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Illiani Carro-Pérez ∗ Juan Gonzalo, Barajas-Ramı́rez ∗

∗ IPICYT, División de Control y Sistemas Dinámicos, Camino a la
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Abstract: An ideal memristor is a device whose resistive memory value is determine by its
initial conditions and the voltage that has been applied across its terminals. As such, it is
a good candidate to model the synaptic plasticity of neural systems. When memristors are
included in neural models, they are called memristive neural networks. In this contribution,
we investigate the emergence of synchronization in an array of two identical Hindmarsh-Rose
neurons bidirectionally coupled through their voltage variables via memristors. We show that,
for a sufficiently large positive memductance, synchronization emerges between neurons while
the memristors converge to constant synaptic weight values. We illustrate our results with
numerical simulations.
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1. INTRODUCTION

Neurons are the basic processing units of neural sys-
tems. In [Hodgkin & Huxley (1949)] (HH) an electric-
physiological model of its behavior was proposed where
voltage-dependent conductances were used to approxi-
mate the effects of ionic currents and contraregulatory
effects of their concentrations on the neuron’s membrane
potential. The main dynamical feature of these model is
the emergence of an action potential. Latter, in [Hind-
marsh & Rose (1984)] (HR) a simplified model was pro-
posed to capture the dynamical features of HH model.
In particular, the bursting of spikes (action potentials)
observed in real-world neurons. Under an appropriate
choice of parameters the HR model can produce diverse
firing patterns including single spiking, square bursting,
chaotic bursting, and periodic firing [Innocenti (2007)].

A synapse is the extracellular space between neurons
where electro-chemical transmission takes place [Kandel
(2013)]. A transmitting neuron is called the presynaptic
neuron while the receiving neuron is called postsynaptic.
The action potential associated with the transmission of
information is caused by an electrical current and the
release of specialized molecules (neurotransmitters) by
the dendrites on the synaptic space. Next, they bind
to receptors on the postsynaptic neuron, that allow the
opening of ion channels and therefore modify the electrical
response in the postsynaptic neuron. One property of
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synapses is plasticity [Serrat (2011)], which consists in
the variation of synaptic conductance, as a result of
this property the inhibition or excitation of postsynaptic
neuron can be achieved.

An alternative way to have an electrical representation
of neurons and synapses is using circuits with memristors
[Amirsoleimani (2016)]. The memristor [Chua (1971)] is a
theoretical electronic device with resistive memory, char-
acterized by a function that relates its electric charge with
its magnetic flux. It is called an ideal -memristor because
the current and voltage in the device correspond exactly
with the derivatives of its charge and magnetic flux, re-
spectively. From these relationships, the resistivity value
of a flux-controlled memristor depends on the history of
its voltage. Furthermore, once its voltage becomes zero,
the resistance value of the memristor remains fixed. As a
result, memristors have potential applications [Sanchez-
Lopez (2019)][Carro-Perez (2018)] as non-volatile mem-
ories. When memristors are used in models of neurons
and synapses, they are called memristive neural networks
(MNN).

There are several applications of MNN such as pat-
tern classification [Amirsoleimani (2016)], experimen-
tal demonstration of associative memory PershinVentra
(2009), supervised learning [Nishitani (2015)] and secure
communication[Li (2021)]. Among the different dynami-
cal behaviors that neuron models coupled by memristive
synapse can present we are interested in the synchroniza-
tion of their firing patterns, our approach is analytical
and does not involve a physical implementation. In this
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Fig. 1. HR model with chaotic bursting behavior where (a) states vs time (b) chaotic spiking attractor

paper, we focus on the synchronization in two identical
HR neurons bidirectionally coupled by ideal memristors,
we determine that for a sufficient large memristance value
identical synchronization is achieved even though the
memory states of the synapses may not be identical but
fixed.

In Section 2, we present the neuron and memristor models
used to construct our proposed MNN model. In Section
3, we state the synchronization problem and present our
main result. While in Section 4 we illustrate our results
with numerical simulations and close the contribution
with some final comments and remarks.

2. PRELIMINARIES

The HR neuron model is described by:

ẋ1(t) = −ax3

1
(t) + bx2

1
(t) + x2(t)− x3(t) + I(t)

ẋ2(t) = c− dx2

1
(t)− x2(t)

ẋ3(t) = ǫ [ω (x1(t)− x0)− x3(t)]

(1)

where x1(t) is related to the neuron voltage, x2(t) to the
recuperation variable, x3(t) to the adaptation variable,
and I(t) is the excitation current. With the following
parameters a = 1, b = 3, c = 1, d = 5, ω = 4, x0 =
−1.6,I(t) = 5,ǫ = 0.0021 a chaotic bursting behavior as
observed as shown in Figures 1(a)-1(b).

Rewriting (1) is in vector form one gets:

ẋ(t) = f(x(t)) (2)

where x(t) = [x1(t), x2(t), x3(t)]
⊤ and f(·) is the vector

field described by equation (1), f : R3 → R
3, where f(·)

is locally Lipschitz in R
3.

Biological neural systems can be characterized through
memristors. An ideal memristor is defined in [Chua
(1971)] as theoretically being a basic electronic passive
two terminal device that relates electric charge to mag-
netic flux, such that the following relationship is found:

qw(t) = g(ϕw(t)) (3)

where qw(t) ∈ R is the electric charge, and ϕw(t) ∈ R is
the magnetic flux, g : R → R is its characteristic function,

that satisfies the conditions: (i) g(0) = 0, g(·) ∈ C1; and
(ii) g(·) is strictly monotonic increasing. The electrical
representation of such device is shown in Figure 2.

Fig. 2. (a) electric representation (b) memristive charac-
teristic function [Itoh (2008)]

For the ideal memristor a current-voltage relation is given
by:

iw(t) = w(ϕw)vw(t) (4)

where vw(t) = ϕ̇w(t) and iw(t) = q̇w(t) are the voltage
and current of the memristor, respectively; with its mem-
ductance given by:

w(ϕw) =
dg(ϕw)

dϕw

(5)

where w(ϕw) > 0, ∀ϕw, w(·) is a bounded function.

By integrating the voltage variable with respect to time,
the magnetic flux ϕw(t) is found to be:

ϕw(t) =

∫ t

0

vw(τ)dτ + ϕw(0) (6)

where ϕw(t0) is the initial magnetic flux. Therefore, the
magnetic flux described by (6) depends on the history of
the memristor voltage vw(t).

3. PROBLEM STATEMENT

Consider a MNN consisting of two identical HR neurons
bidirectionally coupled by two ideal memristors, let x1(t)
the state of neuron 1 and x2(t) the state of neuron 2.
One says that the MNN achieves identical synchronization
when the states of each nodes move at unison, i.e.,

x1(t) = x2(t) = s(t).
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Where s(t) is called synchronization solution of the net-
work.

The dynamics of MNN are described by:

ẋ1(t) = f(x1(t)) + w21(ϕ21(t))Γ(x2(t)− x1(t)) (7a)

ẋ2(t) = f(x2(t)) + w12(ϕ12(t))Γ(x1(t)− x2(t)) (7b)

ϕ̇21(t) = v2(t)− v1(t) (7c)

ϕ̇12(t) = v1(t)− v2(t) (7d)

where x1(t) = [x11(t), x21(t), x31(t)]
⊤ is the state of

neuron one, and x2(t) = [x12(t), x22(t), x32(t)]
⊤ is that

of neuron two, Γ = diag(1, 0, 0) ∈ R
3×3 is the internal

coupling matrix, and the voltage of neurons are v1(t) =
γx1(t), v2(t) = γx2(t), where γ = [1, 0, 0]. In this example
is considered a perturbation signal in the first neuron.
The memristor that connects neuron 1 with neuron 2 is
M12 with ϕ12(t) its magnetic flux (8a). While M21 is the
memristor that connects neuron 2 with neuron 1, with its
magnetic flux ϕ21(t) given by (8b).

ϕ12(t) =

∫ t

0

(v1(τ)− v2(τ))dτ + ϕ12(0) (8a)

ϕ21(t) =

∫ t

0

(v2(τ)− v1(τ))dτ + ϕ21(0) (8b)

the memristive characteristic function of M12 is:

g12(ϕ12) = a12ϕ12 +
1

2
(b12 − a12)(|ϕ12 + l12|)

−
1

2
(b12 − a12)(|ϕ12 − l12|)

(9)

where a12,b12, l12 > 0 are constants, b12 < a12, taking the
derivative of (9) is obtained its memristance function:

w12(ϕ12) =
dg12(ϕ12)

dϕ12

=

{

a12 , ϕ12 < −l12
b12 , −l12 ≤ ϕ12 ≤ l12
a12 , l12 < ϕ12

(10)
On the other hand, the memristive characteristic function
of M21 is:

g21(ϕ21) = a21ϕ21 +
1

2
(b21 − a21)(|ϕ21 + l21|)

−
1

2
(b21 − a21)(|ϕ21 − l21|)

(11)

where a21,b21, l21 > 0 are constants, b21 < a21, taking the
derivative of (11) is obtained its memristance function:

w21(ϕ21) =
dg21(ϕ21)

dϕ21

=

{

a21 , ϕ21 < −l21
b21 , −l21 ≤ ϕ21 ≤ l21
a21 , l21 < ϕ21

(12)
as consequence of identical synchronization, ϕ12(t) = ϕ̄12

and ϕ21(t) = ϕ̄21, where:

ϕ̄12 = lim
t→∞

∫ t

0

(v1(τ)− v2(τ))dτ + ϕ12(0)

ϕ̄21 = lim
t→∞

∫ t

0

(v2(τ)− v1(τ))dτ + ϕ21(0)

At the synchronized state s(t) the coupling term in the
MNN goes to zero, therefore one has that its behavior is
that of an isolated node:

ṡ(t) = f(s(t)) (13)

Lets define the synchronization error as

e1(t) = x1(t)− s(t) (14a)

e2(t) = x2(t)− s(t) (14b)

where e1(t) = [e11(t), e21(t), e31(t)] ∈ R
3, and e2(t) =

[e12(t), e22(t), e32(t)] ∈ R
3. Therefore, identical synchro-

nization in the MNN is equivalent to the stability of the
zero solution of the synchronization error dynamics.

Notice that when identical synchronization occurs e1(t) =
e2(t) = 0, therefore s(t) = x1(t) = x2(t). The error
dynamics is obtained by taking the derivative of (14a)-
(14b)

ė1(t) = ẋ1(t)− ṡ(t) (15a)

ė2(t) = ẋ2(t)− ṡ(t) (15b)

substituting x1(t) = e1(t) + s(t) in (15a), and x2(t) =
e2(t) + s(t) (15b) one obtains:

ė1(t) = f(x1(t))− ṡ(t)

+ w21(ϕ21(t))Γ(e2(t) + s(t)− e1(t)− s(t)) (16a)

ė2(t) = f(x2(t))− ṡ(t)

+ w12(ϕ12(t))Γ(e1(t) + s(t)− e2(t)− s(t)) (16b)

substituting (13) in (16a),(16b) and rearranging:

ė1(t) = f(x1(t))− f(s(t))

+ w21(ϕ21(t))Γ(e2(t)− e1(t)) (17a)

ė2(t) = f(x2(t))− f(s(t))

+ w12(ϕ12(t))Γ(e1(t)− e2(t)) (17b)

where f(·) is described by (2), expressing (17a) in vector
form becomes:

ė(t) = F (X(t))− F (S(t)) +W (ϕ(t))⊗ Γe(t) (18a)

ϕ̇(t) = G⊗ γe(t) (18b)

where e(t) = [e⊤
1
(t), e⊤

2
(t)]⊤ ∈ R

6, F (·) = [f⊤(·),
f⊤(·)]⊤ ∈ R

6, X(t) = [x⊤
1
(t),x⊤

2
(t)]⊤ ∈ R

6, S(t) =
[s⊤(t), s⊤(t)]⊤ ∈ R

6 is the synchronous solution, ϕ(t) =
[ϕ12(t), ϕ21(t)]

⊤ ∈ R
2, Γ = diag(γ) ∈ R

3×3, γ = [1, 0, 0],
and ⊗ is the Kronecker product.

Assuming the existence of a bounded solution to magnetic
flux equation (18b) on R

2, the time dependent connection
matrix is given by:

W (ϕ(t)) =

[

−w21(ϕ21(t)) w21(ϕ21(t))
w12(ϕ12(t)) −w12(ϕ12(t))

]

(19)

where W (ϕ(t)) is a continuous piecewise linear matrix

W (ϕ(t)) =















































W1(ϕ(t)), ϕ12(t) < l12 , ϕ21(t) < −l21
W2(ϕ(t)), ϕ12(t) < −l12 , −l21 ≤ ϕ21(t) < l21
W3(ϕ(t)), ϕ12(t) < −l12 , 21 ≤ ϕ21(t)
W4(ϕ(t)), −l12 ≤ ϕ12(t) < l12 , ϕ21(t) < −l21
W5(ϕ(t)), −l12 ≤ ϕ12(t) < l12 , −l21 ≤ ϕ21(t) < −l21
W6(ϕ(t)), −l12 ≤ ϕ12(t) < l12 , l21 ≤ ϕ21(t)
W7(ϕ(t)), l12 ≤ ϕ12(t) , ϕ21(t) < −l21
W8(ϕ(t)), l12 ≤ ϕ12(t) , −l21 ≤ ϕ21(t) < l21
W9(ϕ(t)), l12 ≤ ϕ12(t) , l21 ≤ ϕ21(t)

where:

W1(ϕ(t)) =

[

−a12 , a12
a21 , −a21

]

,W2(ϕ(t)) =

[

−b12 , b12
a21 , −a21

]

,

W3(ϕ(t)) =

[

−a12 , a12
a21 , −a21

]

,W4(ϕ(t)) =

[

−a12 , a12
b21 , −b21

]

,
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W5(ϕ(t)) =

[

−a12 , a12
b21 , −b21

]

,W6(ϕ(t)) =

[

−a12 , a12
b21 , −b21

]

,

W7(ϕ(t)) =

[

−a12 , a12
a21 , −a21

]

,W8(ϕ(t)) =

[

−b12 , b12
a21 , −a21

]

,

W9(ϕ(t)) =

[

−a12 , a12
a21 , −a21

]

.

G =

[

−1 1
1 −1

]

(20)

where W (ϕ(t)) is non-symmetric and the sum of its rows
is zero uniformly in time, therefore it is negative semidef-
inite uniformly in time, furthermore its eigenvalues are
λ1,2(W (ϕ(t))), where λ1(W (ϕ(t))) = 0, ∀ϕ ∈ R

2 and
λ2(W (ϕ)) is given by (21).

Equation (18a) is rewritten:

ė(t) = F̂ (t, e(t)) (22)

where F̂ (t, e(t)) = F (X(t))−F (S(t))−W (ϕ(t))⊗ Γe(t).

We aim to determine if e(t) → 0 exponentially in time at
lest locally, which means that S(t) is a solution exponen-
tially stable of (18a) and consequently ϕ(t) → ϕ̄ in (18b),
where ϕ̄ = [ϕ̄12, ϕ̄21]

⊤ is a constant value denominated
the memory states of the memristive synapses.

Let ‖·‖ be the euclidean norm, with Br = {e ∈ R
6 : ‖e‖ <

r} the following properties of F̂ (·) are satisfied: (I) F̂ (t, e)
is Locally Lipschitz on Br and piecewise continuous with
respect to t. (II) Linearizing (22) around the origin we
obtain:

ė(t) = A(S(t))e(t) +W (ϕ(t))⊗ Γe(t) (23)

where A(S(t)) is black diagonal matrix:

A(S(t)) =

[

Df(s(t)) 0
0 Df(s(t))

]

∈ R
6×6

which is locally Lipschitz in Br uniformly in t and
Df(s(t)) ∈ R

3×3 is the Jacobian of f(·).

Theorem 1. Assume:
(A1) s(t) is an exponentially stable solution of single node
dynamics (2), and
(A2) ||D(f(s(t)))|| < α, where || · || is a matrix induced
norm and α > 0 a positive constant.
If the memductance matrix W (·) is negative semidefinite
uniformly in time, then the linearized error dynamics (23)
are exponentially in time ( e(t) → 0). Furthermore, since
the origin is a locally exponentially stable solution of the
nonlinear system (22) identical synchronization between
the neurons is achieved.

Proof. The system (23) is rewritten:

ν̇(t) = Df(s(t))ν(t) + Γν(t)(Wϕ(t))⊤ (24)

where ν(t) = [e1(t), e2(t)] ∈ R
3×2 for the given W (ϕ(t))

there exists a non singular matrix Z(t) ∈ R
2×2 such that:

Λ(t) = Z−1(ϕ(t))W (ϕ(t))Z(ϕ(t))

where Λ(t) = diag(λ1(t), λ2(t)) ∈ R
2×2 and

Z(ϕ(t)) =





−
w12(ϕ12(t))

w21(ϕ21(t))
1

1 1





a change of base is considered:

η(t) = ν(t)Z−1(ϕ(t)) (25)

taking the derivative of (25) is obtained:

η̇(t) = ν̇(t)Z(ϕ(t)) + ν(t)Ż(ϕ(t)) (26)

substituting (23) in (26):

η̇(t) = Df(s(t))η(t) + Γη(t)Λ(t)− η(t)Ż−1(ϕ(t))Z(ϕ(t))
(27)

given that Z(ϕ(t)) is a piece-wise constant matrix

Ż(ϕ(t)) = diag(0, 0) ∈ R
2×2, then equation (27) becomes:

η̇(t) = Df(s(t))η(t) + Γη(t)Λ(t) (28)

expanding (28) by columns and considering λ1(t) = 0 ∀t
is obtained:

η̇1(t) = Df(s(t))η1(t) (29a)

η̇2(t) = Df(s(t))η2(t) + λ2(t)Γη2(t) (29b)

given that s(t) is a exponentially stable solution of (2)
by converse Lyapunov theorem η1(t) → 0 exponentially
in (29a), to determine if η2(t) converges exponentially to
the origin, we propose a Lyapunov candidate function:

V (η2(t)) =
1

2
η⊤
2
(t)η2(t) (30)

taking the derivative of (30) is obtained:

V̇ (η2(t)) = η⊤
2
(t)η̇2(t) (31)

substituting (29b) in (31) is obtained:

V̇ (η2(t)) = η⊤
2
(t)D(f(s(t)))η2(t)+λ2(t)η

⊤

2
(t)Γη2(t) (32)

given that Df(s(t)) is bounded and Γ = diag(1, 0, 0) ∈
R

3×3, equation (32) becomes

V̇ (η2(t)) = c‖η2(t)‖
2 + λ2(t)η

2

12
(t) (33)

we know η2
12
(t) < ‖η2(t)‖

2,∀η2(t) 6= 0, therefore (33)
becomes:

V̇ (η2(t)) < c‖η2(t)‖
2 + λ2(t)‖η2(t)‖

2

V̇ (η2(t)) < (c+ λ2(t))‖η2(t)‖
2

(34)

considering −(b12 + b21) ≤ λ2(t) ≤ −(a12 + a21), if

a12 + a21 > c, then V̇ (η2(t)) < 0 ∀η2 6= 0. We conclude
that η2(t) = 0 is an exponential solution (29b), therefore
e(t) converge exponentially in time to zero solution in
the linearized error dynamics (23); by converse Lyapunov
theorem e = 0 is an exponentially stable equilibrium
point of nonlinear dynamics (22). ✷

4. SIMULATION EXAMPLES

Consider two identical HR neurons bidirectionally cou-
pled through memristors M21 and M12, the circuit of
such system is presented in figure 3. As noticed this
circuit is composed of two memristorsM21 andM12 which
can be implemented as in [Sanchez-Lopez (2014)], four
operational amplifiers (OPAM) U1-U4 and two positive
second generation current conveyors (CCII+) U4-U5 and
resistors R. Considering the elements of this circuit are
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λ2(W (ϕ(t))) =















































−(a12 + a21), ϕ12(t) < −l12 , ϕ21(t) < −l21
−(a12 + b21), ϕ12(t) < −l12 , −l21 ≤ ϕ21(t) < l21
−(a12 + a21), ϕ12(t) < −l12 , l21 ≤ ϕ21(t)
−(b12 + a21), −l12 ≤ ϕ12(t) < l12 , ϕ21(t) < −l21
−(b12 + b21), −l12 ≤ ϕ12(t) < l12 , −l21 ≤ ϕ21(t) < −l21
−(b12 + a21), −l12 ≤ ϕ12(t) < l12 , l21 ≤ ϕ21(t)
−(a12 + a21), l12 ≤ ϕ12(t) , ϕ21(t) < −l21
−(a12 + b21), l12 ≤ ϕ12(t) , −l21 ≤ ϕ21(t) < l21
−(a12 + a21), l12 ≤ ϕ12(t) , l21 ≤ ϕ21(t)

(21)
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R
R
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U2

U4

U3

U5

R

R
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    2

Fig. 3. Circuit implementation

in the ideal region, because the voltages of both neurons
are below saturating voltage of OPAM. Its mathematical
described by:

ẋ1(t) = f(x1(t)) + w21(ϕ21(t))Γ(x2(t)− x1(t)) + ζ(t)
(35a)

ẋ2(t) = f(x2(t)) + w12(ϕ12(t))Γ(x1(t)− x2(t)) (35b)

ϕ̇21(t) = v2(t)− v1(t) (35c)

ϕ̇12(t) = v1(t)− v2(t) (35d)

where x1(t) = [x11(t), x21(t), x31(t)]
⊤ is the state of

neuron one, and x2(t) = [x12(t), x22(t), x32(t)]
⊤ is that

of neuron two, Γ = diag(1, 0, 0) ∈ R
3×3 is the internal

coupling matrix, and the voltage of neurons are v1(t) =
γx1(t), v2(t) = γx2(t), where γ = [1, 0, 0].

The memristor M12, connects neuron 1 with neuron 2, its
magnetic flux is ϕ12(t) described by (8a). While M21 is
the memristor that connects neuron 2 with neuron 1, its
magnetic flux is ϕ21(t) given by (8b). Here is considered a
perturbation signal ζ(t) = 0.3e−0.005t in the first neuron.

The characteristic function of memristor M12 is:

g12(ϕ12) = 0.9ϕ12 − 0.4(|ϕ12 + 140| − |ϕ12 − 140|) (36)

where its parameters are a12 = 0.9, b12 = 0.1 and
l12 = 140, the function that describes its memristance
is:

w12(ϕ12) =
dg12(ϕ12)

dϕ12

=

{

0.9 , ϕ12 < −140
0.1 , −140 ≤ ϕ12 ≤ 140
0.9 , 140 < ϕ12

(37)
While the characteristic function of memristor M21 is:

g21(ϕ21) = ϕ21 − 0.425(|ϕ21 + 120| − |ϕ21 − 120|) (38)

0 10 20 30 40
−2

−1

0

1

2

t (s)

x
1
i
(t
)
(V

)

 

 

x11(t)
x12(t)

Fig. 4. (a) Neurons voltages x11(t) and x21(t)

where its parameters are a21 = 1 and b21 = 0.15,l21 =
120, the function that describes its memristance:

w21(ϕ21) =
dg21(ϕ21)

dϕ21

=

{

1 , ϕ21 < −120
0.15 , −120 ≤ ϕ21 ≤ 120
1 , 120 < ϕ21

(39)
the time dependent coupling matrix W (ϕ(t)) is piecewise
constant, non symmetric and negative semidefinite uni-
formly in time, therefore condition of Theorem 1 is met,
in this case b12,b21 are chosen big enough so that the
conditions of Theorem 1 are satisfied.

The results of simulating numerically the model (7a)-(7d),
with initial conditions x1(0) = [−0.3945,−0.5858, 4.709]⊤,
ϕ21(0) = 10,x2(0) = [−1.361,−8.26, 3.11]⊤, ϕ12(0) = 50
and internal connection matrix Γ = diag(1, 0, 0) ∈ R

3×3,
are shown in Figures 4-5.

Initially the pair of neurons are uncoupled, at t = 10
the neurons are coupled, then after t = 20 the voltages
x11(t), x12(t) converge towards each other in spite of
perturbation signal, as shown in Figure 4 ; while the
error in neurons states (see Figure 5) are basically zero.
In Figure 6 is shown that magnetic flux of memristors
ϕ12(t) and ϕ21(t), converge to constant values, notice that
their convergence value is different, this is because initial
conditions are not equal ϕ12(0) = 10,ϕ21(0) = 50 .

As observed in figure 7, the memristor M12 reaches high
conductance region instantly when t = 30, while M21 is
in low conductance region, having a big enough coupling
strength, for neurons to synchronize as observed in Figure
4 and 5.

Remark 1. The emergence of identical synchronization is
dependent on the properties of the memristor synapses
as long as they have positive memductance, i.e. the
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Fig. 7. Memductance

time dependent connection matrix is negative semidefinite
uniformly in time, synchronization is achieved although
they are not identical.

Remark 2. When a combination of memductances w12(·),
w21(·) is not greater than the required coupling strength
c to achieve synchronization, the pair of neurons will
remain unsynchronized. All code scripts are available
upon reasonable request.

Remark 3. All code scripts are available upon reasonable
request.

5. CONCLUSION

In this paper, synchronization in a MNN of two HR neu-
rons bidirectionally coupled by nonidentical ideal memris-
tors is investigated, we find sufficient conditions in mem-
ristor properties for the identical synchronization, our
results show that for memristance sufficiently large and
positive definite at all times, the neurons will synchronize

with the magnetic flux of the memristors converge to
constant values. The analysis of synchronization is based
on a linearized error dynamics which restrict our results
to a local neighborhood of synchronous state.
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