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Abstract: This paper presents a chaotic map’s fractionalization, dynamical analysis, control,
and synchronization in a leader-follower configuration. The fractional-order version of the
chaotic map is obtained based on the Caputo-like delta difference operator. Then, the
dynamical behaviors associated with the fractional-order difference system are analyzed
by employing the phase portraits, bifurcations diagrams, and largest Lyapunov exponent.
Afterward, the control and synchronization are achieved by proposing a controller for the
fractional-order map. Finally, the synchronization error based on the proposed control scheme
is proven, and numerical simulations confirm that the control technique can quickly stabilize
and synchronize the fractional-order chaotic maps.

Keywords: Fractional-Order; Chaotic map; Control; Synchronization; Caputo-like delta
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1. INTRODUCTION

Fractional calculus presents a history of more than three
centuries. Researchers have observed that the description
of some phenomena is more accurate when the fractional
integrals and derivatives are considered [Jahanshahi et al.
(2022)]. In recent years its application in biology, physics
and engineering caused to attract attention because it
shows genetic and memory characteristics [Fernández-
Carreón et al. (2022)]. For instance, it has been applied
to model the interaction of immune system with tumor
cells and the HIV infection of CD4+ T cells [Ucar et al.
(2019)]. Moreover, it was used in a glucose-insulin reg-
ulatory system to determine the population densities of
insulin, glucose, and β-cells as a relation to the fractional-
order [Munoz-Pacheco et al. (2020)]. Similarly, fractional
calculus was introduced to capture the time-dependent
behavior, hereditary properties and aging of concrete
beams [Beltempo et al. (2018)]. [Zambrano-Serrano et al.
(2021c)] show that the voltage in a RC circuit depends
directly from the fractional-order parameter, when it is
modelled in terms of a fractional Caputo derivative.

Also, there has been considerable attention to chaotic
systems with noninteger-order. It has been reported that
many fractional-order systems, such as Liu, Rössler, un-

stable dissipative and PWL, [Platas-Garza et al. (2021);
Zambrano-Serrano et al. (2021b); Gilardi-Velázquez et al.
(2022)] can exhibit chaotic behavior. Although chaos was
analyzed in continuous-time systems, its existence and
features in discrete-time systems have also been a subject
of interest. It is worth mentioning that because of chaotic
systems’ high susceptibility to the initial conditions, pa-
rameters, and inherent randomness, the application of
chaotic systems is one of the challenging frontier top-
ics. Thus, developing a chaotic map with some complex
dynamical characteristics is essential. [Garćıa-Grimaldo
and Campos (2021)] propose a map with hidden dynam-
ics, and [Jiang et al. (2016)] propose a class of three-
dimensional maps with hidden chaotic dynamics.

Recently, considering the Caputo-like delta difference
operator, the focus has shifted towards fractional-order
chaotic maps. To date, only a few fractional maps have
been proposed [Zambrano-Serrano et al. (2021a); Danca
(2022)], which has motivated the research presented in
this paper. It is noted that these maps have outstanding
attributes over their integer counterparts. [Danca (2022)]
point out that the chaotic behavior generated by the
fractional logistic map depends on the discrete memory
and the fractional-order. He suggests that the fractional-
order difference map includes a new degree of freedom
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being more appropriate for secure communications and
encryption applications. This added degree of freedom
can also capture the hidden characteristics of real-world
phenomena encountered in different areas.

This investigation enhances our knowledge of fractional-
order maps. To do it, we examine the fractional-order map
corresponding to a three-dimensional map with hidden
dynamics, study its dynamics by considering the phase
portraits, bifurcations diagrams, and Lyapunov exponent,
and focus on control and synchronization employing a
leader-follower configuration. Sometimes, when we talk
about systems with chaotic behavior, control and syn-
chronization are the particular interest. The control of
chaos is understood by stabilizing discrete or continuous
chaotic systems to a steady-state, usually zero or a peri-
odic orbit. In contrast, synchronization is concerned with
forcing a follower system to mimic the same trajectory
of a master system with different initial conditions. In
integer-order systems a lot of papers have paid attention
to this subject and have controlled different continuous
and discrete chaotic systems; being the method proposed
by [Ott et al. (1990)] the first method in integer-order
domain. Nonetheless, compared with the extensive works
on the synchronization of various systems, studies on
the control and synchronization of the fractional-order
discrete-time systems are rare. Therefore, we have pro-
posed a fast control technique for the system. Further-
more, the controller’s gains are tuned based on the error
of synchronization, which will make the controller agile.
The stability of the proposed control scheme is confirmed.
Numerical simulation of both control and synchronization
confirm the proposed theory.

The structure of the paper is as follows, preliminaries are
discussed in Section 2, which includes the Caputo-like
delta difference operator. In Section 3, the generalized
version (fractionalized version) of the difference chaotic
system is proposed. Moreover, the chaotic characteristics
of the fractional chaotic map are analyzed via phase plane,
largest Lyapunov exponent, and bifurcation diagram.
Section 4 shows the outcomes of the stabilization and
synchronization of fractional chaotic maps. A summary
of our conclusions closes the paper in Section 5.

2. PRELIMINARIES

This section provides some definitions, theorems, and
remarks to be used in the paper. Herein, we will use the
general n-th order difference. It can be written as

∆nf(t) = ∆n−1f(t+ 1)−∆n−1f(t),

=
n
∑

k=0

Ck
n(−1)kf(t+ n− k),

(1)

where Ck
n is the binomial coefficient, Ck

n = k!
n!(n−k)! .

Extending the concept to fractional-order difference, the
fractional sum of order v is defined as follows.

Definition 1. [Atici and Eloe (2009)]. If f(·) is a real-
valued function defined on Nφ and v > 0, then, the
discrete fractional-order sum of v denoted as ∆−v

φ , it is
defined as

∆−v
φ f(t) =

1

Γ(v)

t−v
∑

s=φ

(t− σ(s))v−1f(s), t ∈ Nφ+v, (2)

where Nφ = {ϕ, ϕ+ 1, ϕ+ 2, . . .}, ϕ is the starting point,

σ(s) = s+1, is the forward shift operator, t(v) = Γ(t+1)
Γ(t+1−v) ,

with t ̸= −1,−2,−3, . . . , is the falling function, and Γ(·)
is the gamma function, denoted as Γ(z) =

∫

∞

0
e−ttz−1dt.

Definition 2. [Abdeljawad (2011)]. Let v > 0 with v ∈ N.
The v-order Caputo-like delta difference of a function f(t)
defined on Nφ is denoted by

C∆v
φf(t) = ∆

−(m−v)
φ ∆mf(t),

=
1

Γ(m− v)

(t−(m−v))
∑

s=φ

(t− σ(s))(m−v−1)∆mf(s),

(3)

where t ∈ Nφ+m−v, with m = ⌈v⌉ + 1, v the fractional-
order, and ϕ the lower bound.

Remark 1. For m = 1, the v-th Caputo-like delta differ-
ence is defined by

C∆v
φf(t) =

1

Γ(1− v)

(t−(1−v))
∑

s=φ

(t− σ(s))(−v)∆f(s), (4)

with t ∈ Nφ+1−v.

Theorem 1. [Fulai et al. (2011)]. The delta fractional
difference equation

C∆v
φf(t) = f(t+, u(t+)),

∆ku(ϕ) = uk,
(5)

with m = ⌈v⌉+1, k = 0, . . . ,m−1. Where the equivalent
discrete integral equation can be expressed for t ∈ Nφ+m

as

u(t) = u0(t)+
1

Γ(v)

t−v
∑

s=φ+m−v

(

(t− σ(s))(v−1)
)

f(s+, u(s+)),

(6)

the term u0(t) =
∑m−1

k=0
(t−φ)(k)

k! ∆ku(ϕ) corresponds to
initial iteration, t+ = t+ v − 1, and s+ = s+ v − 1.

Remark 2. If we consider that the starting point is ϕ = 0,
and set 0 < v ≤ 1, then (9) changes to

u(t) = u0(t) +
1

Γ(v)

t−v
∑

s=1−v

(

(t− σ(s))(v−1)
)

f(s+, u(s+)),

(7)
where (s + v) ∈ N, let s + v = j and employing the

expansion (t − σ(s))(v−1) = Γ(t−s)
Γ(t−s−v+1) as a result, the

numerical formula with global memory effect can be
presented explicitly as
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u(t) = u0(t)+
1

Γ(v)

t
∑

j=1

Γ(t− j + v)

Γ(t− j + 1)
f(j−1, u(j−1)). (8)

Lemma 1. [Cermák et al. (2015)] Let the following
fractional-order map:

C∆v
φf(t) = Af(t+),

f(0) = f0.
(9)

The zero equilibrium of the system is asymptotically
stable, if

λ ∈

{

z ∈ Z : |z| <

(

2 cos
| arg(z)| − π

2− v

)v

and | arg(z)| >
vπ

2

}

, (10)

where λ indicate the eigenvalues of the matrix A, t+ = t+
v−1, 0 < v ≤ 1, f(t) = (f1(t), . . . , xn(t)) and t ∈ Nφ+1−v.
For more details on the fractional difference operators
reference please refer to [Abdeljawad (2011)] and the
references therein may consult.

3. FRACTIONAL-ORDER CHAOTIC MAP

In this section, by employing the Caputo-like delta dif-
ference operator given in (4), the generalized version
(fractionalized version) of the difference chaotic system
is proposed. Afterward, the chaotic behavior from the
fractional map is analyzed because of the state portraits,
bifurcation diagrams, and Lyapunov exponent.

3.1 Fractional three-dimensional map

The three-dimensional map with hidden dynamics was
proposed by [Jiang et al. (2016)] and defined as

xn+1 = yn,

yn+1 = zn,

zn+1 = xn − cz2n + bxnyn + 1,

(11)

being c and b positive parameters.

Employing the integer-order difference equation (1) in the
map (11) and the Caputo difference operator of Definition
2, we obtain the fractional-order map as follows

C∆v
φx(t) = y(t+)− x(t+),

C∆v
φy(t) = z(t+)− y(t+),

C∆v
φz(t) = x(t+)− z(t+)(cz(t+) + 1) + bx(t+)y(t+) + 1,

(12)

where 0 < v ≤ 1, is the fractional-order, t ∈ Nφ+1−v,
with ϕ defining the starting point, the initial conditions
are ∆kx(ϕ) = xk, ∆ky(ϕ) = yk, ∆kz(ϕ) = zk. By
considering the starting point ϕ = 0, and the Theorem 1,
the numerical iterative process for (12) can be expressed
as follows

-4

-4

-2

0

-2

2

4

0
4

2 2
0

-24 -4

Fig. 1. Phase portrait of system (12), with x(0) = 0.0199,
y(0) = 0.0001, z(0) = −0.3298, v = 0.987, c = 0.2,
and b = 0.33, respectively.

x(n) =x(0)+

1

Γ(v)

n
∑

j=1

Γ(n− j + v)

Γ(n− j + 1)
(y(j − 1)− x(j − 1)) ,

y(n) =y(0)+

1

Γ(v)

n
∑

j=1

Γ(n− j + v)

Γ(n− j + 1)
(z(j − 1)− y(j − 1)) ,

z(n) =z(0)+

1

Γ(v)

n
∑

j=1

Γ(n− j + v)

Γ(n− j + 1)
(x(j − 1)−

z(j − 1)(az(j − 1) + 1)+

bx(j − 1)y(j − 1) + 1).
(13)

When the order of (13) is v = 1, it is reduces to the
classical integer-order difference system given in (11)
respectively.

3.2 Phase portrait and bifurcation diagram

Figure 1, shows the phase portrait of fractionalized system
(12), considering the numerical formula expressed in (13).
By choosing the initial conditions as x(0) = 0.0199,
y(0) = 0.0001, z(0) = −0.3298, a fractional-order v =
0.987, the parameters c = 0.2, and b = 0.33 respectively.
The phase plane was performed considering n = 8000
iterations and discarding the first 100 values. The largest
Lyapunov exponent of (12), taking into account the pre-
vious considerations is λ = 0.25. The Lyapunov exponent
describes an average rate of convergence or divergence
of adjacent orbits on an attractor; it characterizes the
stability of the system. As is well known, there are some
algorithms to compute the Lyapunov exponent in integer-
order systems, however, there are few related results re-
ported fractional-order discrete maps. To compute the
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Fig. 2. Bifurcation diagram of parameter b, for a
fractional-order v = 0.987.

Lyapunov exponent we consider the algorithm given in
[Wu and Baleanu (2015)]. It is called the Jacobian matrix
algorithm which employs a tangent map with memory
effect, for more detailed information see [Wu and Baleanu
(2015); Zambrano-Serrano et al. (2021a)].

The bifurcation diagram of the system (12) is shown in
Fig. 2, where b performs as a critical parameter by se-
lecting a step-size ∆b = 0.0003. The bifurcation diagram
was obtained considering v = 0.987, and changing the
parameter in an interval b ∈ [0.1, 0.4]. From Fig. 2, is ob-
served that there are two principal regions where chaotic
behavior occurs, given as b ∈ [0.1171, 0.15] ∪ [0.3, 0.4].

4. STABILIZATION AND SYNCHRONIZATION

The stabilization (control) and synchronization are fas-
cinating topics in dynamical systems, including integer
and fractional-order, whether in discrete or continuous
systems.

4.1 Stabilization of fractional-order chaotic map

When the state of a system achieves asymptotic stability
in the presence of a suitable controller means stabiliza-
tion. The following control law is considered to achieve
the stable state in the fractional-order map (12) defined
in subsection 3.1.

C∆v
φx(t) = y(t+)− x(t+) + f1(t

+),
C∆v

φy(t) = z(t+)− y(t+) + f2(t
+),

C∆v
φz(t) = x(t+)− z(t+)(cz(t+) + 1)+

bx(t+)y(t+) + 1 + f3(t
+),

(14)

where 0 < v ≤ 1 is the fractional-order, t+ = t+v−1, with
f1(t

+) = a1x(t
+) + a2y(t

+), f2(t
+) = a3y(t

+) + a4z(t
+),

and f3(t
+) = a5x(t

+)+cz2(t+)−bx(t+)y(t+)−1+a6z(t
+).

By considering the Lemma 1, the coefficients of matrix
A ∈ R

3×3 of (9) are as follows

-1

0

1

0 5 10 15 20 25 30

-0.1

0

0.1

0 5 10 15 20 25 30

-0.5

0

0.5

0 5 10 15 20 25 30

Fig. 3. Stabilization of the variables x, y, z of (14) with a
fractional-order v = 0.987.

A =

[

(a1 − 1) (a2 + 1) 0
0 (a3 − 1) (a4 + 1)

(a5 + 1) 0 (a6 − 1)

]

, (15)

the initial conditions and parameters are x(0) = 0.9,
y(0) = 0.1, z(0) = −0.3, v = 0.987, c = 0.2, b = 0.33,
respectively, and setting a1 = −0.7, a3 = −0.1, a6 = 0.7
and a2 = a4 = a5 = −1 for the controller. Then, the
state of the system (14) its a asymptotically stable which
is observed in Fig. 3. Moreover the eigenvalues of (15) are
λ1 = −1.7, λ2 = −1.1, and λ3 = −0.3 which fulfills the
conditions of Lemma 1. Then the system is asymptotically
stable.

4.2 Synchronization of fractional-order chaotic maps

In this section, two fractional-order chaotic maps pro-
posed as in subsection 3.1 are considered as drive and
response systems, respectively.

The fractional-order difference chaotic system could be
written as follows

C∆v
φx(t) = Ax(t+) +Bx(t+), x(0) = x0; (16)

where A is a linear matrix, Bx(t+) are the nonlinear
terms, and the response system is expressed as
C∆v

φx1(t) = Ax1(t
+) +Bx1(t

+) + f(t+), x1(0) = x10;
(17)

with v ∈ (0, 1]. Considering e1(t) = x1(t)−x(t), the error
system is obtained as
C∆v

φe(t) = Ae(t+)+Bx1(t
+)−Bx1(t

+)+f(t+), e(0) = e0;
(18)

The nonlinear term f(t) is given as

f(t) = Bx1(t)−Bx1(t)−Ke(t), (19)

then,
C∆v

φe(t) = (A−KI)e(t+), e(0) = e0; (20)
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Fig. 4. Error of synchronization of (12) and (22) systems
both with a fractional-order v = 0.987.

Definition 3. [Liu and Ma (2020)]. Let x(t) and x1(t) the
solutions of drive system (16) and response system (17).
For all ϵ > 0, there exists t0 ∈ Nφ such that

||x(t)− x1(t)|| < ϵ, (21)

for t > t0. Then the systems (16) and (17) are synchro-
nized.

Considering the drive system such as (12) and a response
system as follows

C∆v
φx1(t) = y1(t

+)− x1(t
+) + f1(t

+),
C∆v

φy1(t) = z1(t
+)− y1(t

+) + f2(t
+),

C∆v
φz1(t) = x1(t

+)− z1(t
+)(cz1(t

+) + 1)+

bx1(t
+)y1(t

+) + 1 + f3(t
+),

(22)

with v ∈ (0, 1]. Considering e1(t) = x1(t) − x(t),
e2(t) = y1(t) − y(t), e3(t) = z1(t) − z(t), f1(t

+) =
−e2(t

+), f2(t
+) = 0 and f3(t

+) = cz21(t
+) − cz2(t+) −

bx1(t
+)y1(t

+) + bx(t+)y(t+). Then the error system is
obtained as

C∆v
φe1(t) = −e1(t

+),
C∆v

φe2(t) = −e2(t
+) + e3(t

+),
C∆v

φe3(t) = e1(t
+)− e3(t

+),

(23)

By considering the Lemma 1, the coefficients of matrix
E ∈ R

3×3 of the error system are as follows

E =

[

−1 0 0
0 −1 1
1 0 −1

]

, (24)

The initial conditions parameters are x(0) = 0.5, y(0) =
0.1, z(0) = −0.3, v = 0.987, c = 0.2, b = 0.33, x1(0) = 1,
y1(0) = −0.1, z1(0) = 0.3, for drive (12) and response (22)
systems, respectively. Then, the chaotic synchronization
is achieved and the corresponding errors are displayed in
Fig. 4. Moreover the eigenvalues of (24) are λ1 = −1,
λ2 = −1, and λ3 = −1 which fulfills the conditions of
Lemma 1. Then the systems are synchronized.

5. CONCLUSIONS

In this paper, some basic concepts related to fractional
difference operators were presented. The generalization
of a three-dimensional map with hidden dynamics con-
sidering the Caputo type fractional difference opera-
tor was proposed. Chaotic behavior associated with the
fractional-order map was analyzed by considering the
phase planes, bifurcation diagram, and Lyapunov ex-
ponent performed by the Jacobian matrix algorithm.
Besides, with the stability theory for linear fractional-
order difference equations, the stabilization and chaos
synchronization between a drive-response configuration
for fractional-order difference chaotic system are derived
by appropriate controllers. As a work in this field, the
performance of the proposed controller can be enhanced
by applying adaptive control techniques. Also, the control
of multi-stability in the proposed map could be fruitful for
future studies.
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