ∈ R

2×2 such that the LMIs

P > 0, He
{

PĀ11
i + N̄Ā21

i

}

< 0 (13)

hold for all i ∈ B
8, with K = P−1N̄ .

Proof. Consider V1(ẽχ) = ẽTχP ẽχ > 0, P > 0 as a
Lyapunov function candidate; its time derivative is

V̇ (ẽχ) =ẽTχ
(

He
{

PĀ11(χ, χ̂, y) + PKĀ21(χ, χ̂, y)
})

ẽχ

=
∑

i∈B8

ωi(χ, χ̂, y)
(

ẽTχ
(

He
{

PĀ11
i + PKĀ21

i

})

ẽχ
)

.

Thus, taking into account the fact ωi
0(χ, χ̂, y), ω

i
1(χ, χ̂, y) ∈

[0, 1], V̇ (ẽχ) < 0 is guaranteed if

He
{

PĀ11
i + N̄Ā21

i

}

< 0

for all i ∈ B
8, with N̄ = PK; which corresponds to the

design conditions (13), which concludes the proof. ✷

Once K has been designed, it can be substituted in (9);
the resulting expression will have the same non-constant
terms in (11). Thus, using the same bounds for such non-
constant terms, (9) is rewritten as

Table 2. Bounds for ζi ∈ [ζ0i , ζ
1
i ] in Ā11(χ, χ̂, y)

ζi ζ1 ζ2 ζ3 ζ4 ζ5 ζ6 ζ7 ζ8

ζ0
i

524 0.9659 0.9330 −0.2588 −10 −3 −10 −3

ζ1
i

581 1 1 0.2588 10 3 10 3

[

˙̃eχ
ėy

]

=
∑

i∈B8

ωi(χ,χ̂,y)

([

Ã11
i Ã12

i

Ã21
i Ã22

i

][

ẽχ
ey

]

+

[

Lχey
Lyey+ν

])

, (14)

where Ãij
i = Ãij(χ, χ̂, y)|ωi=1, i, j ∈ {1, 2}.

Theorem 2. The origin [ẽTχ eTy ]
T = 0 of the error system

(9), is asymptotically stable if conditions in Theorem 1
hold for P ∈ R

2×2 and K ∈ R
2×2, ν being defined as

ν =

{

−η
Qey

∥Qey||
, if ey ̸= 0

0, otherwise,
(15)

with η > 0, and if there existQ = QT ∈ R
2×2, Lχ ∈ R

2×2,
and N ∈ R

2×2, such that the LMIs

Q > 0,





He
{

PÃ11
i

}

PÃ12
i + PLχ + (Ã21)Ti Q

(∗) He
{

QÃ22
i +N

}



 < 0,

(16)
hold for all i ∈ B

8, with Ly = Q−1N .

Proof. Let V (ẽχ, ey) = [ẽTχ eTy ]block-diag(P,Q)[ẽTχ eTy ]
T ,

with P > 0, Q > 0, be a Lyapunov function candidate;
we have that

V̇ ≤2

[

ẽχ
ey

]T[

P 0
0 Q

]([

Ã11(χ,χ̂,y) Ã12(χ,χ̂,y)+Lχ

Ã21(χ,χ̂,y) Ã22(χ,χ̂,y)+Ly

])[

ẽχ
ey

]

=
∑

i∈B8

ωi

[

ẽχ
ey

]T[

He
{

PÃ11
i

}

PÃ12
i +PLχ+(Ã21

i )TQ

(∗) He
{

QÃ22
i +QLy

}

][

ẽχ
ey

]

,

which means that a sufficient condition to guarantee
V̇ (ẽχ, ey) < 0 is

[

He
{

PÃ11
i

}

PÃ12
i +PLχ+(Ã21

i )TQ

(∗) He
{

QÃ22
i +N

}

]

< 0

for all i ∈ B
8, with N = QLy, since ωi

0(χ, χ̂, y),
ωi
1(χ, χ̂, y) ∈ [0, 1], ν ≤ 0. These conditions correspond

to (16), which concludes the proof.

Once the stability of ẽ1 = 0 in the reduced-order error sys-
tem and the attractiveness of the nonlinear sliding surface
are ensured, an ideal sliding motion needs to be guaran-
teed on S. To this end, consider the Lyapunov function
candidate V (ey) = eTy Qey along with the definition of ν

with η > 0, and He
{

Q(Ã22(χ, χ̂, y) + Ly)ey

}

< 0. The

time derivative of V (ey) satisfies

V̇ (ey)=2eTy Q(Ã22(χ,χ̂,y)+Ly)ey+2eTy Q(Ã21(χ,χ̂,y)ẽ1+ν)

≤2eTy QÃ21(χ, χ̂, y)ẽ1 − 2η∥Qey∥

≤2∥Qey∥(∥Ã
21(χ, χ̂, y)ẽ1∥ − η).

In the compact set ΩV = {(ẽ1, ey) : ∥Ã21(χ, χ̂, y)ẽ1∥ <
η − γ}, with γ > 0 sufficiently small, it is clear that

V̇ (ey) = −2γ∥Qey∥ ≤ −2γ
√

λmin(Q)
√

V (ey),

which along with Theorem 2 guarantees ey enters ΩV in
finite time and remains there (Edwards and Spurgeon,
1998).
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4. SIMULATION AND REAL-TIME RESULTS

The proposed observer-based control scheme has been
implemented both in simulation and real-time: the for-
mer within a MATLAB R2015a platform where LMIs
were solved using the LMI Toolbox Gahinet et al.
(1995) and the latter using Quanser software which is a
Simulink/MATLAB-based platform for real-time imple-
mentation in the Mechatronics Kit along with Wincon
5.2 (Quanser, 2006).

Figure 2 shows the positions of the horizontal and vertical
beams which are driven to 0 from x1(0) = −0.565 and
x3(0) = 0.125 radians, by the observer-based control
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Fig. 2. Simulation results: positions x1 and x3 (solid-
line) and their estimations x̂1 and x̂3 (dotted-line)
in radians.
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Fig. 3. Simulation results: velocities x2 and x4 (solid-
line) and their estimations x̂2 and x̂4 (dotted-line)
in radians per second.

scheme; their estimates x̂1 and x̂3 are shown too for
completeness, though they play no roll. For better appre-
ciation of the observer performance, small figures zooming
around the initial conditions are included. Figure 3 shows
the corresponding angular velocities x2 and x4 and their
estimates x̂2 and x̂4, which are used in the control law
instead of the real states. On the left side of Figure 6 the
observer-based control law in the previous simulations is
displayed.

Figure 4 shows the angles x1 and x3 and their estimates
in real-time implementation; the slight oscillations in x1

needed to maintain the vertical beam at the upright
position can be appreciated. Figure 5 shows the angular
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Fig. 4. Real-time results: positions x1 and x3 (solid-
line) and their estimations x̂1 and x̂3 (dotted-line)
in radians.
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Fig. 5. Real-time results: velocities x2 and x4 (solid-
line) and their estimations x̂2 and x̂4 (dotted-line)
in radians per second.
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Fig. 6. Real-time results: observer-based control signal u
in volts.

velocities (from the provider) and their estimates (from
the observer) which are actually used in the observer-
based control law shown on the right side of Figure 6;
both results are real-time.

Note that observation takes place fast enough to guar-
antee the entire implementation to be stable and the
corresponding analysis –control and observation– to be
independent.

5. CONCLUSIONS

A novel discontinuous observer-based convex control
scheme has been presented. The proposal has been put at
test on the Furuta pendulum, both in simulation and real-
time. It has been shown that traditional discontinuous
observer design can be adapted to the referred plant by
means of convex modelling and linear matrix inequalities.
Future work will generalize the proposal to a wider family
of systems.
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