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Abstract: This paper presents an alternative to design a static output feedback controllers
for nonlinear descriptor systems. The methodology is based on the direct Lyapunov method,
from which, after a convex rewriting of the original nonlinear systems, conditions in the form
of linear matrix inequalities are obtained. The proposal is shown to be more relaxed than
previous ones in two ways; first, unmesaurable nonlinearities can be directly considered and,
second, more flexibility can be obtained with the selection of different slack variables; such
advantages are illustrated via numerical examples.
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1. INTRODUCTION

Obtaining convex conditions for the design of static
output feedback controllers (SOFCs) is a hard task in
control theory; in fact, Syrmos et al. (1997) established
that the problem itself is non-convex, even in the case
of linear time-invariant systems (Geromel et al., 1998).
Since then, many researchers have proposed different ways
to reduce conservativeness when achieving conditions
in the form of linear matrix inequalities (LMIs) (Boyd
et al., 1994). LMI conditions are preferred because they
are solved in polynomial time via convex optimization
techniques (Scherer and Weiland, 2000). First attempts
occurred for linear systems, for instance in (Crusius and
Trofino, 1999) the so-called W and P problem have been
proposed, they consist on solving simoultaneaously a set
of LMIs and a linear matrix equality (LME). In (Cao
et al., 1998), an Iterative LMI (ILMI) procedure has been
presented.

In the case of nonlinear systems, particularly, in the
context of convex models 1 , the authors (Kau et al.,
2007) proposed a set of LMIs combined with a set of

⋆ This work has been supported by CONACYT via a scholarship
for CVU 1077602.
1 Convex models are a collection of linear submodels blended
together by convex scalar functions; if the sector nonlinearity
approach (Ohtake et al., 2001) is employed, thus, the convex model
is an exact representation of the nonlinear one (Bernal et al., 2022).

LMEs, the problem becomes impossible to solve when
convex outputs are considered. In (Huang and Nguang,
2007), following the idea of Cao et al. (1998), it is
established a set of ILMIs; this is not optimal in any
sense. In (Chadli et al., 2008), a novel way to cast
bilinear matrix inequeality (BMI) conditions as LMI ones
is proposed, it needs slack variables, but once again,
these variables must be fixed before hand; an extension
of this work is given by Chadli and Guerra (2012).
All these approaches have been developed for standard
convex models. More recently, few works (Estrada-Manzo
et al., 2019) treat a larger family of nonlinear systems:
descriptor models (Luenberger, 1977); which naturally
appear in electromechanical, mechatronic, biomechanical
systems modeled by the Euler-Lagrange formalism (Lewis
et al., 2003).

Contribution: This work is intended to develop less con-
servative LMI conditions for the SOFC design of descrip-
tor systems. The proposal is based on Finsler’s Lemma
and follows the idea of (Chadli and Guerra, 2012; Estrada-
Manzo et al., 2019), that is, it employs slack variables
but in a different manner so relaxed results are ob-
tained. Moreover, previous works only consider measur-
able premise variables, hence the family systems under
consideration is limited. Based on the aforementioned
drawback, our proposal also covers systems with unmea-
surable premise variables.
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The rest of the paper is organized as follows: Section
2 places this research by mentioning previous works on
the subject and providing the reader with some tech-
nical tools; Section 3 establishes the main result with
some remarks about it; Section 4 illustrates how former
approaches are overcome by the proposal via numerical
examples; finally, Section 5 gathers some concluding re-
marks and future work.

2. PROBLEM STATEMENT

Consider the following nonsingular descriptor system:

E(x)ẋ(t) = f(x) + g(x)u(t),

y(t) = h(x),
(1)

where x ∈ R
n is the state vector, u ∈ R

m is the input
vector, y ∈ R

o is the output vector. The vector fields
f(x) : Rn 7→ R

n, g(x) : Rn 7→ R
n×m, h(x) : Rn 7→ R

o,
and E(x) : Rn 7→ R

n×n are assumed to be bounded and
smooth in a region around the origin Ωx ⊂ R

n.

The task is to design a nonlinear control law that feeds
back only available signals, this is to say, a static output
feedback of the form

u(t) = k(y), k(y) : Ro 7→ R
m. (2)

Seeking LMI conditions such that the origin of the closed-
loop system

E(x)ẋ(t) = f(x) + g(x)k(y)

is asymptotically stable is a hard task. In fact in (Syrmos
et al., 1997) it has been established that the problem
is not convex. Many approaches have proposed different
ways to tackle this issue: for example, Crusius and Trofino
(1999) fixed one of the decision variables variables, Huang
and Nguang (2007) developed an algorithm based on
iterative LMI (ILMI), authors in (Chadli and Guerra,
2012; Estrada-Manzo et al., 2019) proposed adding slack
variables. Nonetheless, all these previous works only con-
sider linear systems ẋ = Ax + Bu or nonlinear ones of
the form ẋ = A(y)x + B(y)u, where the nonlinear terms
in A(·) and B(·)) depending exclusively on the output y.
This work is devoted to develop an alternative set of LMI
conditions for a larger family of nonlinear systems.

2.1 Exact convex models

In order to obtain LMI conditions, system(1) needs to be
expressed in a convex form. Among the exiting method-
ologies, the sector nonlinearity approach (Ohtake et al.,
2003) provides an exact representation. This methodology
is summarized as follows, it begins by expressing the
vector fields in (1) as f(x) = A(x)x, g(x) = B(x), and
h(x) = C(x)x, where the entries of A(x) and C(x) should
be well-defined in Ωx, then:

(1) Separate the measurable and unmeasurable nonlin-
ear terms in A(x), B(x), C(x) and E(x). Then,
construct two premise vectors z(y) ∈ R

s (depending
on only available signals) and ζ(x) ∈ R

σ (gathering
the rest of terms); their entries are assumed bounded

and smooth in a region Ωx ⊂ R
n : 0 ∈ Ωx, that is,

zi ∈ [z0i , z
1
i ], i ∈ {1, 2, . . . , s} and ζj ∈ [ζ0j , ζ

1
j ], j ∈

{1, 2, . . . , σ}. The region Ωx could be seen as an
operating region or the place where the controller
is valid.

(2) Each entry of the premise vectors can be exactly
written as a convex sum of its bounds, i.e.,

zi(y) = wi
0(y)z

0
i + wi

1(y)z
1
i ,

ζj(x) = ω
j
0(x)ζ

0
j + ω

j
1(x)ζ

1
j ,

(3)

where the scalar functions are

wi
0(y) =

z1i − zi(y)

z1i − z0i
, wi

1(y) = 1− wi
0(y),

ω
j
0(x) =

ζ1j − ζj(x)

ζ1j − ζ0j
, ω

j
1(x) = 1− ω

j
0(x).

(4)

These functions hold the convex sum property for
x ∈ Ωx.

(3) Define the scheduling functions as

wi(y) = w1
i1
(y)w2

i2
(y) · · ·ws

is
(y),

ωj(x) = ω1
j1
(x)ω2

j2
(x) · · ·ωσ

jσ
(x),

(5)

with i ∈ {1, 2, . . . , r}, r = 2s, j ∈ {1, 2, . . . , ρ},
ρ = 2σ, i1, i2, . . . , is ∈ {0, 1}, and j1, j2, . . . , jσ ∈
{0, 1} . Additionally, the set of indexes [i1i2 · · · is]
and [j1j2 · · · jσ] are a s-digit and σ-digit binary
representation of (i− 1) and (j − 1); respectively.

(4) Calculate the vertex matrices Aij = A(x)|wiωj=1,
Bij = B(x)|wiωj=1, Cij = C(x)|wiωj=1, and Eij =
E(x)|wiωj=1.

Now, with the previous steps, one is ready to construct
an exact convex model of (1), that is

Ewωẋ(t) = Awωx(t) +Bwωu(t), y(t) = Cwωx(t), (6)

with

Ewω =

r∑

i=1

ρ
∑

j=1

wi(y)ωj(x)Eij ,

Awω =

r∑

i=1

ρ
∑

j=1

wi(y)ωj(x)Aij ,

Bwω =

r∑

i=1

ρ
∑

j=1

wi(y)ωj(x)Bij ,

Cwω =

r∑

i=1

ρ
∑

j=1

wi(y)ωj(x)Cij .

It is important to stress that convex model (6) is exact in
R

n but only convex in Ωx.

2.2 Useful lemmas

As shown in (Estrada-Manzo et al., 2015), the use of
Finsler’s Lemma helps to separate the Lyapunov function
and the controller; thus, it allows achieving LMI condi-
tions. In consequence, the equality conditions in (Kau
et al., 2007) as well as ILMI conditions in (Huang and
Nguang, 2007) are avoided.
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Lemma 1. (Finsler’s Lemma). (Oliveira and Skelton, 2001)
Let ξ ∈ R

n, Q = QT ∈ R
n×n, and R ∈ R

m×n such that
rank(R) < n; the next expressions are equivalents

• ξTQξ < 0, ∀ξ ∈ {ξ ∈ R
n : ξ ̸= 0,Rξ = 0}.

• ∃M ∈ R
n×m : MR+RTMT +Q < 0.

Lemma 2. (Tuan et al., 2001): Let Υj
ik = (Υj

ik)
T , i, k ∈

{1, 2, . . . , r}, j ∈ {1, 2, . . . , ρ} be matrices of appropriate
dimensions. Then

Υω

ww
=

r∑

i=1

r∑

k=1

ρ
∑

j=1

wi(y)wk(y)ωj(x)Υ
j
ik < 0,

holds if the following set of LMIs
2

r − 1
Υj

ii +Υj
ik +Υj

ki < 0, ∀i, j, k, (7)

holds too.

Notation: In matrix expressions, an asterisk (∗) denotes
the transpose of the symmetric element, this is:

[

A BT

B C

]

=

[
A (∗)
B C

]

;

for in-line expressions, it stands for the transpose of terms
on its left side, i.e., A+B+AT+BT+C = A+B+(∗)+C.

3. MAIN RESULTS

Based on the idea of (Estrada-Manzo et al., 2015), let us
propose the the following control law:

u(t) = H−1
ww

Kwy(t), (8)

where

Hww =

r∑

i=1

r∑

k=1

wi(y)wk(y)Hik, Hik ∈ R
m×m,

Kw =
r∑

i=1

wi(y)Ki, Ki ∈ R
m×o,

are nonlinear gains with convex structures depending only
on available signals (via the premise vector z(y)). In this
sense, (8) is a generalization of the controller given in
(Estrada-Manzo et al., 2015).

Traditional approaches compute the closed-loop system
between (6) and (8), i.e.,

Ewωẋ(t) =
(
Awω +BwωH

−1
ww

KwCwω

)
x(t),

from which the task of finding LMI conditions is im-
possible because the designing gains Hww and Kw are
“trapped” in the middle of known matrices. In order to
avoid this issue, Lemma 1 comes at hand. Then, the con-
vex model together with the control law are put together
as an equality constraint:

[
Awω −Ewω Bwω

H−1
ww

KwCwω 0 −I

]

︸ ︷︷ ︸

R

[
x
ẋ
u

]

︸︷︷︸

ξ

= 0. (9)

The Lyapunov function candidate to be considered is

V (x) = xTPx, P = PT > 0; (10)

its time-derivative is

V̇ = ẋTPx+ xTPẋ. (11)

Without replacing the dynamics of the system and incor-
porating the term uT 0m u = 0 in (11) gives V̇ = ẋTPx+
xTPẋ+ uT 0u, which leads to the following:

V̇ (x) =

[
x
ẋ
u

]T [
0 P 0
P 0 0
0 0 0

]

︸ ︷︷ ︸

Q

[
x
ẋ
u

]

< 0. (12)

Considering the previous developments, the following
result is stated:

Theorem 3. The origin x = 0 of the nonlinear descriptor
model (1), under the convex control law (8), is asymp-
totically stable if there exist matrices P = PT > 0,
M1k,M3k ∈ R

n×n, M5k ∈ R
m×n, Hik ∈ R

m×m, Kk ∈
R

m×o i, k ∈ {1, 2, . . . , r}, j ∈ {1, 2, . . . , ρ} such that LMIs
in (7) hold with

Υj
ik=





Γ (1,1) (∗) (∗)

Γ (2,1) −M3kEij−ET
ijM

T
3k (∗)

Γ (3,1) −M5kEij + (M3kBij − η2Hik)
T

Γ (3,3)



,

where

Γ (1,1) = M1kAij + η1KkCij + (∗) ,

Γ (2,1) = M3kAij + η2KkCij + (P −M1kEij)
T
,

Γ (3,1) = M5kAij +KkCij + (M1kBij − η1Hik)
T
,

Γ (3,3) = M5kBij −Hik + (∗) .

Proof. Due to Lemma 1, the inequality (12) under the
equality constraint (9) can be put together yielding:

M

[
Awω −Ewω Bwω

H−1
ww

KwCwω 0 −I

]

+(∗)+

[
0 P 0
P 0 0
0 0 0

]

<0, (13)

withM ∈ R
(2n+m)×(n+m) being a free matrix; thus, in or-

der to obtain LMI conditions and inspired by (Chadli and
Guerra, 2012; Estrada-Manzo et al., 2015) the structure
of the slack matrix M is as follows

M =

[
M1w η1Hww

M3w η2Hww

M5w Hww

]

,

where M1w,M3w ∈ R
n×n, M5w ∈ R

m×n, and η1, η2 ∈
R

n×m being slack matrices 2 , yields

Υω

ww
=





Γ (1,1) (∗) (∗)

Γ (2,1) −M3wEwω−ET
wω

MT
3w (∗)

Γ (3,1) −M5wEwω+(M3wBwω−η2Hww)
T
Γ (3,3)



<0

where

2 Matrices η1 and η2 are employed to adjust the dimensions of the
inequality, they have to be fixed in advance.
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Γ (1,1) = M1wAwω + η1KwCwω + (∗) ,

Γ (2,1) = M3wAwω + η2KwCwω + (P −M1wEwω)
T
,

Γ (3,1) = M5wAwω +KwCwω + (M1wBwω − η1Hww)
T
,

Γ (3,3) = M5wBwω −Hww + (∗) .

Finally, applying Lemma 2 concludes the proof.

Remark 4. Note that from (13) an LMI problem cannot
be achieved only by dropping off the convex functions w
and ω; thus the structure of the slack matrix M becomes
important, it should be such that an LMI problem can be
computed (Chadli and Guerra, 2012).

Remark 5. Conditions in Theorem 3 generalize those in
Theorem 1 from (Estrada-Manzo et al., 2015), this can be
seen from two points of view: 1) the family of systems that
can be considered, i.e., while in (Estrada-Manzo et al.,
2015) the premise vector depends only on measurable
signals, our proposal is able to take into account unmea-
surable ones via the premise vector ζ(x); 2) M contains
two different matrices for adjusting dimensions, that is,
η1 and η2 which provides more degree of freedom than
(Estrada-Manzo et al., 2015).

4. NUMERICAL EXAMPLES

This section is devoted to illustrate the advantages of the
proposal via numerical examples. All the tests have been
performed in SeDuMi (Sturm, 1999) within YALMIP
(Lofberg, 2004) for MATLAB R2015a.

Example 6. Consider a nonlinear descriptor (1) with

E(x)=

[
2 −(x2

1 + 1)−1

(x2
1 + 1)−1 1

]

, g(x)=

[
1
−1

]

, h(x)=x1,

f(x)=

[
−7 sinx1 − 2x2 cosx2

−0.5x3
1 + 0.5x2

]

=




−7

sinx1

x1
−2 cosx2

−0.5x2
1 0.5



x.

Figure 1 shows that the system trajectories diverge from
the origin as time goes to infinity. Thus, the task is to
asymptotically stabilize the origin within the region of
interest Ωx = {x : |x1| ≤ 2, x2 ∈ R}. The nonlinearities
have been selected as shown in Table 1, there are three
depending on available signals while only one depends on
unavailable ones.

Table 1. Nonlinearities and their bounds in
Example 6

z(y) / ζ(x) z0
i
/ ζ0

i
z1
i
/ ζ1

i

z1(x1) = (x2

1
+ 1)−1 0.2 1

z2(x1) = sin(x1)/x1 0.4546 1
z3(x1) = x2

1
0 4

ζ1(x2) = cosx2 −1 1

Thus, an exact convex descriptor model of the form (6)
is computed, with vertex

Time (s)

0 5 10 15 20

x
(t
)

-10

-8

-6

-4

-2

0

2

x1

x2

Fig. 1. State trajectories in open-loop for Example 6.

E1 = E2 = E3 = E4 =

[
2 −0.2
0.2 1

]

, B=

[
1
−1

]

,

E5 = E6 = E7 = E8 =

[
2 −1
1 1

]

, C=

[
1
0

]T

,

A1,1=A5,1=

[
−3.1825 2

0 0.5

]

, A2,1=A6,1=

[
−3.1825 2

−2 0.5

]

,

A3,1 = A7,1 =

[
−7 2
0 0.5

]

, A4,1 = A8,1=

[
−7 2
−2 0.5

]

,

A1,2=A5,2=

[
−3.1825 −2

0 0.5

]

, A2,2=A6,2=

[
−3.1825 −2

−2 0.5

]

,

A3,2=A7,2=

[
−7 −2
0 0.5

]

, A4,2=A8,2=

[
−7 −2
−2 0.5

]

;

the convex functions are constructed as (4); they form the
scheduling functions (5). The conditions in Theorem 3 are
tested for several selections of η1 and η2; among them the
ones suggested by Estrada-Manzo et al. (2015), that is,

1) η1=η2=

[
0
0

]

, 2) η1=η2=

[
1
1

]

, 3) η1=η2=B;

none of them are feasible. However, our proposal allows
more flexibility; thus, LMIs are obtained with

η1 = B and η2 =

[
0
0

]

and found feasible. Some of the computed values are
K1=−0.3422, K3=−0.4373, K6=−0.7868, K8=0.9750,
H1,1 = 0.0847, H3,2 = 0.1839, H7,5 = 0.3015, H5,4 =
0.2299, H8,1 = 0.2575, H7,7 = 1473. The closed-loop
system is run for initial conditions x(0) = [0.9 − 1.5]T ,
Figure 2 shows the states converging towards the origin
while Figure 3 plots the control signal.

It is important to stress that previous approaches can-
not be applied because they only considered systems
with measurable premise variables; additionally, condi-
tions (Chadli and Guerra, 2012; Estrada-Manzo et al.,
2019) are not in the descriptor form.
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Example 7. This example is intended to show how the
extra flexibility on the selection of η1 and η2 helps to
provide a better solution set than a single matrix η as
in (Estrada-Manzo et al., 2015), see Remark 5. To this
end, consider example 1 in (Estrada-Manzo et al., 2015),
where the system has the form

Ewẋ(t) = Awx(t) +Bwu(t), y(t) = Cwx(t),

note that the convex functions only depend on available
signals (r = 2 and ρ = 0). The vertex matrices are:

E1=

[
1.05 0.7 0.7
−0.1 1.1 −0.2
0.1 0.5 0.9− a

]

, E2=

[
0.9 + b 0.8 0.77
−0.9 1.1 −0.2
0.4 0.5 0.6

]

,

A1=

[
−1.15 0.1 1.8 + b
0.3 −1.3 −0.5
−0.1 0.8 −0.8

]

, A2=

[
−1.2 −0.3 −0.1
0.4 −0.6 0.3
−0.2 −0.2 −0.2− a

]

,

B1=

[
0.6 1.2
0.3 1.5− a
−0.6 1.3

]

, B2=

[
−1.3 2.1
−2.7 0.5
1.5 1.6

]

,

C1 = [0.4 1 0], and C2 = [0.8 1 0]; the parameters vary as
a ∈ [−0.5 1] and b ∈ [−0.5 1]. Conditions in Theorem 3
have been tested under the following different choices for
η1 and η2:

Op1: η1=

[
0 0
0 0
0 0

]

, η2=Bw; Op2: η1=

[
0 0
0 0
0 0

]

, η2=

[
1 1
1 1
1 1

]

;

Op3: η1=

[
0 0
0 0
0 0

]

, η2=

[
0 0
0 0
0 0

]

,Op4: η1=Bw, η2=

[
0 0
0 0
0 0

]

;

Op5: η1=Bw, η2=

[
1 1
1 1
1 1

]

,Op6: η1=Bw, η2=Bw;

Op7: η1=

[
1 1
1 1
1 1

]

, η2=

[
0 0
0 0
0 0

]

,Op8: η1=

[
1 1
1 1
1 1

]

, η2=Bw;

Op9: η1=

[
1 1
1 1
1 1

]

, η2=

[
1 1
1 1
1 1

]

.

Time (s)

0 5 10 15 20

x
(t
)

-1.5

-1

-0.5

0

0.5

1

x1

x2

Fig. 2. State trajectories in closed-loop for Example 6.

Time (s)

0 5 10 15 20

u
(t
)

-5

-4

-3

-2

-1

0

1

Fig. 3. Control signal in Example 6.

a

-0.2 0 0.2 0.4 0.6 0.8

b

-0.5

0

0.5

1

Fig. 4. Feasible set for configurations in (Estrada-Manzo
et al., 2015) (•) and 9 configurations for Theorem 3
(□).

Figure 4 shows a clear superiority in terms of feasible
points, this is, using η1 and η2 helps reducing conserva-
tiveness in comparison with a single η.

5. CONCLUSION

It has been presented a less conservative set of LMIs for
the design of static output feedback controllers. Further-
more, it has been shown that convex modeling can be
applied such that available and unavailable signals are
split in order to use only the former ones in the controller
structure; thus allowing a greater family of nonlinear
systems than previous approaches. As a shortcoming, a
question arises regarding the right selection for variables
η1 and η2; this is left as future work.
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