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Abstract: Real-time pattern and activity recognition techniques have experienced a recent
surge in the use of advanced statistical techniques for analyzing data. More explicitly, Machine
Learning classification methods have been used in a variety of applications and for different
purposes, such as recognizing different types of events from accelerometer data (e.g. in smart
watches, wearables, and vibration analysis). The objective of this work is to present a novel use
of accelerometer-based pattern recognition techniques to detect the urban space infrastructure
characteristics based on their effect on a vehicle’s body frame dynamics. For this study, we
focus on detecting speed bumps, potholes and curves based on a real-time data streaming
with the objective of rendering a street digitalization to automatically update an urban space
Digital Twin. The present study has achieved real time event detection for an urban trajectory
with high accuracy which yields data that can be later fused with other sensors data. This
approach is effectively contributing to the infrastructure layer of a multi-layered approach of
digital modelling. Furthermore, the results contribute to expand the body of knowledge of real
time accelerometer event recognition techniques.

Keywords: Machine Learning, Real-time Detection, k-nearest neighbor, accelerometer, space
digitalization, digital twin

0.1 Abbreviations and Acronyms

• ML - Machine Learning
• SVM - Support Vector Machine
• KNN - K-Nearest Neighbor
• DT - Digital Twin
• IMU - Inertial Measurement Unit
• NED - North, East, Down
• RMS - Root-mean Square
• PSD - Power Spectral Density
• PCA - Principal Components Analysis
• LIDAR- Light Detection and Ranging

1. INTRODUCTION

This work is part of a larger research project focused on
developing Digital Twin (DT) models for urban spaces,
vehicle movement, and the interaction of the community
with the physical environment. The main motivator of
this work is generating sustainable development solu-
tions based on modern technologies to enable data-driven
decision-making for the improvement of urban spaces.
Statistics from the UN 2020 report on Sustainable De-
velopment goals show that a rapid expansion of built-

up area (physical expansion of a city) reflects unplanned
urban sprawl in the last 20 years. With an average of
133.15 square meters of built area per person in Latin
America, this problem directly affects delivery services,
public health and mitigation plans for natural disasters
(United Nations (2020)). For this purpose, a series of
sensing devices are being used to capture data to digi-
talize and characterize different layers of an urban space:
(1) the physical terrain, (2) buildings, (3) infrastructure,
(4) the community’s mobility, (5) real-time digital input
layer, (6) digital twin deployment (Bot́ın-Sanabria D.M.
et al. (2021)). Traditional approaches for 3D mapping
of urban spaces tend to rely on the usage of LiDAR
sensors, but lack the precision to digitalize the conditions
of the road. To overtake this obstacle, the present work
aims to present the design and implementation of an
accelerometer-based method using a KNN classification
approach for the characterization of infrastructure in ur-
ban spaces. This approach will serve the purpose of accu-
rately representing details of the condition of the street
such as speed bumps, potholes, and how the community
interacts with the physical space. Information that would
not be detected by the other sensors in the system. With
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this digital layer of a physical space, the system enables
a detailed and updated insight of the physical state of a
street that will help understand the current situation in
order to identify improvement opportunities. The final
DT is expected to showcase the results from all data
acquisition systems in a clear way to a user. Furthermore,
the complete system is design to take data from other
sensors to understand how the community interacts with
the physical space.

Classification tasks for detecting patterns, events or cer-
tain activities have experienced a surge since the inte-
gration of advanced statistical techniques and algorithms
that integrate Machine Learning (ML) predictive models.
The existing ML models have the capability of identifying
complex relations and nonlinearities in data sets and
provide a deeper insight which facilitates data analyt-
ics and pattern recognition (Ferrahi V. et al. (2019)).
However, several obstacles and implications arise when
using ML algorithms for this purpose due to the in-
creased complexity of systems. There are several types
of predictive models such as Neural Networks, Support
Vector Machines (SVM), K-Nearest Neighbors (KNN),
and Decision Trees. In this work, a study of classification
models was conducted and the chosen one is a KNN
model with optimized hyperparameters. This model ”is a
popular classification method in data mining and statis-
tics because of its simple implementation and significant
classification performance” (Zhang S. et al. (2018)). In
essence, the method employs a certain distance metric
and weight to calculate the distance between a test sample
(new data) and all training samples in order to obtain
their nearest neighbors and then conduct the classification
(Zhang S. et al. (2018). In this sense, this type of model
has been chosen to detect events from a driving trajectory
with the objective of characterizing the current state of
the infrastructure in an urban space. For this purpose,
the system should have a stream of inertial data from the
car´s movements as input and should give a clear results
of the detected events for the analyzed trajectory. This
work presents the graphic results through time but there
is work being carried out to represent the same results
through the distance traveled.

This paper is organized as follows: Section 2 presents the
problem statement; Section 3 presents the methodology
for performing event recognition from an inertial measure-
ment unit (IMU) device; Section 4 presents the results
from the design, deployment and testing of the detection
model and Section 5 discusses the most important take-
aways and implications from the results.

2. PROBLEM STATEMENT

There is a need of characterizing the infrastructure of the
urban space to detect anomalies on the road and make
an accurate virtual replica of it. With this task at hand,
the objective of this work is to present the design and
deployment of a ML-based classifier capable of detecting
certain events on the road based on the vehicle dynamics.

Activity or event recognition is a challenging method
to generalize due to the unique characteristics of each
event (Sukor A.S. et al. (2018)). However, the classifier is
expected to generate actionable data to identify specific
conditions from a physical space in real-time. The future
output enables an external user to remotely analyze the
infrastructure state on an area supplied by data from a
fleet of vehicles like in the case on urban areas.

3. METHODOLOGY

The development of ML models consists of: (1) data
acquisition, (2) model training and testing, and (3) model
deployment (see Figure 1). The data acquisition phase
consists mainly of using sensors to gather information
that represents the environment where certain variables
are to be measured and recorded (e.g. gathering IMU
data from a driving cycle for street events of interest).
The model training and testing phase is conformed of
three subphases: (1) data preprocessing, (2) extracting
features and predictors, and (3) training, validation and
optimization of the model. Then, there is the deployment
phase when the ML model detects the specific activity it
can be deployed on the field.

Deploy model 
for real- time 

event detection
Acquire 

training data

Extract features 
from all selected 

events and 
generate 

features table

Train, validate 
and optimize 

model
Testing

Filter, 
normalize, and 

select data

Data Acquisition Supervised learning Model deployment

Fig. 1. Machine Learning model phases.

In the process of selecting features and training a
model, known techniques are supervised methods, semi-
supervised methods, and unsupervised methods (Miao
J. & Niu L. (2016)). In the case of supervised train-
ing and feature selection, supervised methods allows to
”effectively select discriminative and relevant features to
distinguish samples from different classes” (Miao J. & Niu
L. (2016)).

Given the objective of this work, several ML models
were researched and explored to find the most adequate
one to perform the task of classification given a set of
sensor signals. This model must be fast (in terms of
computational time), and accurate to ensure real-time
detection. Meaning it should be able to process a 3 second
time window fast as to provide a detection result without
causing delays in the sensor streaming measurements. For
this, many tools are available now days. MathWorks Inc.
provides a the Classification Learner App (MathWorks
Inc. (2022)) in Matlab, where it is possible to train several
models and optimize them in a very efficient way. Using
this tool, models such as Fine Tree, KNNs, SVMs, Neural
Networks, and Naive Bayes were trained and compared
in terms of accuracy. The chosen model was an optimized
KNN model which is discussed in Subsection 4.1.
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3.1 Experimental Setup

To validate the performance and accuracy of the model
in real-world scenarios and as a first step to final system
implementation, tests were conducted in different streets
close to the Tecnológico de Monterrey, Monterrey Campus
area. Testing trajectories were chosen with the objective
of putting to test the model in detecting the four cases
(speed bumps, normal driving, curves and potholes). In
this sense, 6 trajectories (of approximately 500 m each)
were chosen which contain all events and accurately
represent a normal drive cycle in the area. The experiment
consisted on traveling the set trajectory at different times
of the day on different days (to eliminate any bias related
to traffic conditions)and correlating the real (i.e. true
classes) vs detected events and their score percentage
to validate the model’s performance. All tests had a set
duration of 1 minute with a sampling frequency of 50 Hz
and with control variables such as the IMU sensor, the
sensor’s location on the vehicle, driver, vehicle and driving
style (provided it was the same driving conditions).

In terms of the location of the sensor, it was positioned
as close as possible to the center of gravity of the vehicle.
This is important in order to eliminate linear acceleration
bias when representing the vehicle’s movement.

3.2 Data Acquisition System

The system consists of a set of devices: (a) an IMU, (b)
a computer for real-time processing of the model, (c) a
vehicle, (d) an Arduino Nano (Arduino, United States,
Somerville) to enable connectivity between the sensor and
the processing unit. The IMU device is the MPU9250
(IvenSense, United States, California) mounted on the
roof of the vehicle. It is housed on a designed support
that is magnetically attached to the vehicle to ensure
stability and accessibility. The MPU9250 is an IMU that
integrates accelerometer, gyroscope and magnetometer
sensors that measure linear acceleration [m/s2], angular
velocity [rad/s], and magnetic field intensity [µT ] on 3
axis (X, Y, Z) respectively.

When collecting IMU signals, they are calibrated to elim-
inate the effect of gravity (in the Z axis), to align the
axes in accordance with NED (North, East, Down) co-
ordinates, and to eliminate hard iron distortions in the
magnetometer (MathWorks Inc. (2022)). The NED coor-
dinate system ensures that the IMU is aligned with the
Earth’s geodetic directions (north pole, east, downward).
Furthermore, it is important to note that the signals for
training have not been filtered to provide a training data
set that more accurately represents real-life an accelerom-
eter signals from a moving car. Authors in (Sukor A.S. et
al. (2018)), mention that features need to be selected from
raw signals in order to increase recognition accuracy and
computational efficiency.

3.3 Feature extraction and predictor selection

Using a supervised learning method, accelerometer signals
for a specific time window are evaluated in time and
frequency domains to extract 5 features for each axis (X,
Y, Z) of acceleration. These time windows are manually
selected from signals to represent the specific events that
the model should detect. Therefore, the model can be
trained with 3 positive cases (speed bumps, curve, and
potholes) and a normal driving case for uneventful time
windows. The features being extracted are the following:

• Arithmetic mean (x).
• Root-mean square value (RMS).
• Power spectral density (PSD) estimate usingWelch’s
method (Pw): power and frequency for 6 highest
peaks.

• Autocorrelation features (covariance) (R): magni-
tude of main peak, and magnitude and frequency
of second peak.

• Total power (Pf) in 5 adjacent and pre-defined
frequency bands (0.5, 1.5, 5, 10, y 15 Hz).

In summary, this matrix of predictors contains the follow-
ing values for each axis: the arithmetic mean and RMS, 6
power magnitudes and their frequencies (PSD), 3 covari-
ance values, and 5 power values for pre-defined frequency
bands giving a total of 66 predictors. This matrix is Xnx66

where n represents the number of sample data points or
cases with which the model is trained (rows) and 66 is the
number of predictors extracted from each case (columns).
Each of the five predictors already mentioned and shown
in Equation 1, are calculated for all three axis of the
accelerometer.

Xnx66 =











x1 RMS1 Pw1 R1 Pf1
x2 RMS2 Pw2 R2 Pf2
. . . . .
. . . . .
xn RMSn Pwn Rn Pfn











(1)

For this application, being that training data does not
have a high dimensionality, the Principal Components
Analysis (PCA) process has been discarded. However,
the Classification Learner App enables features selection
algorithms to analyze the importance of features for the
prediction of the response variables. For this work, the
ReliefF algorithm which is a type of filter method for
feature selection (Urbanowicz R. et al. (2018)), was imple-
mented since it is best for estimating feature importance
for distance-based supervised models such as a KNN
model. The results for this algorithm have concluded that
features from the frequency domain analysis of the data
are more relevant for prediction. The reduction of features
based on this algorithm is yet to be implemented in the
system. The expected result is increasing the computa-
tional efficiency and performance of the system.
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Response or target values are the classes where events
have been classified. For instance, the algorithm is de-
signed to detect speed bumps, normal driving, potholes,
and curves. Their respective numerical labels are 1, 2, 3,
and 4. The vector of response variables is given by Θn.

Θn =











θ1
θ2
.
.
θn











(2)

Note that to provide faster model processing with the
objective of full filling real-time detection, classes have
been numerically labeled. Table 1 presents this labeling
where each class was given a specific numerical value.
The first type of event denoted as ”None” corresponds
to predictions made by the model that do not satisfy a
score threshold of 70%. This value of threshold was cho-
sen based on experimentation. This means that through
various experiment setups and tests, supported by results
validation tasks, it was concluded that if the score was
less than 70% the algorithm will sometimes provide false
positives.

Table 1. Numeric class labels.

Type of Event Numeric Label

None —

Speed bump 1

Normal driving 2

Curve 3

Pothole 4

For the final step of data processing prior to model train-
ing, the features matrix was generated by horizontally
concatenating Xnx66 and Θn in data set Features which
contains n rows corresponding to the number of training
samples (i.e. observations) and 67 columns corresponding
to 66 features and response for each sample.

Featuresnx67 = [ X|Θ ] (3)

4. RESULTS

Prior to selecting the KNN model, various types of models
were trained with the same features matrix to explore
their prediction accuracy. In this sense, some of the
tested models and their validation accuracies were the
following. Note that other models were trained but have
been excluded from this list.

• Weighted KNN - 95.3%
• Fine KNN - 92.2%
• Optimizable KNN - 96.9% (chosen model)

• Linear SVM - 95.3%
• Trilayered Neural Network - 95.3%
• Fine Decision Tree - 90.6%

Based on this comparison and the prediction speed, the
optimizable KNN model was chosen to continue.

4.1 KNN Optimized Model

Through the Bayesian optimization method with 30 it-
erations, the KNN model was optimized to increase ac-
curacy in classification. Fig. 2 shows that the bestpoint
hyperparameters were reached after 7 iterations where
both the estimated and the observed classification error
were minimized, thus, yielding an acceptable observed
minimum classification error of 0.036.

Fig. 2. Minimum Classification Error Optimization
Graph.

The optimized hyperparameters calculated were the fol-
lowing:

• Number of neighbors: 7
• Distance metric: Spearman
• Distance weight: Inverse
• Standardize data: true

Through a cross-validation scheme of 3 folds, the data
set was partitioned for validation and testing. The model
got a calculated validation accuracy of 96.9% and the
validation confusion matrix is shown in Fig. 3.

Furthermore, once the KNN optimized model has been
trained, a scatter plot of the model’s predictions was
generated to analyze classification errors in a graphical
way such that class clusters are made evident. In Fig.
4, two features (X-axis RMS and Y-axis RMS) have
been plotted for all observations. Each class has been
given a color and all dots represent correct classifications
of events. Incorrect classifications are represented with
crosses.
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Fig. 3. Validation confusion matrix. Numeric labels corre-
spond to the following events: (1) Speed Bumps, (2)
Normal Driving, (3) Curves, (4) Potholes.

Fig. 4. Scatter plot results of prediction with validation
set.

4.2 Real-time testing

In terms of the user interface, a Matlab script with
graphical interface elements was developed to run in real-
time using a fixed time window for event detection. In
this sense, the user may modify some parameters prior
to initialization such as the time window duration (set
at 3 seconds by default), the duration of the experiment
(set at 1 minute by default), and the sampling frequency
for the IMU (set at 50 Hz by default) (Ferrahi V. et al.
(2019)). The time window of 3 seconds was set through
experimentation and testing. It was concluded that all the
event that the model is design to detect can happen within
a time window of 3 seconds. Furthermore, it was observed
that if the time window is too small (less than a second),
the algorithm ran into delays due to computing power as

there is a time needed to process the information before
a new time window is tested. When the time window was
too large (over 5 seconds), there was a possibility that two
or more events that were contiguous in physical space,
will be present in the measurements for the same time
window. In this sense, the algorithm is not capable of
detecting more than one event per time window.

When the script is run, the user is prompted to click the
start button whenever they are ready. Once it has started,
a popup window will inform the user of the current time
window, the detected event and the score for said event.
When the script reaches the set experiment duration, it
will cease to stream sensor signals and it will present the
user with a series of figures such as Fig. 6 where they
can correlate the model’s predictions with the real sensor
signal measurements, and a histogram that summarizes
the detected events for the duration of the experiment.

The model provides as output 3 results:

• Predicted Event: It is presented as the numerical
label corresponding to each event.

• Prediction Scores: Are the percentages of cer-
tainty of prediction for each event. There is a value
assigned for each event so this variable contains a
1x4 vector. The class with the highest score is taken
to be the predicted event since it means it has the
highest level of certainty.

• Post Probabilities: These are merely the per-
centages of error of the model when predicting a
specific event. This variable contains a 1x4 vector
containing the error of prediction for each event. This
means that the class with the least amount of error
is selected as the predicted event (1− score).

For the final real-time model deployment, a score thresh-
old of 70% was set to ensure that the detected events had
the highest score of certainty.

A summary of all trajectories and their specific infras-
tructure characteristics is presented in Table 2 where
each predicted event has a calculated score from the
model. Furthermore, Fig. 5 illustrates the area around
the Tecnológico de Monterrey campus where testing has
taken place. For instance, the dotted line along the central
campus corresponds to the testing trajectories for this
work. Note that the vehicle direction is always clockwise
along the streets in Figure 5.

The following results correspond to the second trajectory
of testing (Eugenio Garza Sada - Fernando Garćıa Roel
street - see Table 2). From this trajectory, the user
interface designed in Matlab, allows a user to analyze the
recorded signals from the specific trajectory as presented
in Fig. 6 (top). Furthermore, the system displays the
prediction results and the individual prediction scores
to the user as shown in Fig. 6 (middle and bottom
respectively). As seen, there is a threshold limit shown
as a dotted line along the 70% mark in the bottom graph
and any event above the threshold will be selected as the
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Table 2. Testing results summary.

# Trajectory
Real

events

Predicted

events
Score

1
Luis Elizondo

street
Speed bump Speed bump 84.33%

2 Eugenio Garza

Sada - Fernando

Garćıa Roel

Curve Curve 100%

. Speed bump Speed bump 88.28%

. Speed bump Speed bump 100%

3 Junco de la

Vega

Curve Curve 100%

. Speed bump Speed bump 85.55%

4
Luis Elizondo

street
Speed bump Speed bump 100%

5
Eugenio Garza

Sada street
Speed bump Speed bump 100%

6

Fernando

Garćıa Roel

street

Speed bump Speed bump 86.95%

Fig. 5. Tecnológico de Monterrey, Campus Monterrey
map.

predicted event. In this test, the model detected a speed
bump in time window 9 that did not full fill the threshold
limit. This specific time window will be labeled with a
”None” event detected label and no specific numerical
label.

5. DISCUSSION AND FUTURE WORK

There have been 3 main takeaways with regards to the
use of ML classifiers for the task of detecting events
on the road: (1) frequency domain features have proven
to be more suitable for detecting the desired events in
this study, (2) Although other models proved to yield
comparable detection accuracy, the KNN model was se-
lected based on its characteristics, increased accuracy and
efficiency, (3) ML is a powerful tool when it comes to
classification capabilities in applications of event or ac-
tivity detection. In this work, the model has been trained
to detect based on accelerometer data; however, as part
of future work, other activities may be included in the
detection algorithm such as driving style, speed humps,
and even accident analysis. This could be implemented
using the other sensors in the IMU such as the gyroscope
and magnetometer.

Fig. 6. Trajectory 2 testing results - sensor signals (top),
model predictions (middle), prediction scores (bot-
tom).

Furthermore, the next steps for this work are to finish
validation and evaluation testing in order to start the
integration of this model to the digital twin system for
urban space digitalization. In this way, the discussed
model will interact with a LIDAR mapping system that
is designed to generate a 3D point cloud digitalization of
a physical space, and to calculate an estimated trajectory
for the vehicle within the space. By enabling this fusion,
the system will be able to determine not only at which
point in time an event was detected, but also the location
of such event. This will effectively yield a more accurate
and insightful digitalization of the urban space and its
infrastructure. Furthermore, by incorporating the detec-
tion of driving styles, the mobility layer of the digital twin
architecture may be targeted to generate information on
the interactions of driver with the urban infrastructure.
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